a cookbook, though twelve pages of recipes, including Lady Bird Johnson’s Shrimp Squash Casserole, are included.

Shrimp, sometimes called prawn, usually depending on the circumstances and location, is the most consumed crustacean in the world. Like lobsters and other relatives in the Order Decapoda, shrimp have five pairs of legs under the carapace and five more swimmerets under the abdomen. They thrive in salt water as well as fresh water, both warm and cold.

People are attracted to shrimp in many ways, not just for their flavor. They are also significant in symbolism in the arts and literature. The shrimp has long been a symbol of luck and longevity in Asian cultures. Since it sheds its exoskeleton and has long been a symbol of luck and longevity in Asian cultures. Since it sheds its exoskeleton and

Part of Reaktion Books’ ambitious Edible series, dedicated to food and drink, which documents various edible items related to plants and animals, from a natural and cultural history perspective, this exhaustively researched volume is appropriate for and may appeal to college or advanced high school readers. Though engagingly written and full of interesting information, the book may not be one for which there would be a good reason to include in a biology class library. It is profusely illustrated with captivating photographs and includes a timeline of beetles, endnote documentation of the text, a bibliography, a list of websites and associations, and an index.

Richard Lord
Retired Biology Teacher
Presque Isle High School
Presque Isle, ME 04769
rnlord@aol.com

Toward High School Biology is an entire unit of curriculum connecting the concepts of matter cycling with growth and repair of living structures. The teacher edition contains thorough plans, with chapter overviews, background knowledge, prerequisite knowledge, common misconceptions, and a storyline. Times for each portion of a lesson are provided down to the minute. For teachers who are less familiar with NGSS-aligned lessons and the use of phenomena, the plans are well scaffolded. Students are given the tools to construct complete explanations that include claim, evidence, and reasoning. Teacher Talk and Actions are broken down into minutes and include instructions about what students should be doing and how they might respond. For example: “Key Question (1 min) Introduce the Key Question: How are changes in the matter that makes up living and nonliving things similar? Usually, you will use the Key Question to elicit and probe student ideas” (p. 11). The contents of the book are broken into four chapters with a total of 19 lessons. The first chapter focuses on changes in matter and using models. Chapter 2 is about chemical reactions and conservation of mass. The third chapter brings in Life Science Standard LS1 as it connects monomers, polymers, and carbohydrate synthesis with photosynthesis. Chapter 4 balances this by relating amino acid to protein formation with growth and repair in animals.
One of the things I noticed about Toward High School Biology is the variety of examples across science disciplines. When working on the concept of monomers making up polymers, a physical science example of the synthesis of nylon strands is first demonstrated. This is compared to the polymerization of glucose into cellulose as well as protein monomers comprising spider silk. The connection between physical science and life science is a great way to emphasize patterns. Students build some of the reactions with models as well as watch a video or carry out the chemical reaction. Students are constantly working through the process of guided inquiry where they are asked about what happened.

Best teaching practices are built into the Toward High School Biology curriculum. Lessons spiral in content, and have students continually revising and developing their ideas. Phenomena are linked to tasks that involve collecting and analyzing data. Atoms, molecules, and chemical reactions are modeled in a variety of ways using ball-and-stick models as well as LEGO bricks. Support including videos, images, print materials, and research articles for the curriculum are provided on the book’s Extras page at www.nsta.org/towardhsbio. Also on the Extras page is a sheet listing all of the materials and links to suppliers. Activities are designed for a variety of grouping from whole class, to pairs, to individuals. Students are continually asked to explore, reflect upon, and revisit ideas. Within the teacher edition are the answers to the student edition; these are available separately. The student resources are designed to be more heavily scaffolded in the first chapter, and less toward the end of the book.

Although Toward High School Biology was written for middle school, some of the material could be used for introduction or review at the high school level. As a high school biology teacher, I particularly liked the activities utilizing monomers and polymers in life science. I could see myself using them as a quick review before teaching photosynthesis, cellular respiration, and protein synthesis. The Toward High School Biology curriculum is an excellent model curriculum that encompasses Disciplinary Core Ideas (DCI), Science Practices, Cross Cutting Concepts (CCC), and Performance Expectations (PE) from the Next Generation Science Standards.

Kristin Hudlow
Biology Instructor
Centennial High School
8601 Hageman Road
Bakersfield, CA 93312
Khudlow@kernhigh.org

AMANDA L. GLAZE is an Assistant Professor of Middle Grades & Secondary Science Education at Georgia Southern University in Statesboro, Georgia. In addition to science teacher education, she has taught courses in biological sciences for grades 7–12 and undergraduate students over the last twelve years. Her interests include evolutionary biology, science and religion, and the intersections of science and society—specifically where scientific understandings are deemed controversial by the public. Glaze holds degrees in science education from The University of Alabama and Jacksonville State University. Her address is Department of Middle Grades & Secondary Education, Georgia Southern University, PO Box 8134, Statesboro, GA 30468; e-mail: aglaze@geogiasouthern.edu.

Online MS in Biology

Master of Science (Non-thesis option)

Online Master’s Degree in Biological Sciences for K-12 teachers and other science educators

- All courses offered online
- Reduced tuition
- No out-of-state tuition differential
- No residency requirement
- 30 semester hours of graduate credits
- Up to 12 credits of graduate courses may transfer for the degree requirements

For Information:
tjarret@clemson.edu
864-656-2153

CLEMSON
BIOLOGICAL SCIENCES

The courses offered in the BIOL ONLINE Program are fully accredited through Clemson University by the Southern Association of Colleges and Schools (SACS). CU is an equal opportunity employer.

Online MS in Biology

Master of Science (Non-thesis option)

Online Master’s Degree in Biological Sciences for K-12 teachers and other science educators

- All courses offered online
- Reduced tuition
- No out-of-state tuition differential
- No residency requirement
- 30 semester hours of graduate credits
- Up to 12 credits of graduate courses may transfer for the degree requirements

For Information:
tjarret@clemson.edu
864-656-2153

CLEMSON
BIOLOGICAL SCIENCES

The courses offered in the BIOL ONLINE Program are fully accredited through Clemson University by the Southern Association of Colleges and Schools (SACS). CU is an equal opportunity employer.