Index

Page numbers in italic denote figures. Page numbers in bold denote tables.

‘Acadia Terrane’ 27–28
Acadian Orogeny, Marcellus Subgroup 271
accretionary lapilli, Alamo Breccia 146, 149
aeromagnetic anomalies, hydrocarbons 7, 189
Alaknanda, pyrrhotite remagnetization 165
Alamo Breccia
bolide impact 146
breccia contact testing 155–156
demagnetization 149–150
geochemistry 157–158
geological background 146–148
IRM 149–150
magnetic components 149, 150, 152–153, 158–159
palaeomagnetism 4, 151, 152–157
petrography 150, 157–158
remagnetization 145–160
fluid conduit 145–146, 159–160
methodology 149–151
rock magnetism 156
stratigraphy 146–147
strontium isotope analysis 150–151, 158, 159, 160
vein contact testing 156–157
VRM 150, 152
Alcaparrosa Formation
remagnetization 66, 67
rock magnetism 67
Alfaro horizon 73
Alleghanian Orogeny 32
Marcellus Subgroup 272
Alsen Formation 235, 236
Ama Drima Massif 166, 175
Amaranth Formation 117, 120
Antolian-Tauride Block 269–260, 266
Andean Chain, tilting 66
anhidrite
Barnett Shale 96, 100
Red River carbonates 109, 110
Antalyan Nappes 266
Antler Orogeny 146
Appalachian Basin 271
Late Paleozoic remagnetization event 14, 230, 253
remagnetized carbonates 231–247
Appalachian Mountains, fluid migration 2, 148
apparent polar wander path (APWP) 1
Mt Kidd 130, 136
North America 153, 154, 155, 159
and remagnetization age 14, 37–38, 41
South America 56–59, 60
Araras Group
clay mineral transformation 63–64
organic maturation 62–63
remagnetization 60–64
Arbuckle Mountains, fluid migration 4, 5, 148
Argentine Precordillera
rock magnetism 66–67
San Rafaelic remagnetization 66–67, 78, 79
Andean tilting 66
Avalon terrane 271
bacteria, and hydrocarbons 62–63, 196, 244
Bambui Group
Cambrian remagnetization 64–66, 78
coercivity components 64
palaeomagnetic data 64
palaeopoles 58, 64
rock magnetism 64–65
barite
Barnett Shale 96, 100
Canadian Cordillera 132, 140
Barnett Shale
composition 91
diagenesis 94, 96–99, 100
fractures 97–99, 100
and fluid migration 103–104
geological setting 90–92
magnetic mineralogy 94
natural gas 89, 90
palaeomagnetism 4, 89–104
palaeopoles 92, 94, 97, 100, 102, 103
petrography 94, 96–99, 100
sampling 92–94
Basin and Range extension 146
palaeomagnetic studies 148, 153
Becraft Limestone 235, 236
Belden Formation, organic matter
maturation 9, 10
Bencliff Grit, oil sands 190
Bend Arch 90
Benuus transition
Marcellus Shale 278–279
Mississippian carbonates 127, 130, 134
remagnetized Palaeozoic carbonates 234
Bey Dağları non-magnetized sediment 261–263
biodegradation, oil 196
Birdtail Formation 109, 110
palaeomagnetism 109, 115–117
rock magnetism 111–114
Birdtail-Waskada Zone 119
bitumen
Araras Group 63
Canadian Cordillera 132, 140
Wessex Basin 196
bolide impact
Alamo Breccia 146
and remagnetization, Williston Basin 119–120
breccia contact testing, Alamo Breccia 155–156
brine mobilization, Basin and Range area 148
Broadtop synclinorum 272
Bure claystones, heating experiments 182–183, 184
burial
claystones, and magnetostratigraphy 181–186
remagnetization mechanisms 8–11
Cabo Magmatic Province, palaeopoles 59, 60
Calencó Member 71
Calstan Hartney Well, Williston Basin 107, 108, 110, 119–120
Cambrian, South America
APWPs 56, 57
remagnetizations 55–56, 60–66
Campo Alegre pole 56
Canadian Cordillera
fold and thrust belt 124
Mississippian carbonates
burial temperature 133–134
coercivity components 127, 128, 129
fluid conduit tests 130, 136, 137, 138, 139
geochemistry 132, 140
gеological setting 124–125
multiple remagnetization 123–141
palaeomagnetism 4, 126–127
palaeopoles 130, 136
petrology 131–132, 134, 135
rock magnetism 127–129, 130, 132
tilt tests 129–130, 131, 133, 134–136, 139
Carapacha Basin 70, 71–72, 78, 79
Carapacha Formation 71
carbonates
magnetite 28–33
mineralogy 33–36
primary magnetic particles 244–245
remagnetized Palaeozoic 230–247
grain-scale anisotropy 231–234
mineralogy 234–235
new research 235–247
review of research 230–235
rock magnetism 231, 235–237
sources of iron 245
see also Helderberg Group
Carbonera Formation 201
magnetic minerals 212–214
rock magnetic properties 202–203, 207–209
Carboniferous, South America, APWPs 56–57
Catskill Delta 271
Cement oil field, aeromagnetic anomalies 7
Central Alkaline Magmatic Province, palaeopoles 59, 60
Cerro de los Viejos Complex 71
Cerro Totora Formation, San Rafaelic
remagnetization 66, 79
Cerro Victoria Formation 74, 78
Chainman Shale, organic maturation 9, 10
Chartreuse Massif, claystone burial 185–186
Cherry Valley limestone 271
Choiyoi Magmatic Belt 78, 79
Chugwater Formation 24
clay diagenesis
Araras Group 63–64
and remagnetization 8–9, 11, 245
claystones
burial and remagnetization 181–186
burial model 183–184, 185
Clymene Ocean closure 55–56
coercivity 14
Alamo Breccia 157, 158
Bambui Group 64
Barnett Shale 98, 99
INDEX
Golfo San Jorge Basin 222–226
Marcellus Shale 280
Mississippian carbonates 127, 128, 129
remagnetized carbonates 231, 234
TSS 173
Colbert Rhylolite, fluid migration 4, 148
convexity error 256
Copper Harbour red beds 26
Creer’s hypothesis 23–24
Cretaceous, South America
APWPs 57, 58–59, 60
remagnetization 56, 75, 79–80
cumulative log-Gaussian analysis 257
Barnett Shale 93, 94
Marcellus Shale 276, 280
Mississippian carbonates 127, 128, 129
Day plots 254
remagnetized carbonates 33–34, 233, 234
Wessex oil sands 193
deformation, as remagnetization mechanism 4, 123
demagnetization
Alamo Breccia 149–150
alternating field (AF)
Trenton Limestone 28–29
TSS 171, 172, 173
Canadian Cordillera 125, 126–127
low-temperature thermal (LTD) 13, 14
Barnett Shale 92, 94
Marcellus Shale 272–273, 274, 276
thermal
Barnett Shale 92
Marcellus Shale 278
TSS 171, 172, 173
Williston Basin carbonates 109, 115, 116
Desert Limestone, organic maturation 9, 10
determination, coefficient of 256–257
Devonian
Alamo Breccia 145–160
Marcellus Shale 271
diagenesis 1–2
Barnett Shale 94, 96–99, 100
hydrocarbon related, Saltarı´n 1A well 200, 211–214
and orogenesis 123
see also clay diagenesis
direct signal analysis, Saltarı´n 1A well 200, 203
dolomite
Red River carbonates 108–109, 110
weathering fluids 7
dolomitization
Canadian Cordillera 136–137
Western Canada Basin 6
dolostone
Mirassol d’Oeste Formation, magnetization 60
Red River carbonates 108–109
doming, Himalaya 175–176
Durness Group, fluid migration 5–6
Ediacaran–Cambrian, South America, APWPs 56, 57, 58
Ellenburger Group 91, 92, 93
Ellesmerian orogeny 32
end-member modellng 254–256
Bey Dağları non-magnetized sediment 261–263
coefficient of determination 256–257
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3911063/9781862396340_backmatter.pdf by guest on 25 June 2019
INDEX

285

convexity error 256

optimal number 256–257

Organyà Basin 258–259, 260

southern Turkey 259–266

Everest, pyrrhotite remagnetization 165, 166

fault zones, and CRMs 5–6

ferrimagnetic particles, extraterrestrial 244

fluid conduit tests (FCTs) 2, 3

Canadian Cordillera 125, 130, 136, 137, 138, 139

fluid migration 2, 253

Alamo Breccia 145–146, 149, 155, 159–160

Barnett Shale 89, 103–104

Bassin and Range area 148, 159–160

Itajai Basin 75, 77, 79

orogenic fluids 2–6

São Francisco Basin 65–66

Williston Basin carbonates 118–119, 120

fold testing 74, 76, 78, 79

fold and thrust belts

Canadian Cordillera 124

diagenesis and orogenesis 123

Hudson Valley 235

Taurides 263, 266

folding

Himalaya 173, 174

and magnetization 11–13, 30–31

Forestburg Lime 91, 93, 98

Fort Worth Basin 89, 90

formation 101–102

stratigraphy 91

fractures

Barnett Shale 97–99, 100

Kindblade Formation 2

framboids

magnetite

New York remagnetized carbonates 35, 36, 37

Wessex Basin oil sands 192–193, 195–196

pyrite 63, 235, 245

Saltarin 1A well 203, 205, 210, 211, 212

Front Ranges 124–125

gas

Barnett Shale 89, 90

Marcellus Shale 271

Geocentric Axial Dipole (GAD) hypothesis 41

goethite 49, 245

Alamo Breccia 156, 157

Marcellus Shale 275, 276, 278, 279

Saltarin 1A well 207, 209, 212

weathering fluids 7

Golfo San Jorge Basin

hydrocarbon exploration 8

magnetic susceptibility 218, 219–221

rock magnetism studies 218–227

correlation analysis 226

IRM acquisition and hysteresis loops 221–226

sampling 218–219

Gondwana

APWPs 56–58, 61

assemblage 55, 56, 61–62, 65, 78

Gondwanides Fold Belt, remagnetizations 67–73

Great Glen Fault, and ‘Acadia Terrane’ 27–28

‘Greater India’, extent of 163, 165, 173

greigite 63

formation 254

in claystone burial 181, 183–184

magnetosomal 44, 45

remagnetization 13, 45–48

Guafita oil field 200, 210

diagenesis 211

Guayabo Formation 201–202

framboids 203, 205, 210

hematite 205–206, 207, 212–214

IRM curves, DSA 203, 204, 206

magnetite 203, 206, 212–214

pyrrhotite 206–207, 212–214

rock magnetic properties 202–207

Guía Formation

Cambrian remagnetization 60–64, 78

palaeopoles 58

Guilmette Formation 146, 147

Hamilton Group 271, 272

Hancock Summit 146

breccia contact testing 155–156

magnetic components 151, 153, 158

magnetization decay 150

remagnetization tests 145–146, 149

rock magnetism 156, 157–158

tilt testing 149, 152, 153, 155

veins 147, 148

contact testing 149, 155, 156–157

Hartney structure 6, 119–120

Helderberg Group 4, 148, 231, 235–247

burial diagenesis 4

grain-scale anisotropy 237–238

mineralogy 234, 242–244

stable SD fraction 240–242

superparamagnetic fraction 238–240

tilt tests 11

hematite

Canadian Cordillera 132, 140

Carapacha Basin 70, 71, 79

delayed remanence acquisition 43–44

Itajai Basin 75

Marcellus Shale 275, 276, 277, 279, 280

red beds 24–25, 26

Río de la Plata Craton 74–75

Saltarin 1A well 205–206, 207, 208, 209, 211–214

San Carlos Member 73, 79

Tunas Formation 68

weathering fluids 7

Herrada Member 73

Higher Himalayan Crystalline (HHC), pyrrhotite remagnetization 166, 170, 171, 175, 177

Highland Boundary Fault, fluid migration 6

Himalaya

pyrrhotite remagnetization 13, 163–177

history of research 164–166

and tectono-metamorphism 173–176

see also Tethyan Sedimentary Series (TSS)

Honey Creek Formation 4, 148

Hoyada Verde Formation, San Rafaelic remagnetization 66–67

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3911063/9781862396340_backmatter.pdf by guest on 25 June 2019
hydrocarbons
aeromagnetic anomalies 7
and authigenic magnetite 7
Guia Formation 62–63
and bacteria 62–63, 196, 244
Barnett Shale 89, 90
Canadian Cordillera, Front Ranges 125, 136
and magnetic minerals 189, 217
Golfo San Jorge Basin 218–227
Wessex Basin oil sands 190–197
and organic matter 196, 197
Saltarìn 1A well 200, 210–211
and diagenesis 211–214
hydrothermal circulation 6
Itajai Basin 75, 77, 79
Moine Thrust Zone 5
hysteresis properties 14, 254
Golfo San Jorge Basin 222, 223
Marcellus Shale 279–280
New York State 36, 37, 38
Prezzo Formation 48
remagnetized carbonates 33–34, 35, 230,
231–239, 242, 246
Wessex oil sands 193
illite, Araras Group 64
illitization 8–9, 11, 103, 182, 245
Interlake Group 109, 110
paleomagnetism 109, 114–117
(re)magnetization 117–120
rock magnetism 111–114
iridium anomaly, Alamo Breccia 146
iron oxide, dissolution 181, 183
iron sulphide
bitumen 63
formation 181
and primary magnetic particles 245
Saltarin 1A well 211–212
Isparta Angle, rotation 261, 263
Itabaiana dykes, paleopole 61, 62
Itajai Basin
hydrothermal circulation 75, 77, 79
paleopole 56, 75
remagnetization 56, 60, 75, 76, 77, 78
Kashmir Basin, pyrrhotite remagnetization 164
Kiaman Reverse Polarity Superchron 24, 68, 73
Kindblade Formation, fractures 2
Knox Dolomite
mineralogy 234
rock magnetism 231, 236
kurtosis 257
La Flecha Formation
rock magnetism 66–67
San Rafaelic remagnetization 66, 79
La Silla Formation, rock magnetism 66–67
La Tinta Formation 74
Laramide orogeny 32
Late Palaeozoic remagnetization event
Appalachian Basin 2, 230, 253
Laurentia 39–40, 41
lateritization, Creer’s hypothesis 23–24
Laurasia, palaeoreconstruction 57–58
INDEX
Laurentia
Late Palaeozoic remagnetization 39–40, 41
paleopoles 24, 37, 41
León Formation 201
magnetic minerals 212–214
rock magnetic properties 202–203, 207–209
Line Creek anticline 124, 125
paleopole and APWP 130, 136
remagnetization investigation
CRM 134–135
fluid conduit tests (FCTs) 137, 138, 139
paleomagnetism 125–127
petrology 131–132, 134
rock magnetism 127–129, 130, 132
tilt tests 129, 131, 133, 139
Llano Uplift 90
Llanos foreland basin
geological setting 201–202
hydrocarbons 211
Saltarin 1A well 199–214, 200
loess, China, Matuyama-Brunhes Boundary 42–43
Lycian Nappes 262, 263, 266
maghemite
Itajai Basin 75
Marcellus Shale 275, 276, 277, 280
magnetic susceptibility
and hydrocarbons 7–8
Golfo San Jorge Basin 218, 219–221
Wessex oil sands 193–194, 196
magnetite
Alamo Breccia 156, 157, 158
Alcaparrosa Formation 67
authigenesis
and fluid migration 4
and hydrocarbons 7
Guia Formation 62–63
Canadian Cordillera 133
CRM 136–138
Carapacha Basin 70, 71
delayed remanence acquisition 41–45
diagenetic 14, 254
formation in claystone burial 182, 183–186
Itajai Basin 75
MD, Marcellus Shale 274, 275, 276, 277–280
primary magnetization 244–245
remagnetized Palaeozoic carbonates 28–29,
234–235, 242–243
mineralogy 33–36
remagnetization age 36–41
Rosales horizon 73
Saltarin 1A well 203, 206, 207, 208,
209, 211, 212–214
SD 244
SP 244
Trenton Limestone 29
TSS 171
Wessex Basin oil sands 195–196
magnetization see demagnetization; remagnetization;
remanent magnetization
magnetometers, superconducting 229
magnetostratigraphy
claystone burial remagnetization 181, 183
magnetite window 184–186
Mahantango Formation 271
Main Central Thrust 164, 165, 174
Major Gercino Shear Zone 79
Manang area, pyrrhotite remagnetization 164–165
Manlius Formation 235, 236
marcasite, Barnett Shale 96
Marcellus Shale 271–280
CLG analysis 276
deformation 272
deposition 271
geological setting 271–272
IRM 273–274
low-temperature experiments 274
magnetic components 276–279
NRM 272
sampling 272
marl, Sicily, delayed remanence acquisition 44–45
Maturin Sub-Basin, hydrocarbon exploration 8
Matuyama-Brunhes Boundary, Chinese loess 42–43
metamorphism, Himalaya TSS 170, 173–176
microbes, hydrocarbon maturation see bacteria, and hydrocarbons
mid-ocean-ridge basalts, anisotropy 232–233
Milari, pyrrhotite remagnetization 165
Mineral Wells Fault 89, 90
mineralization, MVT 7, 33, 119
Mirassol d’Oeste Formation 60, 61
Mississippi-Valley-type deposits 7, 33, 119
Mississippian
Barnett Shale 4, 89–104
Canadian Cordillera
multiple remagnetization 123–141
Rundle Group 124–125
Moenkopi Formation 24, 26, 27
Moine Thrust Zone, fluid migration 5, 148
Morin transition, Marcellus Shale 279, 280
Mt Irish 196
breccia contact testing 155, 156
magnetic components 151, 153, 158
magnetization decay 150
remagnetization tests 145, 149
rock magnetism 156, 157–158
tilt testing 149, 152, 153, 155
Mt Kidd syncline 124, 125
palaeoepole and APWP 130, 136
remagnetization investigation
CRM 134–136
fluid conduit tests (FCTs) 136, 137
methodology 125
palaeomagnetism 126–127
petrology 131–132, 135
rock magnetism 127–129, 130, 132
tilt tests 129–130, 132, 133, 139
Muenster Arch 90
Mupe Bay oil sands 190–191
magnetic characterization 196–197
nappes, Taurides 263, 266
Needmore Formation 271
North Patagionic Massif 72, 73, 78
Oatka Creek Formation 271
oil sands
Wessex Basin 190–197
biodegradation 196
magnetic characterization 193–197
magnetite 195–196
oil content and magnetic signature 196–197
oil transport 196–197
organic matter 191–192, 196, 197
SEM and EDX 192–193
siderite 194–195
Old Red Sandstone
fluid migration 6
organic maturation 10
Onondaga Formation 271, 272
mineralogy 234
NRM measurement 272
rock magnetism 231, 240
Opalinus claystones, heating experiments 182–183
ophiolites, Taurides 266
Ordovician, Trenton Limestone 28–29
ores, MVT 7, 33, 119, 253
organic matter
and remagnetization 9–11
Guia Formation 62–66
Wessex oil sands 191–192
magnetic signature 196, 197
Organyá Basin limestones, end-member modelling 258–259, 260
Oriskany Formation, fluid migration 4, 148
orogenesis
and diagenesis 123
fluid migration 2–6
and remagnetization 2, 32–33
Osmington Mills
oil sands 190–191
magnetic characterization 193–197
Ouachita Orogeny 32
Ouachita Orogeny thrust front 90–91
and fluid migration 2, 4, 89, 92, 103–104
palaeoauifers, Basin and Range area 148
palaeogeography, and remagnetization 55
palaeomagnetism
Alamo Breccia 151, 152–157
Barnett Shale 89–104
Canadian Cordillera 126–127
carbonate rocks 229
Williston Basin carbonates 114–120
palaeoepoles
Barnett Shale 92, 94, 97, 100, 102, 103
Cabo Magmatic Province 59, 60
Carapachia Basin 71
Central Alkaline Magmatic Province 59, 60
Itajáí Basin 56, 75
Laurentia 24, 37, 41
Mt Kidd 130, 136
North America 153, 154, 155, 159
Paraná Magmatic Province 59
and remagnetization age 37–38
South America 56–59, 60
palaeotemperature 253
INDEX

titanomagnetite 222–223, 232
Tonoloway Limestone, tilt tests 11
Trenton Limestone
 mineralogy 234
 remagnetization 28–29
 rock magnetism 231, 239, 240
Tunas Formation 68–69
Turkey, southern, end-member modelling 259–266

Union Springs Formation 271, 272
 NRM measurement 272
unmixing, bilinear 255–256
Urre-Lauquen Member 71

Valley and Ridge Province 4, 271, 272
 see also Marcellus Shale
veins
 Canadian Cordillera 139
 contact testing 2, 3, 156–157
 Hancock Summit 147, 148, 156–157
Verwey transition
 Marcellus Shale 274, 279
 Mississippian carbonates 127, 130
 remagnetized Palaeozoic carbonates 234
Viola Limestone
 fluid migration 3, 5, 148–149

Vocontian trough, claystone burial 8, 185–186
volcanism, and remagnetization
 South America 67, 73, 79
 Williston Basin 119–120

Wealden Group, oil sands 190–191
weathering, remagnetization 7
Wessex Basin, oil sands 8, 190–197
Western Canada Basin, dolomitization 6
Williston Basin 108
 carbonates 107–120
 demagnetization 109, 115, 116
 palaeomagnetism 114–120
 Red River carbonates 108–109
 remagnetization 6, 117–120
 rock magnetism 111–114
 geological framework 107–108
Winipegosis Formation 109, 110
 palaeomagnetism 109, 115–117
 (re)magnetization 117–120
 rock magnetism 111–114

Yerbal Formation 74, 78
Remagnetization and Chemical Alteration of Sedimentary Rocks

Edited by
R. D. Elmore, A. R. Muxworthy, M. M. Aldana and M. Mena

Remagnetization is a common phenomenon in rocks, and developing a greater understanding of its mechanisms has several benefits. Acquisition of a secondary magnetization is usually tangible evidence of a diagenetic or thermal event, which can be dated using palaeomagnetic techniques. This is important because the timing of diagenetic and thermal events is commonly difficult to determine. Remagnetization can also obscure primary magnetizations and a better understanding of remagnetization could improve our ability to uncover primary magnetizations. Many chemical remagnetization mechanisms have been proposed, including those associated with chemical alteration by a number of different fluids (e.g. orogenic, weathering, mineralizing, hydrocarbons) and burial diagenetic processes (e.g. clay diagenesis, maturation of organic matter). This book contains case studies and review articles that focus on remagnetization, chemical remagnetization mechanisms, and magnetic changes associated with chemical alteration by hydrocarbons.

Visit our online bookshop: http://www.geolsoc.org.uk/bookshop
Geological Society web site: http://www.geolsoc.org.uk

Cover illustration:
An outcrop of zebra dolomite in the Alamo Breccia from the Devonian Guinette Formation, Nevada. US quarter (2.4 cm diameter) for scale.
Photograph: Shannon Dulin.