We have conducted a systematic review of air embolism complications of neurosurgery in the sitting position and patent foramen ovale (PFO) closure. It assesses the risk and benefit of PFO closure before neurosurgery in the sitting position. The databases Medline, Embase, and Cochrane Controlled Trial Register were systematically searched from inception to November 2007 for keywords in both topics separately. In total, 4806 patients were considered for neurosurgery in sitting position and 5416 patients underwent percutaneous PFO closure. The overall rate of venous air embolism during neurosurgery in sitting position was 39% for posterior fossa surgery and 12% for cervical surgery. The rate of clinical and transoesophageal echocardiography detected paradoxical air embolism was reported between 0% and 14%. The overall success rate for PFO closure using new and the most common closure devices was reported 99%, whereas the average risk of major complications is 1%. On the basis of our systematic review, we recommend screening for PFO and considering closure in cases in which the sitting position is the preferred neurosurgical approach. Our proposed management including the time of PFO closure according to available data is presented. However, the conclusions from our systematic review may be limited due to the lack of level A evidence and from using data from observational cohort studies. Thus, definite evidence-based recommendations require prospective evaluation of the issue in well-designed studies.

Keywords: anaesthesia, neurosurgical; complications, embolism, air; closure device, foramen ovale, patent/complications; heart, congenital defects, patent foramen ovale; position, sitting

Fatal air embolism in a patient operated on in the sitting position was first reported by Barlow in 1830, and the sitting position in brain and cervical spine surgery has been a subject of interest since then. During this time, expert opinion has been revised repeatedly. The sitting position has advantages but also has intrinsic complications. The most severe risks are venous air embolism (VAE) and its potentially fatal complication, paradoxical air embolism (PAE). VAE is defined as the entrainment of air (or exogenously delivered gas) into the venous system from the operative site or another communication with the environment. It may produce a broad array of systemic effects and outcomes. PAE occurs when VAE passes into the systemic arterial circulation, for example, through a patent foramen ovale (PFO). A negative pressure in cranial veins in the sitting position leads to air aspiration. However, a lower incidence of VAE during neurosurgery has also been reported in the horizontal position. VAE may have catastrophic cardiovascular, pulmonary, and neurological sequelae regardless of the presence of a PFO. A PFO is the major mechanism for cerebral arterial air embolism during neurosurgery in that situation. Its prevalence in the normal population is about 25%, and >40% in adults with cryptogenic stroke.

The presence of a PFO represents a significant contraindication to neurosurgery in the sitting position, and many surgeons avoid the sitting position in order to minimize the risk of PAE. Therefore, transoesophageal echocardiography (TOE) or transcranial Doppler ultrasound has become a routine preoperative evaluation in many

These authors contributed equally to the manuscript.

Declaration of interest. B.M. is proctor for and recipient of research grants and speaker fees from AGA Medical, manufacturer of PFO closure devices.
centres to rule out a PFO in such patients. However, neurosurgery in the sitting position cannot always be avoided in this population, as some neurosurgeons feel uncomfortable with the horizontal position for certain operations and are prepared to accept the increased risk for PAE. Meanwhile, percutaneous PFO closure using dedicated devices has become a routine procedure with a low risk and high success rate.

The indications of preoperative PFO closure in order to minimize the risk for neurosurgery in the sitting position remain to be defined. The aim of this systematic review is to assess the risk and benefit of PFO closure before neurosurgery in the sitting position.

Literature search

Two groups were defined for the literature review: Group 1, studies of air embolism during neurosurgical procedures in sitting position, and Group 2, percutaneous PFO closure studies. The databases Medline, Embase, and Cochrane Controlled Trial Register were systematically searched from inception to November 2007 by various combinations of the keyword groups: (i) neurosurgery, sitting position, air embolism, complications, patent foramen ovale and (ii) patent foramen ovale, persistent foramen ovale, PFO, and closure. All abstracts were screened according to the research question. Bibliographies of identified articles and reviews in this field were also searched. Additionally, hand searching of pertinent journals for issues in the last 6 months was undertaken. Articles in multiple languages were searched.

Inclusion criteria for Group 1 were cohort studies with 10 or more patients undergoing neurosurgical procedures in the sitting position with reporting of episodes of VAE or PAE. Inclusion criteria for Group 2 were cohort studies including 10 or more patients undergoing percutaneous PFO closure for any reason with follow-up of at least 3 months. The reports including both PFO and atrial septal defect (ASD) closures were included when the data were stratified for PFO and ASD closures. Exclusion criteria for both groups were studies of exclusively paediatric patients, experimental studies, animal studies, case reports, expert opinions, repeated reports from individual centres (the last all-inclusive report was used), and studies with unclear methods.

Data extraction and analysis

Database search and data extraction were performed independently by two authors and resulted in 127 abstracts meeting the inclusion and exclusion criteria for Group 1 and 89 for Group 2. After full-text analysis, 28 remained in Group 1 and 33 in Group 2. All were in English, except for two papers in French. Quality was independently assessed by two reviewers (A.-R.F. and P.E.) and differences were reconciled by mutual agreement of the senior author (B.M.). The following data were tabulated from included studies and inserted into a standardized excel sheet (Microsoft Office 2000, Microsoft, Redmond, WA, USA). Groups 1 and 2: author, publication year, journal, language, study design, number of cases, mean age of patients. Group 1: type of neurosurgical procedure, rates of VAE and PAE, method of air embolism detection, screening for PFO, PFO prevalence, author recommendations regarding PFO, and neurosurgery in the sitting position. Group 2: PFO closure reasons, PFO closure devices, procedural success rates, major and minor peri-procedural complication rates, and residual shunt rates. Comparison of clinical outcome of air embolism was not feasible due to clinical heterogeneity between studies with regard to populations, interventions, form of outcome assessment, or study method. The data were pooled using Comprehensive Meta-analysis Version 2, Biostat, Englewood, NJ, USA (2005), when it was feasible, and there was no heterogeneity in definitions or methodologies.

Definitions

The definitions of PAE and VAE were given above. The most frequently used methods were TOE, precordial Doppler study, and end-tidal CO₂ (ETCO₂). PFO closure success rates were defined as successful device implantation. Minor procedural complications were haematoma or bleeding not requiring transfusion, transient atrial arrhythmia or atrioventricular node block, device embolization, air embolization, transient ST-segment elevation, or femoral arteriovenous fistula. Major complications were death, stroke, cardiac tamponade, emergency surgery, haematoma, or bleeding requiring blood transfusion or surgery, transient ischaemic attack, significant (persistent) arrhythmia, cardiac perforation, device malposition, septicemia, myocardial infarction, and massive pulmonary embolism.

Results

No randomized controlled trial or studies with level A evidence were found. Therefore, we included both retrospective and prospective clinical cohort studies (evidence level B of American Academy of Family Physicians).

VAE and PAE in sitting position

Twenty-eight studies published between 1972 and 2007 were included for data analysis. In total, 4806 patients were included (Supplementary Table S1 in online version). Fifty-four per cent of the studies were prospective, six reported on VAE rates during posterior fossa surgery alone, two during cervical procedures alone, and 21 reported on both procedures. No study evaluated the occurrence of PAE for either procedure separately. The overall occurrence of VAE ranged from 0%
to 76% irrespective of the method of detection and position. The incidence of VAE derived from pooled data was 1–76% in the sitting position and 0–12% in the horizontal position. The incidence of VAE from the studies comparing two positions was 28.4% (15–45%) (95% CI, 20.3–38.0) sitting and 5.5% (0–12%) (95% CI, 2.6–11.3) horizontal (Table 1). The rate of VAE was 38.6% (7–76%) (95% CI, 30.5–47.4) in posterior fossa surgery and 11.8% (6–19.9) (95% CI, 6.7–19.9) in cervical procedures (Table 2). In the studies included, patients were screened before operation for the presence of PFO in 10 (36%) studies, and seven of them published their prevalence. A PFO was detected in 5–33% of the neurosurgical patients. Overall, 10 studies considered the presence of PFO as an absolute contraindication for the sitting position and patients were operated in the horizontal position. Two of the 28 studies did not consider the presence of PFO, if known, as a contraindication for neurosurgery in the sitting position (or at least not mentioned as a contraindication). In these three studies, VAE was found in 38%, 43%, and 60% and PAE in 14%, 0%, and 6.6% of the study population, respectively (the one with 0% PAE had partly excluded patients with PFO).

Patent foramen ovale

Thirty-three non-randomized studies published between 1992 and 2007, 19 prospective and 14 retrospective, were included for data analysis (Supplementary Table S2 in online version). Overall of studies with TOE 73.7% (95% CI, 66.9–79.5) 30.6% (95% CI, 21.7–41.2)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>VAE in posterior fossa surgery</th>
<th>VAE in cervical surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michenfelder and colleagues</td>
<td>1972</td>
<td>42%</td>
<td>24%</td>
</tr>
<tr>
<td>Albin and colleagues</td>
<td>1976</td>
<td>25%</td>
<td>15%</td>
</tr>
<tr>
<td>Buckland and Manners</td>
<td>1976</td>
<td>33%</td>
<td>TOE</td>
</tr>
<tr>
<td>Cucchiara and colleagues</td>
<td>1984</td>
<td>60%</td>
<td>TOE</td>
</tr>
<tr>
<td>Standef and colleagues</td>
<td>1984</td>
<td>7%</td>
<td>TOE</td>
</tr>
<tr>
<td>Matjasko and colleagues</td>
<td>1985</td>
<td>41%</td>
<td>9%</td>
</tr>
<tr>
<td>Young and colleagues</td>
<td>1986</td>
<td>43%</td>
<td>13%</td>
</tr>
<tr>
<td>Black and colleagues</td>
<td>1988</td>
<td>45%</td>
<td>7%</td>
</tr>
<tr>
<td>Losasso and colleagues</td>
<td>1992</td>
<td>43%</td>
<td>TOE</td>
</tr>
<tr>
<td>Papadopoulos and colleagues</td>
<td>1994</td>
<td>76%</td>
<td>TOE</td>
</tr>
<tr>
<td>Simo Moyo and colleagues</td>
<td>1995</td>
<td>31%</td>
<td>TOE</td>
</tr>
<tr>
<td>Duke and colleagues</td>
<td>1998</td>
<td>28%</td>
<td>TOE</td>
</tr>
<tr>
<td>Stendel and colleagues</td>
<td>2000</td>
<td>75%</td>
<td>35%</td>
</tr>
<tr>
<td>Schmitt and Hemmerling</td>
<td>2002</td>
<td>72%</td>
<td>TOE</td>
</tr>
<tr>
<td>Girard and colleagues</td>
<td>2003</td>
<td>2%</td>
<td>TOE</td>
</tr>
<tr>
<td>Bithal and colleagues</td>
<td>2004</td>
<td>28%</td>
<td>6%</td>
</tr>
<tr>
<td>Leslie and colleagues</td>
<td>2006</td>
<td>15%</td>
<td>TOE</td>
</tr>
<tr>
<td>Overall</td>
<td>38.6% (95% CI, 30.5–47.4)</td>
<td>11.8% (95% CI, 6.7–19.9)</td>
<td></td>
</tr>
<tr>
<td>Overall of studies with TOE</td>
<td>73.7% (95% CI, 66.9–79.5)</td>
<td>30.6% (95% CI, 21.7–41.2)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of the rate of VAE between sitting position and horizontal position.

Table 2: Comparison of the rate of VAE between posterior fossa surgery and cervical surgery in sitting position.
The main reason for not performing neurosurgery in the sitting position compared with the horizontal position is the risk of PAE through a PFO. Many authors consider the presence of a PFO as absolute contraindication for neurosurgical procedures in the sitting position (Supplementary Table S1 in online version). However, some neurosurgeons prefer the sitting position according to their personal results and positive experience and still perform neurosurgery in the sitting position even in the presence of a PFO. Our pooled data analysis revealed an overall incidence of VAE in the sitting position of about 39% in posterior fossa surgery and 11% in cervical procedures. The reported incidence of PAE during neurosurgical procedures is quite low in most studies (between 0% and 14%, Table 2). Possible reasons for this are avoidance of surgery in the sitting position in patients with PFO, non-standard and inaccurate methods of detection (most of the studies did not search for and detect PAE using intraoperative TOE, and the report of PAE was only limited to clinically symptomatic PAEs), and incomplete data registration. However, rare, PAE can result in severe brain ischaemia and potentially other organ damage.

Table 3 Advantages of neurosurgery in sitting position

<table>
<thead>
<tr>
<th>Advantage of Neurosurgery in Sitting Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved surgical exposure</td>
</tr>
<tr>
<td>Improved anatomical orientation</td>
</tr>
<tr>
<td>Improved venous drainage from the surgical field</td>
</tr>
<tr>
<td>Better haemostasis</td>
</tr>
<tr>
<td>Gravitational drainage of the cerebrospinal fluid and blood from the operative field</td>
</tr>
<tr>
<td>Improved access to the tracheal tube, chest wall, and arms by the anaesthesiologist</td>
</tr>
<tr>
<td>Free diaphragmatic movements</td>
</tr>
<tr>
<td>The ability to observe the face for neuromonitoring</td>
</tr>
<tr>
<td>Better surgical teaching due to the non-rotated anatomical situation</td>
</tr>
<tr>
<td>Shorter surgical time</td>
</tr>
<tr>
<td>Decreased intracranial pressure</td>
</tr>
</tbody>
</table>

Relationship between VAE and PAE

In general, the morbidity and mortality of VAE are directly related to the volume of air entrainment and rate of accumulation. In several animal models, a close relationship between VAE and PAE has been described. However, not every VAE results in PAE, and the clinical consequences depend on the quantity of air that crosses over into the arterial circulation. Accordingly, great attention should be paid to minimizing the frequency and volume of air in any position during surgery, as VAE also occurs in the horizontal position and in other types of surgery regardless of the presence of PFO. One explanation of the pathophysiology of PAE could be that the distribution of blood volume between the intra- and extrathoracic compartment occurs after a change from the supine to the sitting position. With the number of monitoring modalities available, most episodes of VAE are preventable.

As demonstrated in the study of Duke and colleagues, the percentage of patients who were monitored intraoperatively with TOE or Doppler in the horizontal position was...
much lower than that in the sitting patients. This underestimates the effective rate of VAE in the horizontal position. Other factors raising the hazard of VAE are the early stage of surgery, including muscle preparation and craniotomy, the use of nitrous oxide (N₂O), and the use of PEEP over 5 cm H₂O.² ³ ¹⁵ Both N₂O and PEEP should be used cautiously to minimize further harm by entrained air.¹⁷ ⁴³ ⁷⁷ Furthermore, a large prospective study found that PEEP (10 cm H₂O) is associated with adverse cardiopulmonary effects without altering the incidence of VAE.⁵¹ This confirms an earlier study conducted in paediatric neurosurgical procedures.⁸³

Methods of detection
Early detection of left-sided cardiac air is vital to prevent poor neurological outcome and the use of TOE or precordial Doppler is essential in this way.⁴⁸ ⁶⁷ ⁸⁹ Depending on the method of detection, the frequency of VAE detection is up to 70% (Table 1). The most commonly used methods are TOE, precordial Doppler, E₇ CO₂, right heart catheterization, and oesophageal stethoscope in decreasing order of sensitivity for air detection.¹⁶

The potential hazard of PFO
PFO has been increasingly recognized as a source of paradoxical embolism. The mechanism for this phenomenon is thought to involve the passage of air, thrombus, or fat from the right atrium to the left atrium through the PFO and then on to the systemic circulation.² ¹⁰ ⁶² ⁷² ¹¹⁷ As the prevalence of PFO decreases with age from 35% during the first decade to 20% during the ninth decade of life, a selective mortality (increased risk of early death in patients with PFO) has to be considered in addition to spontaneous closure.⁶⁶ An additional proof of the prognostic importance is the doubled mortality risk and the tripled stroke risk of patients with pulmonary embolism in the presence of a PFO.⁶⁷

Percutaneous PFO closure with modern closure devices is the most simple of all catheter-based cardiac interventions. The procedure can be performed as an outpatient procedure in <30 min with a fluoroscopy time of <5 min and good long-term safety.¹¹⁶ The currently accepted indications are limited to patients with (recurrent) cryptogenic stroke, but are likely to expand soon to those with migraine and divers.

The most commonly used devices so far for PFO closure are Amplatzer PFO occluder, CardioSEAL family, and PFO-Star family. Partially bioabsorbable devices (BioSTAR device), self-expanding stent (Coherex FlatStent PFO Closure System), and suturing devices (HeartStich Suturing device) are under clinical investigation. Finally, a radiofrequency energy source for closure of PFO (PFx Closure System) has been clinically tested but has not yet reached the market.

The review of percutaneous PFO closure in 5416 patients showed the safety and efficacy of this procedure in the short and long term with a high procedural success rate and low morbidity. Consequently, based on the best available scientific evidence, it is appropriate to consider percutaneous PFO closure in the preoperative management of patients requiring neurosurgery in the sitting position. This is particularly important when PFO is the only concern, and the sitting position confers a significantly lower surgical risk (Fig. 2).

Complications
Cerebrovascular ischaemia as a complication during or after PFO closure is a rare event. Peri-interventional complications were mostly minor, reversible, and decrease further with experience and device improvement. Some studies reported no complications with new devices.¹⁰⁰ ¹¹⁶ Our subanalysis in 15 studies using newer and more common closure devices showed an overall 3.7% minor complication rate, and 1.2% major complication rate with no major complications in half of the studies. Mid- and long-term complications are also rare and mostly without clinical significance.⁸²

Residual shunt
Many studies indicate that small PFOs are a very rare source of paradoxical embolism in patients with cryptogenic stroke and not clinically relevant.⁵ ⁶² ⁹⁸ ¹⁰⁸ ¹¹⁰ ¹¹³ Moreover, Braun and colleagues²² showed that the presence of a minimal residual shunt after percutaneous PFO closure cannot be considered as a risk factor for recurrent

Fig 2 Flow chart for PFO closure as a preoperative management in candidates of neurosurgery in the sitting position.
thromboembolic events. Hence, the small residual shunt rate at 1 month in our systematic review of the literature may not be a matter of concern as these shunts were mostly trivial, and considered as clinically effective occlusion. Neurosurgery in the sitting position could be safely performed at that time.

Antithrombotic therapy

Initial antithrombotic therapy after the percutaneous PFO closure is recommended to prevent device thrombus formation. Although there is no established antithrombotic therapy regimen and duration after percutaneous PFO closure, a common regimen is acetylsalicylic acid for 6 months, occasionally accompanied by clopidogrel for 1–3 months. No study has verified the efficacy and necessity of such antiplatelet therapy. One study has shown no increase in the platelet activation markers after percutaneous PFO closure and questioned the necessity of antiplatelet therapy. Moreover, acetylsalicylic acid has been prescribed in different dosages in different studies. In a report of 63 cases with percutaneous PFO closure, only 46% of patients were on acetylsalicylic acid and 17% on anticoagulation therapy after implantation. No device thrombosis during the mean follow-up period of 2.6 yr was found. Krumdsorf and colleagues did not find any influence of anticoagulation regimens on device thrombus formation. Overall, the reported incidence of thrombus formation is low, and in most cases without clinical sequela. However, there are some differences that favour Amplatzer and Helex occluders.

Endothelialization of different devices for closure of patent ductus arteriosus in animal models was reported to start as early as 13 days and to be completed at 5 weeks. An animal study showed partial and complete endothelialization at 1 and 3 months, respectively, after the implantation of Amplatzer occluders. Early endothelialization was observed 2 weeks after implantation of a PFO Star in a patient who underwent surgical explanation of the device due to dislocation.

For most intra-dural surgical procedures, antithrombotic therapy should be stopped 7–10 days before surgery and not recommenced until 1 week after surgery, provided no perioperative major bleeding occurs. A significant proportion of patients who undergo neurosurgical procedures are already on treatment with aspirin or anticoagulants, and their perioperative management is well established. In view of this, it seems safe to stop acetylsalicylic acid and clopidogrel for neurosurgery for 2 weeks even after PFO device implantation. Ideally, PFO closure should take place at least 2–4 weeks before surgery. In an emergency operation or when it cannot be delayed, we suggest closure of the PFO immediately before surgery or to use the horizontal position. Even the PFO has been closed before operation, techniques for prevention of air embolism should still be used.

Conclusions

On the basis of our systematic review, we recommend screening for PFO and considering PFO closure in cases where using the sitting position for neurosurgery has major advantages for the outcome. However, the result of our systematic review may be limited due to the lack of data of level A evidence and from using data from cohort studies with observational nature. Therefore, our proposal is based on available evidence, and we have proposed a policy to reduce the risk of PAE and consequently the risk of neurosurgery in the sitting position in patients with PFO. The evidence-based recommendations require prospective evaluation in well-designed studies.

Supplementary material

Supplementary material is available at *British Journal of Anaesthesia* online.

References

20 patients treated with the Amplatzer Septal Occluder. Cardiol Young 1999; 9: 468–73

Black S, Ockert DB, Oliver WC, Jr. Cucchiara RF. Outcome following posterior fossa craniectomy in patients in the sitting or horizontal positions. Anesthesiology 1988; 69: 49–56

Eger EI, 2nd, Saidman LJ. Hazards of nitrous oxide anesthesia in bowel obstruction and pneumothorax. Anesthesiology 1965; 26: 61–6

Ende DJ, Chopra PS, Rao PS. Transcatheter closure of atrial septal defect or patent foramen ovale with the buttoned device for prevention of recurrence of paradoxical embolism. Am J Cardiol 1996; 78: 233–6

Patent foramen ovale and neurosurgery in sitting position

55 Gronert GA, Messick JM, Jr, Cuccinella RF, Michenfelder JD. Paradoxical air embolism from a patent foramen ovale. Anesthesiology 1979; 50: 548–9

69 Kubo S, Nakata H. Air embolism due to a patent foramen ovale visualised by harmonic contrast echocardiography. J Neural Neurosurg Psychiatry 2001; 71: 555

74 Leonard IE, Cunningham AJ. The sitting position in neurosurgery—not yet obsolete! Br J Anaesth 2002; 88: 1–3

77 Losasso TJ, Muzzi DA, Dietz NM, Cuccinella RF. Fifty percent nitrous oxide does not increase the risk of venous air embolism in neurosurgical patients operated upon in the sitting position. Anesthesiology 1992; 77: 21–30

82 Meier B. Closure of patent foramen ovale: technique, pitfalls, complications, and follow up. Heart 2005; 91: 444–8

84 Michenfelder JD, Miller RH, Gronert GA. Evaluation of an ultrasonic device (Doppler) for the diagnosis of venous air embolism. Anesthesiology 1972; 36: 164–7

85 Mirski MA, Lele AV, Fitzsimmons L, Young TJ. Diagnosis and treatment of vascular air embolism. Anesthesiology 2007; 106: 164–77
