Bedside prediction of the central venous catheter insertion depth


Department of Anesthesiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea

*Corresponding author: Department of Anesthesiology, Seoul National University Hospital, 28 Yongon-dong Jongno-gu, Seoul 110-744, Republic of Korea. E-mail: bahkjh@snu.ac.kr

Background. The carina level has been shown to be near the pericardial reflection and can easily be identified as a landmark on a routine chest radiography. The purpose of this study was to reveal a simple method to predict the adequate central venous catheter (CVC) depth, hereby facilitating safe positioning of the CVC tip.

Methods. Central venous catheterization was performed via the right internal jugular vein (IJV) or the right subclavian vein (SCV). The CVC was placed at a depth derived by adding the length between the needle insertion point and the clavicular notch and the vertical length between the clavicular notch and the carina on the chest radiograph. The distance between the CVC tip and the carina was measured on the postoperative chest radiograph.

Results. The tip position of 100 CVCs placed via the right IJV was 0.1 (1.1) cm [mean (SD)] below the carina (95% CI: 0.3 cm below carina–0.2 cm above carina) and the tip position of 153 CVCs placed via the right SCV was 0.0 (1.2) cm [mean (SD)] below the carina (95% CI: 0.2 cm below carina–0.2 cm above carina). There were nine outliers (two in IJV group and seven in SCV group).

Conclusions. When CVCs are inserted to a depth derived by adding the length between the needle insertion point and the clavicular notch and the vertical length between the clavicular notch and the carina, the CVC tip can be reliably placed near the carina level.


Keywords: anatomy, carina; anatomy, jugular vein; anatomy, subclavian vein; equipment, cannula intravascular

Accepted for publication: November 17, 2006

Landmarks,1–3 simple formulas,4 5 and sophisticated techniques such as right atrial (RA) electrocardiography6 7 and transoesophageal echocardiography7 8 have been proposed for positioning the central venous catheter (CVC) to an adequate depth in adults. To minimize the risk of cardiac tamponade, it has been suggested that the CVC tip should be located above the cephalic limit of the pericardial reflection, not merely above the superior vena cava-RA junction.9 Of the landmarks easily identifiable on a routine chest radiograph (CRX), the level of the carina has been shown to be near the level of the pericardial reflection in fresh and preserved cadavers and in computerized tomography studies of adult patients.1 3 10 The carina has since been studied as an attractive target level for CVC tip position.1 2 3

In order to determine the depth of CVC insertion using the carina as a reference point, a landmark identifiable both superficially and on the CRX may be helpful. The clavicular notch described by Rao et al.11 can be consistently palpated 0.25–1 cm lateral to the sternal head of the clavicle on the superior surface of the clavicle and easily identified on the CRX. In addition, the right brachiocephalic vein, tributaries of which are the right internal jugular vein (IJV) and the right subclavian vein (SCV), lies beneath this clavicular notch.12 Thus, the course of the CVC placed via the right IJV or the right SCV runs under this clavicular notch.

The purpose of this study was to devise a simple formula (1) that can predict CVC depth using the carina and the clavicular notch as landmarks and (2) that accounts for variable skin puncture sites depending on the practitioner and the different bodily lengths of patients.

Methods

After having obtained IRB approval and patients’ informed consent, 267 patients scheduled for either neurosurgery or
thoracic surgery requiring central venous catheterization were enrolled. The right IJV (n=102) was catheterized in patients undergoing lung surgery and the right SCV (n=165) was catheterized in patients undergoing neurosurgery, oesophageal surgery, or other thoracic surgeries.

After antiseptic preparation and draping, central venous catheterization was performed using a double lumen CVC (Arrow International Inc., Reading, PA, USA). The anterior approach, using the sternocleidomastoid muscle as a landmark, was used for right IJV catheterization and the infraclavicular approach was used for right SCV catheterization. The patient’s head and neck was placed in the neutral position after the insertion of the guidewire. The shortest straight length between the insertion point of the needle and the clavicular notch of the right clavicle was measured using a sterile disposable paper ruler. Prior to CVC placement, the vertical distance between the clavicular notch of the right clavicle and the carina was measured on the preoperative posterior–anterior CRX using the internal measuring tool available on the hospital’s picture archiving communication system. The CVC was inserted and secured to a depth determined by adding the two measurements (length between the skin insertion point and clavicular notch + vertical distance between clavicular notch and carina). The vertical distance between the CVC tip and the carina was measured on the immediate postoperative CRX obtained during inspiration. CVC tips positioned above the carina level were presented in positive values and below the carina in negative values.

A t-test was performed for statistical analysis using the SPSS for Windows version 12.0 (SPSS, Chicago, IL, USA). A P-value of <0.05 was considered to be statistically significant.

Results
Patient characteristics are described in Table 1. Two attempts of CVC insertion via the right IJV and 12 attempts via the right SCV resulted in catheterization failure or catheter malposition and were excluded from data analysis.

The CVC tip position of 100 CVCs placed via the right IJV was 0.1 (1.1) cm [mean (SD)] (P=0.517) below the carina (95% CI; 0.3 cm below carina–0.2 cm above carina) and the tip position of 153 CVCs placed via the right SCV was 0.0 (1.2) cm [mean (SD)] (P=0.943) below the carina (95% CI; 0.2 cm below carina–0.2 cm above carina) (Fig. 1).

The needle insertion point to clavicular notch distance, the clavicular notch to carina distance, and CVC depth are shown in Table 2.

Table 1 Patient characteristics. Data are expressed as mean (SD) (range) or number of patients

<table>
<thead>
<tr>
<th></th>
<th>Right IJV catheterization (n=100)</th>
<th>Right SCV catheterization (n=153)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>55.7 (13.3) (18-79)</td>
<td>51.6 (14.4) (16-81)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>162.7 (8.4) (145-182)</td>
<td>159.4 (24.9) (141-187)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>63.5 (9.3) (44-85)</td>
<td>61.8 (12.8) (43-89)</td>
</tr>
<tr>
<td>Male/female</td>
<td>60/40</td>
<td>81/72</td>
</tr>
</tbody>
</table>

Table 2 Measured distances and CVC insertion depth. Data are expressed as mean (SD) (range)

<table>
<thead>
<tr>
<th></th>
<th>Right IJV (n=100)</th>
<th>Right SCV (n=153)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion point to clavicular notch distance (cm)</td>
<td>6.4 (0.8) (4.0-8.0)</td>
<td>6.7 (0.9) (4.2-9.0)</td>
</tr>
<tr>
<td>Clavicular notch to carina distance (cm)</td>
<td>7.0 (1.4) (3.8-10.5)</td>
<td>7.0 (1.3) (3.6-10.7)</td>
</tr>
<tr>
<td>CVC insertion depth (cm)</td>
<td>13.5 (1.5) (11.0-18.0)</td>
<td>13.8 (1.7) (10.5-18.0)</td>
</tr>
</tbody>
</table>

Discussion

The CVC tip could be reliably placed near the carina level when the CVC is inserted via the right IJV or the right SCV to a depth derived by adding the length between the needle insertion point and the clavicular notch and the vertical distance between the clavicular notch and the carina on the CRX.

Previous investigations studying the prediction of optimal CVC depth proposed formulas using patient height or skin-to-vein distance. The proposed formulas did not take parameters or landmarks available on the posterior–anterior CRX into account despite using the
CRX to confirm the CVC tip position. Moreover, variability in needle insertion points and also in patients’ bodily lengths is a fact. As such, a formula for predicting optimal CVC depth should thus consider insertion point variability, patient’s body size, and radiological and physical landmarks simultaneously.

The parallax effect, which describes augmentation of structures located anteriorly or posteriorly and peripherally, should be considered when using the CRX for measurements. Compared with the routine posterior-anterior CRX, the effect is greater and more variable with the portable anterior-posterior CRX used in the intensive care unit or the operating theatre. In this regard, the carina, being located in the centre of the thorax, has less potential for image distortion and measurement error.

A study suggested that it was safe to omit routine CRX after uncomplicated insertion of CVC through the right IJV and a survey of anaesthetists in the UK revealed that nearly half of the respondents did not order CRXs after CVC insertion unless specifically indicated. However, many institutions have protocols that require radiological confirmation of the CVC position prior to its use. Adjusting the depth of the CVC postoperatively on the basis of the CRX can be a cumbersome procedure and has the potential to become a source of infection, especially when the catheter needs to be advanced.

The outliers found in our study reflect one of the limitations of our study. The parallax effect described above may have exaggerated the outliers away from its actual position. There is also the potential that the portable X-ray beam angle may have been inconsistent resulting in a further exaggeration of peripherally located CVC tips. Another limitation that should be considered is that only right-sided CVC tip positions were investigated. Further investigation is warranted for bedside prediction of left-sided CVC tip positions.

Although the optimal CVC tip position may differ depending on its intended use and the catheterization site, the optimal position of the CVC tip is still under controversy and it is up to the individual practitioner to decide where the CVC tip should be. Moreover, the relationship between the pericardial reflection and the carina is not known in the individual patient. Nonetheless, the results of our study may help predict the right-sided CVC tip position at the bedside.

Acknowledgements
This study was supported solely by the Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea.

References
14 Lessnau KD. Is chest radiography necessary after uncomplicated insertion of a triple-lumen catheter in the right internal jugular vein, using the anterior approach? Chest 2005; 127: 220-3