
Clinical Neuropsychology of Emotion by Yana Suchy (2011) is an excellent book that covers emotional processing from a clinical neuropsychological perspective. The book begins by providing an overview of the classic theories of emotion and early models of the functional neuroanatomy of emotion in the first two chapters. Several chapters of the book are then devoted to presenting and discussing five different domains of an emotional response, including the emotional trigger, reflexive emotional response, conscious awareness, emotional communication, and emotion regulation. These chapters present perhaps the most clinically useful information for neuropsychologists and for me represent the real meat of the book. The neuroanatomy of each domain is presented, followed by useful information regarding the clinical assessment of the domain and how the domain may be expressed in different clinical populations. The assessment sections of each chapter are particularly useful in that specific tests and methods are presented that may be used to assess functioning in each of the aforementioned domains. The sections of each chapter that cover how each domain is expressed in different clinical syndromes and populations are also quite informative, providing information that any clinical neuropsychologist would find useful in his/her practice. Among the more unique contributions of the book is the discussion in each chapter regarding the interaction between cognition and each of the domains. However, relatively little space is devoted to the discussion of this interaction when compared with the amount of space devoted to neuroanatomy, assessment, and expression in clinical syndromes and populations. That being said, though, the discussion of these interactions is informative and appreciated. Following the five chapters on the domains of an emotional response are three chapters that cover how the different domains combine to motivate and guide behavior, including mood, incentives of behavior, and stress. As before, quite useful information is presented regarding assessment and clinical syndromes and populations. Finally, the final three chapters of the book are devoted to covering future directions, particularly from an interdisciplinary perspective. While these final chapters are interesting to read, they are not as useful as the previous chapters of the book.

Considering the objectives of the book, there is a great deal of potential information to cover. Each chapter of the book, and in many instances individual sections of a chapter, could be written as an entire book in-and-of itself. Hence, there is much information to be presented and the author does an admirable job of not only presenting much of this information but also presenting this information in a concise manner that is easy to follow and read. I was disappointed to not see much more information on anosognosia or anosodiaphoria, although the author did devote some space to alexithymia. Also, given the focus on emotional responding and functioning from within a clinical neuropsychological perspective, it seems that some space should have been devoted to the different types of aprosodias, such as the expressive, receptive, mixed, and transcortical variants. If forced to identify a weakness of the book, I would have to say that this latter point represents the primary weakness. Nonetheless, the book is still quite thorough and presents a great deal of relevant, interesting data for anyone who is practicing clinical neuropsychology.

Borod (2000) edited a book entitled The Neuropsychology of Emotion and her book represents an approximation of the present book. While not attempting to detract from Borod’s book, which is an excellent book, the book by Suchy seems more applicable to clinical neuropsychologists. The applied emphasis is the primary distinguishing feature between Clinical Neuropsychology of Emotion and similar books. Another key distinguishing feature is the structure of Clinical Neuropsychology of Emotion. The structure and organization of the book is exceptional and was very much appreciated. The majority of the chapters contain the same organization as well as the same topics and sections. Hence, this consistency across chapters enables readers to know what to expect as they read each chapter and greatly enhances finding specific information. Each chapter is also well referenced for readers who might want to read additional material and the book uses just the right amount of footnotes to supplement the information presented. Overall, the book is of high quality and is well worth the purchase cost. It was quite easy to read and follow. It will represent an important resource for both clinicians and researchers in the field of neuropsychology.
This is an important and timely book on an extremely critical subject, and although its technical excellence and depth will challenge those without a formal background in molecular biology, the rewards I believe will be deeply commensurate with the effort. I would not recommend this book to someone without a basic understanding of molecular biology, who is not prepared to struggle or spend considerable time and energy (at least initially) looking up new terms and concepts—and tolerate feeling initially a little bit ignorant and overwhelmed. It is probably originally aimed at the advanced student, graduate student, or researcher in aging, or geriatrician, or someone else who is fairly sophisticated about biology and molecular biology. However, with that qualification in mind, the articles are uniformly of high quality and address critical issues in the science of aging—several, if not many, of these reviews are good enough to be considered benchmark reviews, cogently summarizing the state of the science. There are very good chapters on the network of genes activated by dietary restriction (DR) (the gold standard in terms of environmental manipulations to slow aging and reduce the diseases of aging), the role of the somatotropic axis in mammalian aging (roles played by growth factors such as insulin growth factor and growth hormone), the mechanisms of mitochondrial-free radical production and their relationship with the aging process (the most widely quoted molecular theory of aging which actually has mixed evidence for it), aging and programmed cell death in muscle tissues, aging in adipose tissue, aging of stem cells, leukocytes telomere dynamics (shortened telomeres in white cells predicts mortality at least in men), a reappraisal of the free radical theory of aging, the role of target of rapamycin (TOR) in aging (probably the hottest cellular pathway in the aging and anti-aging business currently), comparative genetics of aging, the role of sirtuins in aging and age-related disease, inflammation in aging processes, protein homeostasis and aging, and aging and brain myelination trajectories, and work on cardiovascular (CV) aging in primates, vascular dysfunction in aging, and pulmonary issues and aging, age-related changes in thermoregulation, and last but not least, sex differences in longevity and aging. Although this chapter listing sounds exhaustive, I wish there had been a better chapter on calorie restriction (CR) mimetics (substances that mimic the physiology of CR but without the pain of chronic hunger), and although many chapters addressed the relationship between these various topics and particular diseases of aging, there were no chapters specifically addressing the primary diseases of aging namely cancer, Alzheimer’s disease (AD), CV disease, diabetes, etc. Other than those limitations, the volume coverage is comprehensive and uniformly good to excellent.

I personally have had to struggle to catch up with the emerging biological science in these territories and can appreciate that a detailed discussion of cell signaling (AKA internal cellular regulation and its molecular pathways) is likely to be at least initially intimidating to the average neuropsychologist. However, I can also personally testify that the rewards are quite commensurate; I am increasingly convinced that the unraveling of AD, along with our first truly effective disease modifying treatments, and also a real ability to prevent this disease (and other diseases of aging) will emerge from basic aging science—particularly a much more detailed understanding of cell signaling in aging neurons and aging glial cells. I also believe that this area of basic science will eventually yield insights into how a host of other non-age-related neurological conditions can be more effectively treated, including learning disabilities, head trauma, stroke, and perhaps many other conditions. This is thus an area of basic science with enormous relevance for our discipline, and indeed, as discussed below, for medicine in general. The science of aging is scientifically, economically, and culturally a vital subject for our time (as also