Abad Formation 84
Adelaide Fold and Thrust Belt 53, 54, 55
Adelaidean sediments 54, 55, 60, 61–62
Adelaidean unconformity 64
Alborán Basin 93
Alhama de Murcia Fault 79, 80, 94, 95
Alice Springs Orogeny 55, 56, 73
Alpujarride nappe 81, 82, 83
Alpujárride nappe 81
Alpujañide nappe 81, 82, 83
Alpuyarride nappe 81, 82, 83
Amphibole, 40Ar-39Ar dating 85
Anayet Basin 101
dykes 104–105
geochemistry 105, 105, 107, 108
U-Pb zircon SHRIMP dating 101, 103, 106, 107–109, 110
grey unit 103
inversion tectonics 109–110
Lower Red Unit 103, 108
magmatism 103–105, 110
Transition Unit 103, 108
Upper Red Unit 103–104, 108
Andes see Central Andes; Precordillera, Andean
annealing, post-deformational 215
numerical modelling 216
halite 216, 218–229
in situ experiments 224–226
neighbourhood size 221, 223, 224
parameter tests 219–224
results 221–223
relative activity of dislocations 220–221, 222
rotation axis 221, 222, 224, 226
types of dislocations 219–220
apatite, dating, Mt Painter inlier 59–60, 66–68, 69, 73
Appin Quartzite 146, 147
cathodoluminescence 148, 150, 151, 152, 154,
161–162
EPMA 151, 153–154, 156–157, 159, 160
geospeedometry 155–160
LA-ICP-MS 148, 150–151, 153
sampling 148
SEM BSE Z-contrast imaging 148, 149, 150
titanium-in-quartz geothermometry 148–162
40Ar, 39Ar dating, Cabo de Gata volcanic terrain 85, 86,
87–89, 90–91, 92
Azagador Formation 83, 84
Badules Unit 40, 48, 50
Ballachulish Igneous Complex
aureole
thermal conditions 146–147
thermal modelling 156–160
contact metamorphism 147
grey unit 146, 147
titanium-in-quartz geothermometry 148–162
see also Appin Quartzite
Benquerencia, NW Spain, foliation refraction
patterns 29, 31, 33
Betic Cordilleras 79
internal zone 80, 81
Betic Movement Zone 81, 93, 95
biotite, Mt Painter inlier 58, 60
Brèche Rouge de Carboneras 92
breccia
Carboneras Fault Zone 92
Mt Painter inlier 56–57, 59
British Empire Granite 54, 55, 57, 65, 73
thermochronology 66, 69, 70–71
buckle folds
finite-element simulations 22–35
comparison with natural folds 29–35
divergent fan in matrix 23–25, 35
method and model setup 22–23
power-law viscous rheology 28–29, 34
results 23–29
strain orientation quantification 25–27
varying viscosity ratios 27–28, 34
Mt Painter inlier 60
Cabo de Gata volcanic terrain 79, 81
age determination 85–86, 90–93
40Ar, 39Ar dating 85, 86, 87–89, 90–91, 92
calcite
intracrystalline plasticity
Solnhofen limestone 168–185
seismic wave propagation 173
natural tectonites, crystallographic preferred
orientation 181, 183
Caledonian Orogeny 146
Cândana Group 29
Cantabrian Zone 39, 40, 50
Carboneras Fault Zone 79–96
age determination of volcanics 85–86,
90–93
40Ar, 39Ar dating 85, 86, 87–89, 90–91, 92
fault cores 84–85
grey unit 84–85
grey unit 84–85
geology 81–85
movement constraints 92–93
subduction 94, 95
cathodoluminescence, Appin Quartzite 148, 150,
151, 152, 154, 161–162
Cauterets-Panticosa batholith 102
grey unit 103
Central Andes, cross-strike structures 113–124
Central Precordillera 114, 115
Cerro Negro de Iglesia 115, 117, 120
Cerveruela Fault 40, 45
Coulhard Suite 54, 55, 57
Crevillente Fault 80, 94, 95, 96
critical resolved shear stress (CRSS) 190, 206
cross-strike structures 113
Andean Precordillera 114–124
evolution 123–124
and Miocene magmatism 120, 122–123
crystallite, slip 167–168
crystallization, latent heat of 133, 134
crystallographic preferred orientation (CPO) 1, 4, 167–168, 190
effect of strain geometry 167–168, 181, 183
natural calcite tectonites 181, 183
Solnhofen limestone 170–171, 173, 174, 175, 185
and finite strain 177, 180
strain distribution 173–177
Cuculı´ Formation 114, 116
Curnamona Province 54, 55, 73
dacite, Miocene
Pampa de Hualilán 114, 116, 117, 118
kinematic analysis 117–119
Datos Thrust 40, 41, 43, 45, 46, 48–49, 50
décollements, Herrera Unit 45, 48, 50
definition, recovery from 215–229
Delamerian Orogeny 55
Mt Painter inlier 53, 56, 73
diffusion with cooling
rutile-quartz interaction 155–156
modelling 156–160
dilatation see shear zones, dilatational
diopside-titanite veins
Mt Painter inlier 54
thermochronology 68, 69, 72, 73
dislocation climb 218, 227, 228
dislocation creep 210
dislocation glide 190, 208–209, 227, 228, 229
dislocation movement
long-range interaction between 216
post-deformational annealing 216, 218
conceptual model 218, 227–229
dislocation separation 218, 229
dislocations, primary and secondary 218
displacement vectors 8–9
duplex systems 39
Herrera Unit 45, 48, 49, 50
dykes
andesitic
Cabo de Gato 81, 82, 83, 84, 86, 93
age 92
diabase
Anayet Basin 101, 103, 104–105, 104
geochemistry 105, 105, 107
U-Pb SHRIMP dating 106, 107–109, 110
diamicite
Mt Painter inlier 54, 56, 57, 58, 59
thermochronology 67, 69, 70–71, 73
Elba Island 131, 139
earthquakes, Trans-Alborán shear zone 80
Elba Island
geological setting 130–131
Monte Capanne pluton 129–141
tectonostratigraphic complexes 130–131
electron back-scattered diffraction 190
Grt-Sil-Bt gneiss 192–193
post-deformational annealing 215–216, 217, 219
Solnhofen limestone 171, 174, 176, 177, 178, 179
electron probe microanalysis (EPMA), Appin Quartzite 151, 153–154, 156–157, 159, 160
Elle modelling platform 218, 219
Eromanga Basin 54, 59, 68, 72, 73
exhumation, Mt Painter inlier 64–68, 72–73
extension
and magmatism
Carboneras Fault Zone 94
Elba 129, 131
factorization 7
fans see foliation fans
fault gouges, Carboneras Fault Zone 84–85, 92, 93
faulting
extensional, Trans-Alborán Fault System 80, 81
low angle normal, Monte Capanne pluton 139, 140
oblique-slip, Northern Flinders Rangers 55
transpressional, Carboneras Fault Zone 79, 84
Feos Formation 84
finite-element simulations
buckle folds 22–35
crystal-scale, Mt Painter inlier 53–74
Herrera Unit 43, 44, 49
Large Amplitude Folding theory 22
see also buckle folds
foliation, as strain indicator 35
foliation fans 21–22
crystalline fans in folding layer 22, 24, 25
divergent fans in matrix 22, 23–25, 35
growth and model setup 22–23
power-law viscous rheology 28–29, 34
results 23–29
strain orientation quantification 25–27
varying viscosity ratios 27–28, 34
fold axial planes 22, 25, 26, 35
Benquerencia outcrop 31, 33
natural and numerical data comparison 32
Portizuelo outcrops 30, 31, 32
Fold Geometry Toolbox 35
folding 1, 2
convergent fan in folding layer 25
divergent fan in matrix 23–25, 35
power-law viscous rheology 28–29, 34
results 23–29
strain orientation quantification 25–27
varying viscosity ratios 27–28, 34
diaclinal folds 22–35
convergent fans in folding layer 22, 24, 25
divergent fans in matrix 22, 23–25, 35
foliation refraction patterns 21–35
Benquerencia, NW Spain 29, 31, 33
natural folds 29–31
numerical folds 22–29
comparison with natural folds 32–35
Portizuelo, NW Spain 29–31, 32
Fortuna Basin 94
Foz-Tapia Anticline 29
Frontal Cordillera 114, 115
Gawler Craton 54, 55, 73
geospeedometry, Appin Quartzite 155–160
gothite
Mt Painter inlier 56, 59
dating 59–60, 67, 69, 72
Elba Island
and extensional tectonics 129, 131, 139, 140
rheological model 134–139
thermal model 132–134, 135
Miocene, and cross-strike structures 120, 122–123
Mt Painter inlier 54, 55–57
magnetometry, Huallilán, Argentina 119–120
Maláguide unit 85–86, 91
mantle upwelling, Carboneras Fault Zone 93
Marloes Sands, SW Wales, shear zone strain analysis 12, 13–15, 16, 17–18
Messinian, Carboneras Fault Zone
movement constraints 92, 96
sediments 84
metamorphism
Ballachulish Igneous Complex 147
rutil-quartz diffusion 155–156
Mt Painter inlier 62
see also Appin Quartzite; Monte Capanne pluton, host rock metamorphism
metapelite, Grt-Sil-Bt gneiss, sillimanite deformation mechanisms 189–210
metasomatism, Mt Painter inlier 56–57
mica schist, Carboneras Fault Zone 84–85, 92
microstructure
and post-deformational annealing 216–229
and rheology 1, 3–4
Midí d’Ossau volcanic complex 101, 102, 103, 110
miogmatite, Paralana Hot Springs 58, 60
Miocene see dacite, Miocene, Pampa de Huallilán; magmatism, Miocene; Monte Capanne pluton
Mohr’s circle
strain analysis 10–11, 17
Marloes Sands 13, 14
Mondoñedo nappe 29
Monte Capanne Fault 131, 140
Monte Capanne pluton 129, 131, 132, 141
contact aureole 132, 139
host rock metamorphism 132, 139
rheological model 134–139
tectonic evolution 139–141
thermal model 132–134, 135
monzogranite, Monte Capanne pluton 131, 132
contact aureole 132, 139
host rock metamorphism 132, 139
rheological model 134–139
thermal model 132–134, 135
Moolawatana Suite 54, 55, 57
Mt Gee Sinter 54, 58, 59, 65, 72
thermochronology 67–68, 69, 70–71, 73
Mt Oliphant Graben System 62, 68, 72
phyllite 58, 63, 72
Mt Painter inlier
crustal-scale folding 53–74
deformation history and reconstruction
Mesoproterozoic 60–61
Neoproterozoic 61–62
Palaeozoic Era 62–64
exhumation 64–68, 72–73
geology 54, 55–59
geothermal gradient 55, 56
Palaeozoic magmatism and hydrothermal alteration 55–59
Proterozoic eon 55
thermochronology 66–68, 69–71, 73
mullite, slip systems 191, 192

INDEX

and extensional tectonics 129, 131, 139, 140
rheological model 134–139
thermal model 132–134, 135
Miocene, and cross-strike structures 120, 122–123
Mt Painter inlier 54, 55–57
magnetometry, Huallilán, Argentina 119–120
Maláguide unit 85–86, 91
mantle upwelling, Carboneras Fault Zone 93
Marloes Sands, SW Wales, shear zone strain analysis 12, 13–15, 16, 17–18
Messinian, Carboneras Fault Zone
movement constraints 92, 96
sediments 84
metamorphism
Ballachulish Igneous Complex 147
rutil-quartz diffusion 155–156
Mt Painter inlier 62
see also Appin Quartzite; Monte Capanne pluton, host rock metamorphism
metapelite, Grt-Sil-Bt gneiss, sillimanite deformation mechanisms 189–210
metasomatism, Mt Painter inlier 56–57
mica schist, Carboneras Fault Zone 84–85, 92
microstructure
and post-deformational annealing 216–229
and rheology 1, 3–4
Midí d’Ossau volcanic complex 101, 102, 103, 110
miogmatite, Paralana Hot Springs 58, 60
Miocene see dacite, Miocene, Pampa de Huallilán; magmatism, Miocene; Monte Capanne pluton
Mohr’s circle
strain analysis 10–11, 17
Marloes Sands 13, 14
Mondoñedo nappe 29
Monte Capanne Fault 131, 140
Monte Capanne pluton 129, 131, 132, 141
contact aureole 132, 139
host rock metamorphism 132, 139
rheological model 134–139
tectonic evolution 139–141
thermal model 132–134, 135
monzogranite, Monte Capanne pluton 131, 132
contact aureole 132, 139
host rock metamorphism 132, 139
rheological model 134–139
thermal model 132–134, 135
moolawatana Suite 54, 55, 57
Mt Gee Sinter 54, 58, 59, 65, 72
thermochronology 67–68, 69, 70–71, 73
Mt Oliphant Graben System 62, 68, 72
phyllite 58, 63, 72
Mt Painter inlier
crustal-scale folding 53–74
deformation history and reconstruction
Mesoproterozoic 60–61
Neoproterozoic 61–62
Palaeozoic Era 62–64
exhumation 64–68, 72–73
geology 54, 55–59
geothermal gradient 55, 56
Palaeozoic magmatism and hydrothermal alteration 55–59
Proterozoic eon 55
thermochronology 66–68, 69–71, 73
mullite, slip systems 191, 192

INDEX

and extensional tectonics 129, 131, 139, 140
rheological model 134–139
thermal model 132–134, 135
Miocene, and cross-strike structures 120, 122–123
Mt Painter inlier 54, 55–57
magnetometry, Huallilán, Argentina 119–120
Maláguide unit 85–86, 91
mantle upwelling, Carboneras Fault Zone 93
Marloes Sands, SW Wales, shear zone strain analysis 12, 13–15, 16, 17–18
Messinian, Carboneras Fault Zone
movement constraints 92, 96
sediments 84
metamorphism
Ballachulish Igneous Complex 147
rutil-quartz diffusion 155–156
Mt Painter inlier 62
see also Appin Quartzite; Monte Capanne pluton, host rock metamorphism
metapelite, Grt-Sil-Bt gneiss, sillimanite deformation mechanisms 189–210
metasomatism, Mt Painter inlier 56–57
mica schist, Carboneras Fault Zone 84–85, 92
microstructure
and post-deformational annealing 216–229
and rheology 1, 3–4
Midí d’Ossau volcanic complex 101, 102, 103, 110
miogmatite, Paralana Hot Springs 58, 60
Miocene see dacite, Miocene, Pampa de Huallilán; magmatism, Miocene; Monte Capanne pluton
Mohr’s circle
strain analysis 10–11, 17
Marloes Sands 13, 14
Mondoñedo nappe 29
Monte Capanne Fault 131, 140
Monte Capanne pluton 129, 131, 132, 141
contact aureole 132, 139
host rock metamorphism 132, 139
rheological model 134–139
tectonic evolution 139–141
thermal model 132–134, 135
monzogranite, Monte Capanne pluton 131, 132
contact aureole 132, 139
host rock metamorphism 132, 139
rheological model 134–139
thermal model 132–134, 135
moolawatana Suite 54, 55, 57
Mt Gee Sinter 54, 58, 59, 65, 72
thermochronology 67–68, 69, 70–71, 73
Mt Oliphant Graben System 62, 68, 72
phyllite 58, 63, 72
Mt Painter inlier
crustal-scale folding 53–74
deformation history and reconstruction
Mesoproterozoic 60–61
Neoproterozoic 61–62
Palaeozoic Era 62–64
exhumation 64–68, 72–73
geology 54, 55–59
geothermal gradient 55, 56
Palaeozoic magmatism and hydrothermal alteration 55–59
Proterozoic eon 55
thermochronology 66–68, 69–71, 73
mullite, slip systems 191, 192
Narcea antiform 50
Nekor Fault 79, 95
Nevado-Fila´bride metamorphic rocks 81, 82, 83, 84, 85
movement constraints 93
Nimonic rig 171
Northern Appenines 130–131
Northern Flinders Ranges
crustal-scale deformation 53, 73
geology 54, 55–59
Norwest Fault System 54, 55

olivine, intracrystalline plasticity 167
Ollo de Sapo Domain 50
omphacite, intracrystalline plasticity 167
Orano dykes 131, 140
orogenic belts, deformation and tectonic structures 1, 2

Palaeozoic, folding, Mt Painter inlier 53–74
Palomares Fault 79, 80, 94, 95
Pampa de Huallila´n 114
Pampean flat-slab segment 113
cross-strike structures 120, 122
geology 114, 115
Paralana Fault sensu stricto 62, 63
Paralana Fault System 54, 55, 62, 63, 64, 72
Paralana Hot Springs 54, 58, 60, 73
parastic folds 22

passive line markers
shear strain 9–10, 18–19
algebraic solution 10, 13–14, 15–17, 18
graphical solution 11–13
Marloes Sands 13–15, 18
Mohr circle solution 10–11

Paterson rig 171
pegmatites, Mt Painter inlier 54, 55, 56, 57, 58
Peruvian flat-slab sector 113
phyllites, Mt Painter inlier 58, 63, 72
Pie de Polo Norte lineament 123
plagioclase, intracrystalline plasticity 167
plasticity, intracrystalline 167–168
Solnhofen limestone 168–185
experimental apparatus and procedure 171–173
seismic properties 172–173, 177, 179, 183–185
Pliocene sediments, Carboneras Fault Zone 84
Portizuelo, NW Spain
foliation refraction patterns 29–31
fold axial planes 30, 32
Porto Azzurro pluton 131, 139, 141
position gradients tensor 8
Precordillera, Andean 114, 115
cross-strike structures 113–124
tectonic fabric analysis 114–117, 120, 122
pure shear 7
Pyrenean Axial Zone 102
geochemistry 103–105
Pyrenees
Anayet Basin 101–110, 102
Stephanian-Permian basins 101, 102
Variscan Orogeny 103
quartz see titanium-in-quartz geothermometry
quartzite see Appin Quartzite

Radium Creek Group 54, 55, 57
ramps, oblique
Herrera Unit 45, 47, 49
Paralana Fault System 72
recovery
post-deformation 215–229
conceptual model 226–229, 229–231
halite experiments 216, 218–226
recrystallization, post-deformation 215
rheology
metapelites, sillimanite deformation 189–210
Monte Capanne pluton 129, 134–139
power-law viscous 28–29
roll-back subduction 94, 95
rutile
titanium-in-quartz geothermometry 145–146
Appin Quartzite 153, 155, 160–161

Saltador Formation 82, 83, 84, 92
San Juan Formation 114, 116
SEM BSE Z-contrast imaging, Appin Quartzite 148, 149, 150
serpentinite, Monte Capanne pluton 137–138
Serravallian-Tortonian
Carboneras Fault Zone
movement constraints 93
sediments 82, 83, 84
shale, Herrera Unit 41, 43, 45, 47, 49
shear strain
passive line markers 9–10, 18–19
analysis 10–19
see also pure shear; simple shear
shear zones 1, 2
brittle-ductile 117–119, 122, 123
dilatational, strain analysis 7–19
Marloes Sands, SW Wales 12, 13–15, 17–18
Sierra Cabrera, uplift 84
Sierra de la Invernada Formation 114, 116
Sierra de la Mina 116–117
Sierra Nevada-Sierra de Los Filabres metamorphic complex 93
Sierras Pampeanas 114, 115
sillimanite
crystal structure 191, 192
intracrystalline orientation 198–199,
200–204
metapelite rheology 189–210
Mt Painter inlier 60
slip systems 191, 192, 204–210
simple shear 7, 8, 18
slip planes, crystallite 167–168
slip systems 190, 192
post-deformation, halite 217–218
sillimanite 204–207
deformation mechanisms 207–209
effect of grain orientation 209–210
Solnhofen limestone
crystallographic preferred orientation 173
comparison with previous studies 179, 181
EBSD 171, 174, 176, 177, 178, 179
and finite strain 177, 180
strain distribution 173–177
plastic deformation 168–185
axisymmetric extension 173–174
axisymmetric shortening 175, 177, 178, 179, 182
direct shear 174–175, 176, 179, 182
experimental apparatus and procedure 171–173
seismic properties 172–173, 177, 179, 183–185
torsion test 174, 182
source parameter imaging 119, 120, 122–123
Stephanian-Permian
Pyrenean basins 101, 102, 103
inversion tectonics 101, 109–110
see also Anayet Basin
strain 1
finite
and boundary conditions 7–9
and CPO, Solnhofen limestone 177, 180
quantification 25–27
foliation as indicator of 35
quantification 1, 2, 25–27
strain analysis
passive line markers
algebraic solution 10, 13–14, 15–17, 18
graphical solution 11–13, 14
Marloes Sands 13–15, 17–18
Mohr circle solution 10–11, 13, 14, 17
subduction, Carboneras Fault Zone 94, 95
Talcasto lineament 123
tectonites, natural calcite, CPO patterns 181, 183
thermobarometry, Grt-Sil-Bt gneiss 191–192
thermochronology, Mt Painter inlier 66–68, 69–71, 73
thrusts
folded, Herrera Unit, NE Spain 39–50
emplacement 47–49
piggy-back 48
titanite, FT analysis, Mt Painter inlier 59–60, 69, 72, 73
titanium-in-quartz geothermometry 145–146
Appin Quartzite 148–162
Tortonian
Carboneras Fault Zone
movement constraints 92–93, 96
sediments 82, 83, 84
Trans-Alborán shear zone 79, 80
earthquakes 80
extensional faulting 80, 81, 94, 96
Tucunuco Formation 114, 116
Tummeralik, Grt-Sil-Bt gneiss 190
Tuscan Magmatic Province 129, 130, 132
U-Pb SHRIMP dating, Anayet Basin 101, 103, 106, 107–109
U-Th/He dating, Mt Painter Inlier 59–60, 66–72, 73
Variscan Orogen
Herrera Unit
folded thrusts 39–50, 40
relationship with other areas 49–50
Variscan Orogeny, Pyrenees 103
vulcanism
Cabo de Gata 81, 82
age determination 85–86, 90–93
$^{40}\text{Ar}-^{39}\text{Ar}$ dating 85, 86, 87–89, 90–91, 92
movement constraints 92–93
Western Asturian-Leonese Zone (WALZ) 30, 39, 40, 50
foliation refraction patterns 29–35
Western Cauterets pluton 102
Yankaninna Anticline 54, 55, 57, 60–61, 62–64, 72
exhumation 64, 68, 73
Yesares Formation 84
zircon
U-Pb SHRIMP dating, Anayet Basin dykes 101, 103, 106, 107–109
U-Th/He dating, Mt Painter inlier 59–60, 67–68, 69
Zuccale Fault 131, 140
Deformation Structures and Processes within the Continental Crust

Edited by S. Llana-Fúnez, A. Marcos and F. Bastida

This volume presents a selection of papers showing the current focus of studies of deformation structures and processes within the continental crust. The selected contributions use a large range of analytical techniques suited to the full range of structure sizes and fine-tuned to the physical process that controls the deformation, from the grain boundary at the micro-scale, the lithological contact at the meso-scale to the plate boundary at the global scale.

The papers in the volume are grouped into three sections relating to specific lines of research within the analysis of rock deformation structures and processes, in particular in respect to the continental crust: structures within shear zones and faults; magmatic structures, and microstructures and rheology. These sections include papers describing field studies, experimental rock deformation and numerical modelling of deformation processes.

Visit our online bookshop: http://www.geolsoc.org.uk/bookshop

Geological Society web site: http://www.geolsoc.org.uk

Cover illustration:
Enhanced ductility of mafic lower crustal rocks as a consequence of plagioclase segregation by pyroxene breakdown and partial melting at high-pressure granulite facies (Bacariza unit, Cabo Ortegal, Spain).
Photograph: S. Llana-Fúnez.