Index

Page numbers in *italics* refer to Figures. Page numbers in **bold** refer to Tables.

Abu Durba Formation 335
Abu Thora Formation 335, 336
Abu Zenima Formation 336, 337, 339, 380, 383
Activo Luna petroleum reservoir 379
Adventdalen Group 400
Agardhfjellet Formation 397, 400
Alderley Edge (Cheshire) geological setting 56
defformation bands 57
joints 54, 56–57
mineralization 57
stratigraphy 55–56
West Mine, outcrop analogue for modelling 57–58

digital outcrop modelling 59–60
methods
areal survey and scanlines 62–64
data acquisition 58–59
data handling 64–66
DFN 66–67
discontinuity analysis 60–62
model construction 59–60
results
DFN petrophysics 70
fracture density 68, 69
fracture set delineation 68
fracture trace length distributions 68, 70
results discussed 70–74

Andersonian faulting 175
aperture concept 149
non-simple mechanical states 157–158
relation to far-field stress states 154–155
modelling 155–157
relation to pore pressure 149–151
relation to poro-elasticity 151–152
modelling 152–154
Araba Formation 335, 336, 345
Aztec Sandstone 188, 189
as model for fluid flow 189
impact of structures on fluid flow
methods of analysis 189
parameters 191–192
results
model (1) 192–194
model (2) 195, 196
model (3) 196–201
model (4) 201–204
results discussed 204–207
properties 189
structures 188, 189

basement, hydrocarbon potential of Lewisian Basement (West of Shetlands)
311–313
Lancaster Prospect characterization
defining fault network 313–316
fieldwork analogue studies 316–318

Brazil *see* Campos Basin
Bristol Channel coast, outcrop analogue DFM model 130

Burial curve, Mesaverde Group 45

bottom-hole pressure, simulated v. measured 281, 281
Biot constant 151

Belayim Formation 333, 336, 337, 345, 380, 383

Bretape 325–327

well-bore integration with seismic 327
well success summary 327, 331

Yemen, Republic of, basement fracture study
methods of analysis
3D seismic 296–297
borehole images 292, 293, 294, 295
oil geochemistry 296
petrography and petrophysics 295
PLT and driling gas data 295–296
results
fracture details 297, 298, 299, 299, 300, 301, 302
fracture petrography 302–303
gas and PLT 304–305
geomechanics 303–304
oil geochemistry and production 305
rock types 302
results discussed 305–307, 308
Eastern Field 307, 309
Western Field 307
setting 289, 290

Bayoot Field (Republic of Yemen)
basement fracture study
methods of analysis
3D seismic 296–297
borehole images 292, 293, 294, 295
oil geochemistry 296
petrography and petrophysics 295
PLT and driling gas data 295–296
results
fracture details 297, 298, 299, 299, 300, 301, 302
fracture petrography 302–303
gas and PLT 304–305
geomechanics 303–304
oil geochemistry and production 305
rock types 302
results discussed 305–307, 308
Eastern Field 307, 309
Western Field 307
setting 289, 290

Belayim Formation 333, 336, 337, 345, 380, 383

Biot constant 151

calcite in fracture healing 98
Mesaverde Group 35, 45
Campos Basin (Brazil) well flow model
reservoir characterization
dynamic data 277–280
static data 273, 274, 275
data uncertainties 276
fault and fracture swarms 275–276
reservoir simulation
deterministic fault network 283–286
horizontal permeability 280–281
long duration test 281–283
Canyonlands (Utah) fault system 80
carbon capture and storage (CCS)/carbon dioxide sequestration 3, 14–15, 98
Longyearbyen CO2 laboratory project 395, 397
general setting
stratigraphic 397, 398, 399, 400
tectonic 396, 397
methods of analysis 399, 401
results
borehole data 401, 403, 404
outcrop data 404–405
results discussed
sealing and segmentation 412–413
fluid flow implications 410–411
fracture significance 411–412
lithostructural domains and fracture density 407–408, 410
significance of results 413

carbonate rocks see also chalk also dolomite
fracture stratigraphy 213–214
fracture systems 79–81
Suez Rift study
fracture characterization 84–87
results discussed 87–89
implications for damage zone 89–90
implications for fluid flow 91–92
permeability of damage zone 90–91
summary 92

Carolinefellet Formation 399, 400

cement, Mesaverde Group 33, 37
chalk, fracture study
Skjold Field
methods of analysis 100–101
results
quantitative

density and connectivity across wells 104–105
density and connectivity along wells 105–106
large displacement fault 106–107
structural 101–104
results discussed 107–109
setting 98–99, 99
summary 109

Carolinefellet Formation 399, 400
cement, Mesaverde Group 33, 37
chalk, fracture study
Skjold Field
methods of analysis 100–101
results
quantitative

density and connectivity across wells 104–105
density and connectivity along wells 105–106
large displacement fault 106–107
structural 101–104
results discussed 107–109
setting 98–99, 99
summary 109

chert rhythmites in carbonates
effect on fracture stratigraphy 212–213
effect on mechanical stratigraphy 213–14
outcrops in west-central Sinai 219–220, 223
general setting 216–217
discrete element modelling (DEM) and fracture stratigraphy 214–16
model preparation
outcrop data 223, 225
scaling 227

stiffness 227, 229
stiffness interface types 229, 231
model working
methods 231, 233
data interpretation 235, 237
results
model (1) 221, 222, 227
model (2) 224, 226, 237
model (3) 228, 230, 239
model (4) 232, 234, 240–241
model (5) 236, 238, 241–242
results discussed 242–244

Cheshire Basin 54
Alderley Edge Helsby Sandstone Formation outcrop analogue for East Irish Sea Basin 57–58
digital outcrop modelling
methods
areal survey and scanlines 62–64
data acquisition 58–59
data handling 64–66
DFN 66–67
discontinuity analysis 60–62
model construction 59–60
results
DFN petrophysics 70
fracture density 68, 69
fracture set delineation 68
fracture trace length distributions 68, 70
results discussed 70–74
general setting
defformation bands 57
joints 54, 56–57
mineralization 57
stratigraphy 55–56
chickenwire texture 1
China, jointed sandstone 115, 116, 116
clay minerals, Mesaverde Group 33, 37, 45
columnar jointing 2, 251
compaction bands 146, 146
impact on fluid flow 187, 189
in Aztec Sandstone
methods of analysis 189
models 189–191
parameters 191–192
results
model (1) 192–194
model (2) 195, 196
model (3) 196–201
model (4) 201–204
results discussed 204–207

compartmentalization 2
connectivity, impact of fractures 379
contraction joints 251
Cook-Gordon debonding 212, 255, 256
coring and subsurface data acquisition 6, 7–8
cracks
desiccation 251

crack interactions 177–179
impact on flow-rate diffusivity 180–181
mode I 257
damage zones in faults, description 80–81, 81, 97
Darat Formation 83, 336, 339, 354–357
fracture characterization 84–87

INDEX
results discussed 87–89
implications for damage zone 89–90
implications for fluid flow 91–92
permeability of damage zone 90–91
summary 92
fracture outcrop-subsurface integration
methods 339–340
results 340–343
results discussed 343
petrophysical modelling 349–353
tectonic setting 335
well data
methods 343–346
results 346–349
Darcy’s Law, application to reservoir fluid flow 148
De Geerdalen Formation 397, 400
definition bands, impact on fluid flow 187
desiccation cracks 1, 251
diagenesis, effect on fracture stratigraphy 4–5, 213
dolomite reservoirs in Issaran Field
fracture pattern 382, 384–386
highly fractured zone 388–389
effect on water production 390–392
reservoir diagenetic history 386–388
stratigraphy 380–381, 383
structure 380
wellhead temperature 390
Durdle Door (Dorset), joints in Purbeck Limestone 116, 118
Duwi Formation 335, 336, 339
dykes
as reservoirs 266–267
relations to sills 254–258, 262
East Irish Sea Basin, outcrop analogue for
modelling see under Alderley Edge
East Ras Badran Concession 219, 334, 335, 338
Eocene carbonate fracture study see Thebes Formation
Egypt, Suez Rift, Gulf of
early exploration 333
exploration wells 338
lithostratigraphic framework 83, 84
petroleum systems 339
rift setting 81, 82, 83–84, 85, 335
stratigraphy 335, 336, 337, 339, 380–381, 381, 383
Eocene 337–339
studies on fracture patterns
East see Thebes Formation
West see Issaran Field
Ekofisk Formation 362
elastic properties
effect on fracture propagation 256–257
effect on fracture stratigraphy 212
elasticity equations 152–153
enhanced oil recovery (flooding) schemes 181
Aztec Sandstone 201, 202, 203, 205
Eocene
Suez Rift, Gulf of
fractured carbonates see Thebes Formation
stratigraphy 336, 337–339
Esna Formation 336, 337, 345
extension fractures see joints
Faeroe Islands, dyke-sill relationships 254
Fartaq Formation 289
fault core, description 80, 97
fault damage zones 80–81
fault linkage zone (relay zone) 81
Suez Rift study
fracture characterization 84–87
results discussed 87–89
fault linkage zone (relay zone) (Continued)
- implications for damage zone 89–90
- implications for fluid flow 91–92
- permeability of damage zone 90–91
- summary 92
fault relays 79–80
fault zones
- domain description 97
- fluid transport 97–98
fault-related fracture systems 79–80
faults (shear fractures) 1, 146
characterization in Lewisian Basement 311–313
defining fault network 313–316
fieldwork analogue studies 316–318
lithological variation 315, 316, 317
well location selection 318–320
well pre-drill workflow 313
well results 320–323
fracture classification 323–325
fracture description 325–327
well-bore integration with seismic 327
well success summary 327, 331
impact on flow-rate diffusivity
- induced 175–177
- new 175
role of compliant tensile cracks 177–179
impact on fluid flow 187
modelling in fractured reservoirs of Campos Basin
reservoir characterization
- dynamic data 277–280
- static data 273, 274, 275
data uncertainties 276
fault and fracture swarms 275–276
reservoir simulation
- deterministic fault network 283–286
- horizontal permeability 280–281
- long duration test 281–283
finite-element (FE) modelling 128
finite-volume (FV) modelling 128
flooding (enhanced oil recovery) schemes 181
Aztec Sandstone 201, 202, 203, 205
fluid flow and flow rates 2, 5, 13–14
Aztec Sandstone 187, 188, 189
impact of structures
- methods of analysis 189
- models 189–191
- parameters 191–192
results
- model (1) 192–194
- model (2) 195, 196
- model (3) 196–201
- model (4) 201–204
- results discussed 204–207
modelling and Darcy’s Law 148
wells in North Sea 173–174
directionality observations 179–180
numerical modelling 180–181
suggested mechanisms 174–175
compliant tensile cracks 177–179
induced faults 175–177
new faults 175
pre-existing fault activation 175
Forties Formation 362, 363
fracking 3
fractures 1
- aperture concept 149
- non-simple mechanical states 157–158
- relation to far-field stress states 154–155
- modelling 155–157
- relation to pore pressure 149–151
- relation to poro-elasticity 151–152
- modelling 152–154
classification 2, 146
connectivity relations 379
density and connectivity see Skjold Field
dilatant see joints
distributions 146–147
extensional see joints
geomechanics 4
effective (upscaled) properties 147–149
modelling flow properties 158–159
fracture network connectivity 159–161
hydro-DDA 161–164
thermo-hydro-mechanical coupling 164
implications 164–165
fracture corridor model 165–168
reservoir assessment workflow 168
summary of model results 169
lithofacies relations see Mesaverde Group
modelling applications see digital outcrop modelling
also discrete element modelling
also discrete fracture and matrix (DFM) modelling;
also discrete fracture network (DFN) modelling
network
- characterization 5, 6, 7
- controls on 3–4
- defined 2, 211
- permeability 126
quantification see Skjold Field
set, defined 146–147
shear see faults
stratigraphy, defined 2, 211
studies of geographical areas see under location names
systems effectiveness 145–146
water cut implications see Issaran Field
gamma ray log, Mesaverde Group 36
Gemsa Field 333, 334
granite, jointed 114, 116
granulation seams 146
Greater Natural Buttes (GNB) field 23, 28
burial curve 45
reservoirs 46
Green River Formation 28
Guoliang (China), jointed sandstone 115, 116, 116
Haifa Formation 289
Hammam Faraun Fault Block 82, 83, 215, 219
Helsby Sandstone Formation
Alderley Edge outcrop
analogue for East Irish Sea Basin 57–58
digital outcrop modelling
methods
- areal survey and scanlines 62–64
data acquisition 58–59
Lancaster Prospect
 defining fault network 313–316
 fieldwork analogue studies 316–318
 lithological variation 315, 316, 317
 well location selection 318–320
 well pre-drill workflow 313
 well results 320–323
 fracture classification 323–325
 fracture description 325–327
 wellbore integration with seismic 327
 well success summary 327, 331

LiDAR 6, 10–12
 image of Moroccan carbonate ramp 129
 use in outcrop imaging 51, 52
 Alderley Edge digital outcrop modelling
 methods
 areal survey and scanlines 62–64
 data acquisition 58–59
 DFN 66–67
 discontinuity analysis 60–62
 model construction 59–60
 results
 DFN petrophysics 70
 fracture density 68, 69
 fracture set delineation 68
 fracture trace length distributions 68, 70
 results discussed 70–74
 geological setting
 deformation bands 57
 joints 54, 56–57
 mineralization 57
 stratigraphy 55–56
 Iceland
 sill fracture pattern 252, 254
 sill thickness variation 258, 259
 igneous rocks, fracture origins 251, 252
 Issaran Field (Egypt)
 fracture pattern 382, 384–386
 highly fractured zone 388–389
 efficacy on water production 390–392
 reservoir diagenetic history 386–388
 stratigraphy 380–381, 383
 structure 380
 Italy, Sella Group 379
 Janusfjellet Subgroup 400, 412
 joint-network architecture, defined 2, 211
 joints (dilatant fractures; extensional fractures)
 columnar and contraction 2, 251
 development of 118
 defined 1, 146
 granite 114, 116
 Guoliang (China) 115, 116, 116
 impact on fluid flow 187
 impact on porosity/permeability 379
 Purbeck Limestone 116, 118
 weathering effects 120–121
 Kapp Toscana Group 397, 398, 400
 Kareem Formation 336, 337, 345, 380, 383
 Kimmeridge Clay, source rock 311
 Knorringfjellet Formation 397, 400, 412
 Kuhlan Formation 289
 Lancaster Prospect 311, 312
 see under Lewesian Basement
 laser scanning see LiDAR
 Lewis, Isle of, analogue for basement studies 314, 316–318
 Lewesian Basement (West of Shetlands) 311–313
 Longyearbyen CO2 laboratory project 395, 397
 geological setting
 stratigraphic 397, 398, 399, 400
 tectonic 396, 397
 Lewisian Basement 311–313
 LiDAR 6, 10–12
 image of Moroccan carbonate ramp 129
 use in outcrop imaging 51, 52
 Alderley Edge digital outcrop modelling
 methods
 areal survey and scanlines 62–64
 data acquisition 58–59
 DFN 66–67
 discontinuity analysis 60–62
 model construction 59–60
 results
 DFN petrophysics 70
 fracture density 68, 69
 fracture set delineation 68
 fracture trace length distributions 68, 70
 results discussed 70–74
 limestone pavements, weathered joints 119
 linkage zone 81
 linking damage zone 81, 81
 Lista Formation 362, 363
 lithofacies effect on fracture in Mesaverde Group
 methods of analysis
 fracture spacing/density 29
 orientation 29
 statistics 29, 31
 methods of study
 field work 29
 logs 29
 outcrop 28
 petrography 29
 results
 bed thicknesses 37, 41
 cement 37
 core description 32–33, 34
 core petrography 33, 35, 38, 39
 fracture geometry controls 35, 37, 40
 fracture orientation 33, 35
 fracture stratigraphy 33, 36
 lithofacies/texture 30, 31–32, 37, 39, 43
 outcrop fracture characteristics 31
 petrography 33, 35
 regional fracture sets 31, 32, 32
 results discussed
 fracture timing and development 43
 implications 47
 outcrop v. subsurface patterns 45
 sedimentological and diagenetic controls 43, 45
 summary 47

Longyearbyen CO₂ laboratory project (Continued)
methods of analysis 399, 401
results
borehole data 401, 403, 404
outcrop data 404–405
results discussed
sealing and segmentation 412–413
fluid flow implications 410–411
fracture significance 411–412
lithostructural domains and fracture density 407–408, 410
tectonic events and structures 405, 407
significance of results 413

Macar Oil Field (UKCNS)
field development 365
location 362
reservoir
performance 363–366
stratigraphy 362–363
seismic imaging
new prospectivity 369–370
results 370–376
reprocessing 366–369
setting 361–362
Madbi Formation 289
Malha Formation 335, 336, 345
Malham Cove, weathering and joints 119
Matulla Formation 335, 336
Maureen Formation 362, 363
mechanical stratigraphy, impact of geomechanics 4
effective (upscaled) properties 147–149
modelling flow properties 158–159
fracture network connectivity 159–161
hydro-DDA 161–164
thermo-hydro-mechanical coupling 164
implications 164–165
fracture corridor model 165–168
reservoir assessment workflow 168
summary of model results 169
see also Mesaverde Group lithofacies

Mesaverde Group 23
characteristics
depositional setting 25, 27
hydrocarbon generation 27–28
reservoirs 28
stratigraphy 27
effect of lithofacies on fracture system
methods of analysis
fracture spacing/density 29
orientation 29
statistics 29, 31
methods of study
field work 29
logs 29
outcrop 28
petrography 29
results
bed thicknesses 37, 41
cement 37
core description 32–33, 34
core petrography 33, 35, 38, 39
fracture geometry controls 35, 37, 40
fracture orientation 33, 35
fracture stratigraphy 33, 36
lithofacies/texture 30, 31–32, 37, 39, 43
outcrop fracture characteristics 31
petrography 33, 35
regional fracture sets 31, 32, 32
results discussed
fracture timing and development 43
implications 47
outcrop v. subsurface patterns 45
sedimentological and diagenetic controls 43, 45
summary 47
Mexico, Gulf of, Activoluna petroleum reservoir 379
microcracks
fault nucleation 177
impact on flow-rate diffusivity 177–179, 180–181
mine workings, advantages in digital outcrop modelling 52–53, 55
modelling v. simulation in reservoir studies 127
see also discrete element modelling (DEM); discrete fracture and matrix modelling (DFM); discrete fracture network (DFN) modelling
Morocco, Jurassic carbonate ramp 129
mud cracks 251
Najd shear fault system 289
Naqis Formation 335, 336
neutron porosity log, Mesaverde Group 33, 36
Nevada (USA), Valley of Fire State Park Jurassic Aztec Sandstone 188, 189
as model for fluid flow 189
impact of structures on fluid flow
methods of analysis 189
models 189–191
parameters 191–192
results
model (1) 192–194
model (2) 195, 196
model (3) 196–201
model (4) 201–204
results discussed 204–207
properties 189
structures 188, 189
Nezzazat Group 380, 383
nodular chert rhythmites in carbonates 215–216
effect on fracture stratigraphy 212–213
effect on mechanical stratigraphy 213–14
outcrops in west-central Sinai 219–220, 223
geological setting 216–217
discrete element modelling (DEM) and fracture stratigraphy 214–16
model preparation
outcrop data 223, 225
scaling 227
stiffness 227, 229
stiffness interface types 229, 231
model working
methods 231, 233
data interpretation 235, 237
results
model (1) 221, 222, 237
model (2) 224, 226, 237
model (3) 228, 230, 239
model (4) 232, 234, 240–241
Say‘un Masila Basin (Republic of Yemen) (Continued)

general geology, stratigraphy, and petrophysics 295
PLT and drilling gas data 295–296
fracture details 297, 298, 299, 300, 301, 302
fracture petrography 302–303
gas and PLT 304–305
geomechanics 303–304
oil geochemistry and production 305
rock types 302
results discussed 305–307, 308
Eastern Field 307, 309
Western Field 307
setting 289, 290
Selec Formation 363
Selek Group 379
shear fractures see faults
Shetlands, West of 311–313
Lancaster Prospect
defining fault network 313–316
fieldwork analogue studies 316–318
lithological variation 315, 316, 317
well location selection 318–320
well pre-drill workflow 313
well results 320–323
fracture classification 323–325
fracture description 325–327
wellbore integration with seismic 327
well success summary 327, 331
Shuqra Formation 289
Sills as fractured reservoirs
emplacement 254–258
fracture-related porosity 251–252, 252
growth 253–254, 253, 254, 255, 256, 262, 263, 264
model 258–261
model application 267–269
mechanism of operation 262
local impact 265
regional impact 265–266
as a seal 262–265
thermal effects 261–262
tunnel fracture model 260–261
similarities, applied to basement seismic data 313
simulation see reservoir simulation
Skjold Field
fracture study
methods of analysis 100–101
results
quantitative density and connectivity across wells 104–105
density and connectivity along wells 105–106
large displacement fault 106–107
structural 101–104
results discussed 107–109
summary 109
setting 98–99, 99
Sonic porosity log, Mesaverde Group 33, 36
South Africa, Table Mountain, bedding and jointing 121–122, 121
South Gharib Formation 336, 337, 345, 380, 383
Spitsbergen, Longyearbyen CO2 laboratory project 395, 397
general setting
stratigraphic 397, 398, 399, 400
tectonic 396, 397
methods of analysis 399, 401
results
borehole data 401, 403, 404
outcrop data 404–405
results discussed
sealing and segmentation 412–413
fluid flow implications 410–411
fracture significance 411–412
lithostructural domains and fracture density 407–408, 410
tectonic events and structures 405, 407
significance of results 413
statistical reservoir model (SRM) 173–174
stress history 4
stylolites 97, 101, 146, 146
Sudr Field 219, 334, 334
Sudr Formation 335, 336
Suez Rift, Gulf of
early exploration 333
exploration wells 338
lithostratigraphic framework 83, 84
petroleum systems 339
rift setting 81, 82, 83–84, 85, 335
stratigraphy 335, 336, 337, 339, 380–381, 381, 383
Eocene 337–339
studies on fracture patterns
East see Thebes Formation
West see Issaran Field
Svalbard, Longyearbyen CO2 laboratory project 395, 397
general setting
stratigraphic 397, 398, 399, 400
tectonic 396, 397
methods of analysis 399, 401
results
borehole data 401, 403, 404
outcrop data 404–405
results discussed
sealing and segmentation 412–413
fluid flow implications 410–411
fracture significance 411–412
lithostructural domains and fracture density 407–408, 410
tectonic events and structures 405, 407
significance of results 413
syneresis 1
Table Mountain (South Africa), bedding and jointing 121–122, 121
Tanka Formation 336, 337
Tayiba Formation 336, 337
Tenerife, dyke-sill relationships 254
tensile crack interactions, impact on flow-rate diffusivity 177–179, 180–181
Thal Formation 336, 337
Thalassinoides 223
Thebes Formation 83, 216–217, 334, 336, 354–357
description and outcrops 219–220, 223
discrete element modelling
creation of models 231, 233
data interpretation 235, 237
Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3917770/9781862396609_backmatter.pdf
results
model (1) 221, 222, 237
model (2) 224, 226, 237
model (3) 228, 230, 239
model (4) 232, 234, 240–241
model (5) 236, 238, 241–242
results discussed 242–244
outcrop data 223, 225
scaling 227
stiffness 227, 229
stiffness interface types 229, 231
fracture characterization 84–87
results discussed 87–89
implications for damage zone 89–90
permeability of damage zone 90–91
summary 92
fracture outcrop-subsurface integration
methods 339–340
results 340–343
results discussed 343
petrophysical modelling 349–353
tectonic setting 335
well data
methods 343–346
results 346–349
thermal contraction 1–2
time, as factor in discontinuity development 113, 121–122
tip damage zone 81, 81
Tor Formation 362
tunnel fracture model 260–261
Uinta Basin (USA) 24, 25
Cretaceous stratigraphy of Mesaverde Group 23
characteristics
depositional setting 25, 27
hydrocarbon generation 27–28
reservoirs 28
stratigraphy 27
effect of lithofacies on fracture system
methods of analysis
fracture spacing/density 29
orientation 29
statistics 29, 31
methods of study
field work 29
logs 29
outcrop 28
petrography 29
results
bed thicknesses 37, 41
cement 37
core description 32–33, 34
core petrography 33, 35, 38, 39
fracture geometry controls 35, 37, 40
fracture orientation 33, 35
fracture stratigraphy 33, 36
lithofacies/texture 30, 31–32, 37, 39, 43
outcrop fracture characteristics 31
petrography 33, 35
regional fracture sets 31, 32, 32
results discussed
fracture timing and development 43
implications 47
outcrop v. subsurface patterns 45
sedimentological and diagenetic controls 43, 45
summary 47
UKCNS see Machar Oil Field
Umm Bogma Formation 335
Umm er Radhuma Formation 289
upscaled
needs of 125
reservoir properties 147–149
USA see Nevada; Uinta Basin
Utah (USA)
Canyonlands fault system 80
see also Uinta Basin
Valley of Fire State Park (Nevada) see Aztec Sandstone
wall damage zone 81, 81
Wasatch Formation 23, 27, 28
Wata Formation 335, 336
water cut
defined 201
in production
Aztec Sandstone 201, 203, 206
Issaran Field 391, 392
waterflood (enhanced oil recovery) simulations 181
Aztec Sandstone 201, 202, 203, 205
weathering, effects on discontinuities 119, 120–121, 120
West of Shetlands acreage 311–313
Lancaster Prospect
defining fault network 313–316
fieldwork analogue studies 316–318
lithological variation 315, 316, 317
well location selection 318–320
well pre-drill workflow 313
well results 320–323
fracture classification 323–325
fracture description 325–327
wellbore integration with seismic 327
well success summary 327, 331
Whirlwind Prospect 312, 312
Wilhelmsaya Subgroup 397, 400
Yemen, Republic of
depression fracture study
methods of analysis
3D seismic 296–297
borehole images 292, 293, 294, 295
oil geochemistry 296
petrography and petrophysics 295
PLT and drilling gas data 295–296
results
fracture details 297, 298, 299, 300, 301, 302
fracture petrography 302–303
gas and PLT 304–305
geomechanics 303–304
oil geochemistry and production 305
rock types 302
results discussed 305–307, 308
Eastern Field 307, 309
Western Field 307
setting 289, 290
Young’s modulus, effect on fracture stratigraphy 4, 212
Zeit Formation 336, 337, 345, 380, 383
Advances in the Study of Fractured Reservoirs

Naturally fractured reservoirs constitute a substantial percentage of remaining hydrocarbon resources; they create exploration targets in otherwise impermeable rocks, including under-explored crystalline basement; and they can be used as geological stores for anthropogenic carbon dioxide. Their complex behaviour during production has traditionally proved difficult to predict, causing a large degree of uncertainty in reservoir development. The applied study of naturally fractured reservoirs seeks to constrain this uncertainty by developing new understanding, and is necessarily a broad, integrated, interdisciplinary topic. This book addresses some of the challenges and advances in knowledge, approaches, concepts, and methods used to characterize the interplay of rock matrix and fracture networks, relevant to fluid flow and hydrocarbon recovery. Topics include: describing, characterizing and identifying controls on fracture networks from outcrops, cores, geophysical data, digital and numerical models; geomechanical influences on reservoir behaviour; numerical modelling and simulation of fluid flow; and case studies of the exploration and development of carbonate, siliciclastic and metamorphic naturally fractured reservoirs.

Visit our online bookshop: http://www.geolsoc.org.uk/bookshop

Geological Society website: http://www.geolsoc.org.uk

Cover Illustration:
Discrete element model (using circular elements) showing extensional fractures (black) formed within a mechanical stratigraphy characterised by alternating stiff and less-stiff layers (different colours) with stiffer nodules (blue) at the tops of the less-stiff layers. See paper by Spence and Finch pp. 211–249 for further details.

Image by Emma Finch and Guy Spence, University of Manchester.