Charlie Brown Versus Snow White: The Effects of Descriptiveness on Young and Older Adults’ Retrieval of Proper Names

Kethera A. Fogler and Lori E. James

Department of Psychology, University of Colorado at Colorado Springs.

The non-descriptive nature of proper names has been suggested as one reason that people experience particular difficulty learning and recalling names. This experiment tested whether the exacerbated difficulty experienced by older adults in retrieving proper names is partly due to names’ non-descriptive quality. Young and older participants named pictures of well-known cartoon characters that have either descriptive names (e.g., Snow White, Big Bird) or non-descriptive names (e.g., Charlie Brown, Garfield). Older adults were particularly impaired at retrieving non-descriptive names. Results indicate that theories of name memory must represent the non-descriptive nature of names and account for the decreased retrieval difficulty for descriptive compared with non-descriptive names in aging.

At one time or another, most people have forgotten the name of someone they have just met, or even someone they have known for years. Although these occurrences are not rare, they can be embarrassing. Unlike common nouns that can be referred to categorically or with a synonym, proper names require a specific “right answer” and therefore name retrieval failures are particularly noticeable. Although such memory lapses are uncomfortable for everyone, they may be especially troublesome to older adults, who could interpret the failure as a sign of dementia (Cohen, 1994).

For a person of any age, proper names are more difficult than other types of information to learn in association with a face, and even well-known names are more vulnerable to retrieval failures than are other types of words (e.g., Cohen, 1990; Cohen & Burke, 1993; Hanley & Cowell, 1988; James, 2006; McWeeny, Young, Hay, & Ellis, 1987; Valentine, Brennen, & Brédart, 1996). Tip-of-the-tongue (TOT) states are a specific type of retrieval failure in which a person cannot produce well-known information although he or she feels as though the missing word or name is about to be retrieved. TOT states have been shown to increase in healthy aging, with proper names suffering even greater increases with age than other types of words (Burke, MacKay, Worthley, & Wade, 1991; Evrard, 2002; Rastle & Burke, 1996).

Many factors have been suggested to contribute to the particular difficulty of name learning and recall. For example, names are typically lower in overall frequency of use than other sorts of words (e.g., even James, a fairly high-frequency surname, is less commonly encountered than the biographical information is a student or the common noun house). Under this account, low word frequency, not status as a name per se, causes the increased difficulty in name memory (see Conley, Burgess, & Hage, 1999 for a discussion of name frequency). In addition, there is a greater “set size” of possible phonological sequences for names than there is for other types of words, and this wider variety of potential sound combinations might contribute to names’ difficulty (e.g., Brennen, 1993). Names also have low imageability: If someone is a baker, one can imagine that person in a bakery, wearing an apron, with flour all around, whereas the same phonological sequence in the name Ms. Baker does not afford specific images to assist in encoding or retrieving the name (e.g., Cohen & Burke, 1993; Cohen & Faulkner, 1986; McWeeny et al., 1987). Another factor contributing to name difficulty might be the rigid relationship between a name and its referent: there is only one right answer in naming a person, whereas common nouns can often be designated by synonyms (e.g., Brédart, 1993; Kripke, 1972; Putnam, 1975).

Although it is likely that a combination of such factors contributes to the greater difficulty posed by names than other types of words, in the current experiment we tested a different variable: what has been called the meaningless, arbitrary, or non-descriptive nature of names (Brédart & Valentine, 1998; Cohen, 1990, 1994; Evrard, 2002; McWeeny et al., 1987). These labels are often used interchangeably, but we use the term descriptiveness because it indicates that the name contains a meaningful description of some aspect of the referent. Names are almost always non-descriptive in the sense that they do not signify anything about the individuals’ identities and provide no information relevant to individuals’ mental or physical attributes.1 For example, although the word farmer has meaning, when used as a proper name it is not descriptive of the person with the name (i.e., Ms. Farmer is almost never a farmer). Although there are some exceptions (e.g., nicknames such as Tiny or Brainy may be adopted because they describe the individual), these constitute a small minority of names in western cultures. Because of this, most existing research has relied on a comparison of non-descriptive proper names with descriptive common nouns to test for a role of descriptiveness in retrieval (e.g., Evrard; Rendell, Castel, & Craik, 2005). It is unclear whether these experimental results are due to the different types of words being retrieved (proper vs common nouns), or to the variation in descriptiveness (with proper nouns being non-descriptive labels and common nouns being descriptive labels), or to a combination of factors.

Brédart and Valentine (1998) provided the first data to unambiguously demonstrate a role for descriptiveness in proper
name retrieval. They hypothesized that nondescriptive proper names (conveying no information regarding the name holder’s attributes) would be more difficult to retrieve than descriptive names. To test this, they cleverly used pictures of cartoon characters, because unlike real people, characters often have names that describe their mental or physical attributes (e.g., Snow White, Grumpy, and Gadget). Their use of cartoon characters brought the advantage of specifically examining the effect of descriptiveness on proper name retrieval. Indeed, descriptive names were correctly recalled 10% to 12% more often than nondescriptive names, indicating that the nondescriptive nature of names contributes to their difficulty.

Much research in cognitive aging has been focused on older adults’ area of greatest concern: memory loss. Older adults report that memory for proper names declines to an even greater extent with age than do other types of memory (Cohen & Faulkner, 1984; Maylor, 1997; Sunderland, Watts, Baddeley, & Harris, 1986). A number of experiments have confirmed that older adults suffer more retrieval failures for well-known proper names than young adults do (e.g., Burke, Locantore, Austin, & Chae, 2004; Cross & Burke, 2004; Maylor, 1990). Some studies have found that the age-related increase in retrieval failures for names is disproportionately greater than for other types of words or information (e.g., Burke et al., 1991; Evrard, 2002; Rastle & Burke, 1996; Rendell et al., 2005; but see Maylor, 1995, 1997), but whether this specific deficit is obtained in a particular study appears to depend on the measures adopted to assess retrieval failures (James, 2006).

Relatively few studies have explicitly tested the aspects of proper names that render them harder to retrieve than other words, and even fewer have tested the role of these factors in the specific age-related deficit for names. In the present experiment, we adapted the methods of Brédart and Valentine (1998) to replicate their finding of a recall advantage for descriptive names and to compare the performance of young and older adults. Our goal was to determine whether the nondescriptive nature of most names is a contributing factor in older adults’ name memory deficits.

Methods

Participants

Participants were 20 young adults (age, 18–23 years; $M = 19.50, SD = 2.01$) who were recruited from the University of Colorado at Colorado Springs and 20 healthy older adults (age, 63–81 years; $M = 71.40, SD = 4.42$) who were recruited from the community of Colorado Springs. There was no age difference in years of education (young adults, $M = 13.70, SD = 1.72$; older adults, $M = 14.30, SD = 2.52, t < 1$). Vocabulary test scores (Shipley, 1940; maximum correct = 40) were higher for older adults ($M = 35.11, SD = 3.74$) than for young adults ($M = 28.06, SD = 3.86$, $t(34) = 5.56, p < .01$). Older participants completed the Mini-Mental Status Exam (Folstein, Folstein, & McHugh, 1975) with at least 27 out of 30 items correct. Young adults received course credit and older adults were paid $10 for their participation.

Materials

We conducted a pilot study to select one set of pictures of well-known cartoon characters with descriptive names and another with nondescriptive names. Twenty-four adults participated (overall, $M = 57.17$ years; $n = 8$ young adults, ages 21–34; $n = 5$ middle-aged adults, ages 50–62; $n = 11$ older adults, ages 73–89), none of whom participated in the main experiment. We selected a high-quality, black-and-white picture for each of 66 characters, some with apparently descriptive names (e.g., Pink Panther, Snow White) and others with nondescriptive names (e.g., Garfield, Charlie Brown). An experimenter presented pictures in the same randomly determined order, one at a time, to pilot participants who attempted to produce the name of each character. If a participant did not produce the name, the experimenter gave the name and the participant reported whether he or she recognized the name as belonging to that character. We included only characters that were correctly named or recognized by all participants in the materials.

If participants produced or recognized the name, they rated how descriptive they found the name (on a 1–5 scale, with 5 being the most descriptive) and how famous they believed the character to be (on a 1–5 scale, with 5 being the most famous). Only characters with mean fame ratings of 3.00 or higher were eligible to be used as stimuli in the experiment. We also averaged fame ratings within each age group, and we included only characters with a mean rating above 3.00 within each age group, even if the overall fame rating was over 3.00 (e.g., the character “Blondie” received an overall mean fame rating of 3.79, but we excluded this character as a stimulus because the mean fame rating for young adults was only 2.50). Of the characters determined to be adequately famous, we included those with mean descriptiveness ratings of 3.75 or greater in the descriptive name set, whereas we included characters with mean scores of 2.75 or lower in the nondescriptive name set (we excluded those with mean descriptiveness scores between 2.75 and 3.75). Mean fame and descriptiveness ratings for experimental stimuli are presented in Table 1. A t test comparing the descriptiveness ratings of the 8 young pilot participants and 11 older pilot participants revealed no age difference on ratings of the descriptive names, $t < 1$, and a marginally significant age difference on ratings of nondescriptive names, $t(17) = 1.88, p = .08$, because older adults rated the nondescriptive names as slightly more descriptive ($M = 2.01, SD = 0.61$) than did young adults ($M = 1.45, SD = 0.67$). A similar t test comparing the fame ratings of the young and older pilot participants revealed no age differences on fame ratings for descriptive or nondescriptive names ($t < 1$).

Table 1. Characteristics and Examples of Descriptive Versus Nondescriptive Names

<table>
<thead>
<tr>
<th>Characteristic or Example</th>
<th>Descriptive Names $(n = 24)$</th>
<th>Nondescriptive Names $(n = 22)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean descriptiveness rating</td>
<td>4.39 (0.43)</td>
<td>1.76 (0.54)</td>
</tr>
<tr>
<td>Mean fame rating</td>
<td>4.17 (0.51)</td>
<td>4.06 (0.51)</td>
</tr>
<tr>
<td>Mean length in letters</td>
<td>10.04 (3.42)</td>
<td>7.91 (3.19)</td>
</tr>
<tr>
<td>Mean length in syllables</td>
<td>3.13 (1.19)</td>
<td>2.59 (1.01)</td>
</tr>
<tr>
<td>Mean length in words</td>
<td>1.92 (0.65)</td>
<td>1.45 (0.60)</td>
</tr>
<tr>
<td>Examples</td>
<td>Pink Panther</td>
<td>Homer Simpson</td>
</tr>
<tr>
<td></td>
<td>Goofy</td>
<td>Garfield</td>
</tr>
<tr>
<td></td>
<td>Spiderman</td>
<td>Elmo</td>
</tr>
<tr>
<td></td>
<td>Pig Pen</td>
<td>Betty Boop</td>
</tr>
</tbody>
</table>

Note: Standard deviations are given in parentheses.

[Footnotes: Standard deviations are given in parentheses.]

- Name: standard deviations are given in parentheses.
A binder held the resulting pictures of characters with descriptive (n = 24) and nondescriptive names (n = 22; see Table 1 for characteristics and examples of each name type). We matched names in each set as closely as possible on length, but the nondescriptive names were slightly shorter, containing fewer letters, t(44) = 2.18, p < .05, and words, t(44) = 2.50, p < .05, than descriptive names. Mean fame ratings did not differ between the name types (t < 1). An experimenter recorded responses on a sheet with spaces to indicate the correct identification of each character, don’t-know responses, and TOT states.

Procedure

Descriptiveness was a repeated measure, and we showed each participant pictures of all 46 characters in the same random order, one at a time, with descriptive and nondescriptive names intermixed. Participants were tested individually, seated across a table from the experimenter. As soon as each picture was visible to a participant, the experimenter said “Go,” which was the participant’s cue to produce the character’s entire name as quickly as possible. The experimenter told participants to say “don’t know” if they did not recognize the character or did not know the character’s name, to respond with part of the name if the whole name did not come to mind, and to say “TOT” if they knew the name but were currently unable to produce it (TOTs were thoroughly defined for participants). Three practice pictures preceded the experimental stimuli, during which the experimenter emphasized speed of responding. We audiotaped the sessions so that we could determine response-onset times (from waveforms input into Sound Edit 16) and we could verify scoring. We measured response times from the visual waveforms as the duration of the silence between the offset of the experimenter’s “Go” cue and the onset of the participant’s response.

RESULTS

We first scored the data strictly, requiring completely correct responses (the character’s whole name, as determined from the responses given during the pilot study). We analyzed the strictly scored percentage of correct items in a 2 (young vs older adults) × 2 (descriptive vs nondescriptive names) mixed factorial analysis of variance (ANOVA). As shown in Figure 1 (left-hand side), there was a main effect of age group favoring young adults, F(1, 38) = 13.55, partial η² = .26, p < .01, and a main effect of descriptiveness favoring descriptive names, F(1, 38) = 12.89, partial η² = .25, p < .01. There was a significant Age Group × Descriptiveness interaction, F(1, 38) = 6.57, partial η² = .15, p < .05, because older adults recalled significantly more descriptive than nondescriptive names, t(19) = 3.98, p < .01, but this difference was nonsignificant for young adults (t < 1). Age differences were significant for both the descriptive names, t(38) = 2.97, p < .01, and nondescriptive names, t(38) = 3.92, p < .01.

It was apparent that many participants provided partially correct names (e.g., responding “Mr. Simpson” for Homer Simpson or “Little Annie” for Little Orphan Annie), so we conducted another analysis in which we counted these responses as correct (see Figure 1, right-hand side). We analyzed the leniently scored percentage of correct items in a 2 (young vs older adults) × 2 (descriptive vs nondescriptive names) mixed factorial ANOVA that revealed essentially the same pattern: a main effect favoring young adults, F(1, 38) = 11.81, partial η² = .24, p < .01, a main effect favoring descriptive names, F(1, 38) = 45.21, partial η² = .54, p < .01, and a significant Age Group × Descriptiveness interaction, F(1, 38) = 18.87, partial η² = .33, p < .01. Older adults recalled more descriptive than nondescriptive names, t(19) = 7.25, p < .01, whereas young adults had a smaller, marginally significant difference favoring descriptive names, t(19) = 1.84, p = .08. Age differences were significant for both the descriptive names, t(38) = 2.55, p < .05, and nondescriptive names, t(38) = 3.99, p < .01. Thus the only difference between the analyses of strictly versus leniently scored data was that the descriptiveness effect for young adults approached significance when we included partially correct names as correct responses.

Because of the small difference in mean name length (measured as number of letters and words), we reanalyzed the percentage of correct responses after we excluded three stimuli (one very long descriptive name and two very short nondescriptive names), which equated length for descriptive and nondescriptive names (on number of letters, syllables, and words, all ps > .21). This analysis confirmed the main effect of age group, F(1, 38) = 13.41, partial η² = .26, p < .01, main effect of descriptiveness, F(1, 38) = 59.72, partial η² = .61, p < .01, and Age Group × Descriptiveness interaction, F(1, 38) = 4.90, partial η² = .11, p < .05, found in the other analyses. Older adults recalled more descriptive than nondescriptive names, t(19) = 6.44, p < .01, and this subset of stimuli revealed a smaller significant difference favoring descriptive names for young adults, t(19) = 4.33, p < .01. Age differences were significant for both the descriptive names, t(38) = 3.30, p < .01, and nondescriptive names, t(38) = 3.77, p < .01.

We divided name retrieval errors into three categories: don’t-know responses, misnamings, and TOT responses; percentages of trials with each error type are presented in Table 2. The most
common errors were don’t-know responses for both young and older adults. We analyzed the percentage of trials with don’t-know responses in a 2 (young vs older adults) × 2 (descriptive vs nondescriptive names) mixed factorial ANOVA that revealed that older adults said “don’t know” more often than young adults did, \(F(1, 38) = 10.54, \) partial \(\eta^2 = .22, p < .01, \) and more don’t-know responses occurred for nondescriptive than descriptive names, \(F(1, 38) = 34.38, \) partial \(\eta^2 = .48, p < .01. \) There was an Age Group × Descriptiveness interaction, \(F(1, 38) = 9.86, \) partial \(\eta^2 = .21, p < .01, \) because older adults said “don’t know” more for nondescriptive than descriptive names, \(t(19) = 5.56, p < .01, \) whereas young adults showed the same pattern with a numerically smaller difference, \(t(19) = 2.32, p < .05. \) Thus, the analysis of don’t-know responses followed a complementary pattern to the percentage correct data. The pattern of TOT responses was very similar to that of don’t-know responses, but TOT rates were very low and floor effects precluded analysis.

To further test the effects of age and descriptiveness on ease of name retrieval, we calculated mean response-onset time for correctly produced names (using strictly scored data). We analyzed these times in a 2 (young vs older adults) × 2 (descriptive vs nondescriptive names) mixed factorial ANOVA. We could not obtain onset-time data for one young participant as a result of recording problems, as reflected in the standard deviations are shown in parentheses. TOT = tip of the tongue.

indicating age differences in proper name retrieval (e.g., Burke et al., 2004; Evrard, 2002; Maylor, 1990; Rastle & Burke, 1996; Rendell et al., 2005). Results also indicated that older adults are disproportionately impaired in retrieving descriptive names: Although we found substantial age-related declines in name retrieval when we used the typical variety of name (i.e., nondescriptive), the age differences were smaller for descriptive names. This finding adds substantially to the existing literature because it is the first demonstration of attenuated age-related declines in the retrieval of well-known proper names in response to the manipulation of a characteristic of the names.

Findings with young participants in our study partially replicated the findings of Brédart and Valentine (1998). They found a substantial advantage in the percentage of correct responses for descriptive over nondescriptive character names for young adults (more than 10%), and we obtained a smaller difference that was significant when we analyzed a length-matched subset of the stimuli. Initially, our nondescriptive names were slightly shorter than our descriptive names, and because word length affects retrieval (as measured by the response-onset times; see, e.g., Klapp, Anderson, & Berrian, 1973; Santiago, MacKay, Palma, & Rho, 2000) this may have counteracted some of the benefit of descriptiveness. When the materials were more precisely matched on length across the descriptiveness conditions, young adults’ descriptiveness effect emerged as significant. Nevertheless, it remains surprising that the difference was small (2% for strictly scored data, 3% for
leniently scored data) when compared with that obtained by Brédart and Valentine, and it was not significant for the overall materials. We cannot rule out that with greater power to detect the difference, the advantage of descriptive names would have been significant in all analyses, but this does not explain the decreased size of the descriptiveness effect. The difference may follow from the different procedures and stimuli (and different methods used for selecting stimuli) in the two experiments. Brédart and Valentine did not measure response times, whereas our task instructions emphasized quick responding in addition to accuracy, and it is not clear whether this influenced the results. For example, perhaps time pressure caused participants to say “don’t know” for names they would have eventually retrieved, and perhaps more descriptive names could have eventually been retrieved than nondescriptive names. In addition, we needed to select stimulus characters familiar to both young and older adults, which may have been more or less familiar overall than the stimuli used by Brédart and Valentine (direct comparison of the stimulus sets is not possible because their participants were French-speaking Belgians with different backgrounds and knowledge than our English-speaking participants from the United States). Our pattern of findings is generally consistent with the results of Brédart and Valentine, but future research might further explore the impact of these procedural differences.

Presumably the prevalence of don’t-know responses was due to time pressure because (a) our pilot testing (done without instruction to produce names quickly) indicated that these names were known to both young and older adults from our participant pool; (b) ratings in the pilot study indicated that the characters were perceived as equivalently famous by young and older adults; (c) during the practice trials, the experimenter reminded participants to say “don’t know” if the name did not come to mind quickly; and (d) names were indeed produced quickly in comparison with other studies that reported onset time to produce celebrity names (e.g., Burke et al., 2004; Cross & Burke, 2004; Rendell et al., 2005). However, we cannot definitively rule out the possibility that our pilot testing failed to identify appropriate stimulus materials, especially characters with nondescriptive names familiar to older adults.

Older adults’ greater disadvantage in retrieving nondescriptive than descriptive names must be accounted for by any practicable theory of aging and name memory. To date, there have been few theories of aging applied to name memory, and few theories of name memory applied to aging. One theoretical framework that has been successfully applied to name retrieval in aging is the transmission deficit hypothesis (MacKay & Burke, 1990) within node structure theory (MacKay, 1987). This framework posits an interactive activation model of memory, with information stored in nodes according to meaning (semantics) and sounds (phonology). In the theory, proper names are represented differently than other types of words. Unlike most words, which have multiple connections to meaningfully related information, proper name nodes have only single connections. This different representational architecture impacts both the learning and retrieval of names, with older adults frequently more impaired than young adults in the processing of proper names (see Burke et al., 1991; Cohen & Burke, 1993; and James, 2004 for detailed applications of node structure theory to name learning and memory). Within the theory, the benefit of descriptive proper names for older adults could be explained in two ways. First, it is possible that descriptive names have additional connections between the node representing the name phrase and other related semantic nodes. In other words, perhaps the “single connection” constraint does not apply to this type of name. These hypothetical multiple connections could reduce but not completely eliminate age-related declines in producing descriptive names so that they function like nonproper name stimuli (which still show age differences in retrieval; see, e.g., Cohen & Faulkner, 1986; James & Burke, 2000; Maylor, 1995, 1997). This can only explain why effects of descriptiveness were larger for older than young adults in our study if it is assumed that the additional connections to semantic information develop across adulthood (similar to existing accounts of age-related increases in semantic priming effects; see, e.g., Laver & Burke, 1993).

Alternatively, perhaps when a person views a character with a descriptive name, words representing the relevant, descriptive characteristics are activated. This activation primes the phonology of the name, preparing the name for quick and accurate production. For example, when participants see the Pink Panther, they might think about him being pink and being a panther, and when they produce the name, it is easy and fast because the phonology has been made readily available. Compare this with the situation when participants see Homer Simpson and they think about him being a beer-loving, intellectually challenged dad. In this case, thinking about the character’s relevant descriptive attributes does not prime the phonology of his name, and production is comparatively difficult and slow. This explanation accounts for the age difference in name retrieval demonstrated in many studies because most names are not descriptive, and it is consistent with existing evidence of preserved phonological priming in aging, with priming effects that are at least as large for older as for young adults (e.g., Burke et al., 2004; James & Burke, 2000; Mitchell, 1989; White & Abrams, 2002).

Several other major theoretical approaches to name learning and retrieval in aging can account for some but not all of the present results. For example, general slowing (e.g., Salthouse, 1996) or the inhibition deficit hypothesis (e.g., Hasher & Zacks, 1988) can explain the overall age differences in correct production and response-onset time. However, it is not clear how either theory could account for the specific age-related impairment for nondescriptive names. Under general slowing, older adults require additional time to perform all mental operations, and information can be lost during this slowed processing. If this slowing is general (as indicated by the theory’s name), it is not clear why some name types would be affected by age more than others. Under the inhibitory deficit approach, older adults are more disrupted by irrelevant information during name retrieval, but there is no reason to suspect that nondescriptive names would be more vulnerable to interference from other information than descriptive names. Indeed, it seems likely that descriptive names might suffer greater interference from semantically related but incorrect words by virtue of having meaningful content.

A different theoretical approach to the current findings would involve taking the well-developed model of proper name representation and retrieval described by Valentine and colleagues (1996) and determining which specific mechanisms within the
model must be affected by aging to account for present results. Maylor (1997) used this approach and concluded that all stages of name retrieval (identification of a celebrity from face or voice, retrieval of the celebrity’s biographical information, and retrieval of the celebrity’s name) were affected to a similar degree by normal aging. This model of aging and name retrieval, therefore, cannot currently account for findings of age effects on specific types of proper names. Nevertheless, greater specification of the mechanism(s) responsible for aging effects within the model could prove useful.

The relationship between name descriptiveness and retrieval has interesting implications. Historically, names were always descriptive: They contained identifying information regarding their referent (e.g., Mr. Baker was the baker). This was an efficient use of language, and our data indicate that it probably served as an effective mnemonic device, so that names were not particularly difficult to retrieve. Although it is unlikely that current western cultures will give up their nondescriptive names in favor of more memorable descriptive names, the use of nicknames could be encouraged, especially among older adults. Future research should test participants’ learning of descriptive nicknames for newly encountered people and determine whether this also reduces age differences compared with the learning of nondescriptive names.

ACKNOWLEDGMENTS

This research was supported by a Collaborative Research Scholar award to Kethera Fogler from the College of Letters, Arts, and Sciences at the University of Colorado, Colorado Springs and a Psi Chi Faculty Advisor Research Grant to Lori James. Portions of this research were presented at the 2005 meeting of the Psychonomic Society in Toronto, Ontario. We thank Deborah Burke and Curt Burgess for valuable discussions concerning the project.

CORRESPONDENCE

Address correspondence to Lori James, Psychology Department, University of Colorado, Colorado Springs, CO 80933-7150. E-mail: ljames@uccs.edu

REFERENCES

END NOTES

1Names do have stereotypical connotations such that a particular name may be viewed as belonging to fun, caring, or successful people (see, e.g., Mehrabian, 2001). However, by descriptive we mean that the name has been assigned to a person because it represents some of that specific individual’s mental or physical attributes. Furthermore, famous people’s names may take on descriptive qualities over time, for example, the name Homer Simpson may have come to stand for a bumbling, lazy, or inept father because of that well-known character’s attributes, but that is different than having a truly descriptive name, such as Bumble Simpson.

2This procedure allows for the sensitive detection of speech onsets, and manual coding of response times avoids some problems with the existing voice key mechanisms (particularly when stimuli are not matched across conditions on initial phonemes, as in the present experiment; see, e.g., Rastle & Davis, 2002). The manual stimulus presentation and the use of a vocal “go” cue may have increased response-time variability. However, variability works against finding significant differences between conditions, and because the same experimenter tested all participants, with young and older participants tested across the same time frame, and stimuli were intermixed within the experiment, we were not concerned about this aspect of the procedure.

3Eliminating each participant’s response times that exceeded his or her individual mean plus 2.5 SD in each condition did not change the pattern of results. Similarly, removing three stimuli in order to match the length of descriptive and nondescriptive names did not alter the pattern of response-time results.

4The age difference in descriptiveness ratings of nondescriptive names in the pilot study cannot account for this finding. Indeed, older adults’ ratings of the nondescriptive names as slightly more descriptive than young adults’ ratings predicts a reduced age-related deficit in retrieving nondescriptive names, which is contrary to the present results.