Arginine-vasopressin attenuates beneficial norepinephrine effect on jejunal mucosal tissue oxygenation during endotoxinaemia

S. Maier1, W. Hasibeder4, W. Pajk1, C. Hengl1, H. Ulmer2, H. Hausdorfer3, B. Wurzinger4 and H. Knotzer1*

1Department of Anaesthesiology and Critical Care Medicine, 2Department for Medical Statistics, Informatics and Health Economics and 3Department of Hygiene, Microbiology, and Social Medicine, Innsbruck Medical University, Innsbruck, Austria. 4Department of Anaesthesiology and Critical Care Medicine, Krankenhaus der Barmherzigen Schwestern Ried, Austria

*Corresponding author. E-mail: johann.knotzer@uki.at

Background. The objective of the present study was to investigate the effects of increasing doses of norepinephrine (NE) with or without arginine-vasopressin (AVP) on intestinal oxygen supply and jejunal mucosal tissue oxygen tension in an acute endotoxic pig model.

Methods. In this prospective, randomized, experimental study on 24 domestic pigs, jejunal mucosal tissue \(\text{PO}_2 \) (\(\text{PO}_2\text{muc} \)) was measured using two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular haemoglobin (HbO\(_2\)j) was determined by tissue reflectance spectrophotometry. Systemic haemodynamic variables, mesenteric-venous and systemic acid–base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline, after \textit{Escherichia coli} lipopolysaccharide (LPS) administration, and at 20 min intervals during incremental NE infusion (0.05, 0.1, 0.5, 1.0, and 2 \(\mu \)g kg\(^{-1}\) min\(^{-1}\), respectively) with 57 mU kg\(^{-1}\) h\(^{-1}\) AVP (\(n=8; \text{NE+AVP group} \)) or without (\(n=8; \text{NE group} \)); or infusion of an equal amount of normal saline (\(n=8; \text{CON group} \)).

Results. LPS infusion led to a significant (\(P<0.05 \)) decrease of \(\text{PO}_2\text{muc} \) and HbO\(_2\)j. Both NE and NE+AVP increased arterial pressure, cardiac output, and mesenteric artery blood flow. Concomitant to an increase in systemic oxygen delivery, NE improved \(\text{PO}_2\text{muc} \) and HbO\(_2\)j. NE alone was superior in restoration of \(\text{PO}_2\text{muc} \) when compared with NE+AVP.

Conclusions. Both NE and NE+AVP improved global haemodynamics and systemic oxygen transport variables when compared with control animals in an acute endotoxic pig model. NE improved jejunal \(\text{PO}_2\text{muc} \) at all dosages. NE effects were significantly blunted by simultaneous administration of AVP.

Br J Anaesth 2009; 103: 691–700

Keywords: blood, flow; gastrointestinal tract, mucosal perfusion; microcirculation; oxygen, tissue

Accepted for publication: July 24, 2009

Septic shock still has a mortality rate of 40–60%, and studies have demonstrated the significance of microcirculatory alterations and dysfunction in the early stages of sepsis. Alterations in the intestinal microcirculation resulting from sepsis can cause damage to the microcirculatory endothelium, significant changes in vascular permeability, and disruption of the intestinal mucosal epithelium, leading to possible bacterial translocation. Vasopressor therapy is required to maintain perfusion during vasoplegia in septic shock. Below a certain mean arterial pressure, autoregulation in various vascular beds may be lost. If the perfusion pressure decreases below this lower range, organ blood flow also decreases in a linear fashion. Thus, vasopressor agents are infused in critically ill patients who are hypotensive, despite adequate fluid resuscitation, to augment systemic perfusion pressure.

© The Author [2009]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournal.org
The international guidelines for management of severe sepsis and septic shock 2008 recommend either norepinephrine (NE) or dopamine as the first-choice vasopressor agent to correct hypotension in septic shock. In recent years, several investigators including our group demonstrated that an infusion of 2–4 IU h⁻¹ of arginine-vasopressin (AVP) can successfully stabilize systemic haemodynamics even in patients with advanced vasodilatory shock. Thus, the surviving sepsis campaign recommends that AVP may be added to NE in patients with refractory shock, despite high-dose conventional vasopressor therapy. But we have to keep in mind that the VASST trial demonstrated that low-dose AVP combined with NE did not reduce mortality rates in septic shock patients compared with those treated with NE alone. The study of Micek and colleagues even showed increased mortality in patients with septic shock receiving additional AVP to NE.

Until now, the effects of either NE or AVP on oxygen supply on the microcirculatory level, especially the gut mucosa, are under debate. For example, AVP alone was reported either to decrease mucosal blood flow, has no effect, or even increases mucosal blood flow in different investigations. In particular, the effects on mucosal microcirculation when both NE and AVP are administered together are not fully elucidated. To address these questions, we conducted a prospective, randomized, experimental animal study. In an acute endotoxaemic pig model, we measured direct effects of incremental doses of NE with or without an additional fixed rate of AVP on intestinal tissue oxygen supply and, in particular, jejunal mucosal tissue oxygen tension (Po2muc). The novelty of this trial is the investigation of gut oxygen supply during administration of both NE and vasopressin together. This study design mirrors clinical practice more precisely than a comparison of these two drugs administered separately.

Methods

Anaesthesia and animal instrumentation

The experimental protocol was approved by the Federal Ministry of Science and Research in Vienna, Austria. Animals were managed in accordance with the American Physiological Society institutional guidelines, and the Position of the American Heart Association on Research Animal Use, as adopted on November 11, 1984. Anaesthesia was used in all surgical interventions, all unnecessary suffering was avoided, and research was terminated if unnecessary pain or distress resulted. Our animal facilities meet the standards of the American Association for Accreditation of Laboratory Animal Care. Twenty-four domestic pigs (35–42 kg, both sexes) were fasted for 12 h, but had free access to water. After induction of anaesthesia with i.m. ketamine hydrochloride (20 mg kg⁻¹), the tracheas of the animals were intubated and the lungs mechanically ventilated with a PEEP of 5 mm Hg. Tidal volume and respiratory frequency were adjusted to maintain a PCO₂ of 4.66–6.0 kPa at baseline; fractional inspiratory oxygen concentration was primarily set at 0.3 and further adjusted to arterial oxygen tension measurements (PaO₂ of about 17 kPa). Anaesthesia was maintained using a continuous infusion of midazolam (0.5 mg kg⁻¹ h⁻¹) and fentanyl (10 μg kg⁻¹ h⁻¹). If haemodynamic variables or clinical evaluation indicated an inadequate depth of anaesthesia, additional bolus doses of midazolam (5 mg) and fentanyl (100 μg) were administered. All animals were infused to an equal extent with Ringer’s lactate and modified gelatin (MW 22 600) to keep central venous pressure constant at about 12 mm Hg throughout the experiment. After preparation of the right carotid artery and the internal jugular vein, an arterial line and a 7.5 Fr gauge pulmonary artery catheter (Baxter, Irvine, CA, USA) were inserted. Midline laparotomy was then performed, and a 16 gauge catheter was placed in the superior mesenteric vein for intermittent blood sampling. The arteria mesenterica superior was prepared for measurement of blood flow measuring. To expose part of the mucosa for tissue oxygenation measurements, a 20 cm antimesenteric enterotomy was performed in the mid-jejunum. The boundary of the mucosa was sutured on a cork plate with an oval opening. The intestine was re-introduced into the abdominal cavity with the exception of the exposed mucosa. The temperature of the preparation was maintained at 38.5°C (normal porcine temperature), by covering the preparation with a plastic box, including a temperature sensor and a servo-controlled heated water bath.

Haemodynamic and blood gas measurements

Arterial-, pulmonary artery, and central venous pressure were measured using three Statham P10EZ pressure transducers (Spectramed-Statham, Bilthoven, The Netherlands). Cardiac output was determined in triplicate by the thermodilution method. Heart rate, arterial pressure, and core temperature were continuously recorded. Zero reference for all pressures was the mid-chest position. Arterial, central venous, and mesenteric venous blood gases and acid–base status were determined using an automatic blood gas analyzer (AVL 995, AVL, Graz, Austria). Haemoglobin oxygen saturation was measured with a haemo-oximeter (Cooximeter, AVL). Haemoglobin concentration was assessed using the cyanmethaemoglobin method. Arterial and mesenteric venous lactate was measured with a lactate analyser based on reflectance photometry (Accusport, Boehringer, Mannheim, Germany). A Transonic Animal Research Flowmeter (Transonic, Ithaca, NY, USA) was used for measuring mesenteric arterial blood flow.

Measurements of jejunal mucosal tissue oxygenation

Measurement of P02muc (Clark-type multiwire surface electrodes; Eschweiler, Kiel, Germany) and
microvascular haemoglobin oxygen saturation \([\text{HbO}_2]\); Erlangen microlight-guide spectrophotometer (EMPHO II), BGT, Überlingen, Germany] has been described in detail in previous studies.\(^6\)\(^{22}\)\(^{23}\) Briefly, mucosal tissue oxygen tension \((P_{\text{O}2}\text{muc})\) was measured by two Clark-type multiwire surface electrodes (Eschweiler). These electrodes were calibrated using pure nitrogen and room air in a water bath warmed to 38.5°C. One electrode consists of eight platinum wires, each of which has a diameter of 15 \(\mu\)m, representing an individual measuring point and one Ag–AgCl reference electrode. These electrodes rather measure the oxygen tension in the superficial endothelial layer of the mucosa. An EMPHO II was used for determination of jejunal microvascular haemoglobin saturation \((\text{HbO}_2)\). The measuring principle is based on the use of one illuminating, and six detecting, microlight guides (each 250 \(\mu\)m in diameter), and a rapidly rotating band-pass interference filter disk for the generation of monochromatic light in 2 nm steps, within the spectral range of 502–628 nm, representing 64 different wavelengths. Penetration depth of this measurement device exceeds the gut mucosa and assesses also haemoglobin saturation from deeper intestinal layers.\(^{23}\)

Experimental procedure

Animals were randomly assigned to one of the three study groups. NE animals \((n=8)\) were given NE by infusion at incremental rates \((0.05, 0.1, 0.5, 1.0, \text{and } 2.0 \mu\text{g kg}^{-1} \text{min}^{-1})\), respectively. NE-AVP pigs \((n=8)\) received NE in same dosages \((0.05, 0.1, 0.5, 1.0, \text{and } 2.0 \mu\text{g kg}^{-1} \text{min}^{-1})\) plus concomitant administration of AVP at a constant rate \((57 \mu\text{U kg}^{-1} \text{h}^{-1})\). NE doses were chosen according to a previous trial investigating NE effects on jejunal oxygenation in healthy pigs.\(^{14}\) This AVP dosage reflects a clinically used dosing regimen of 4 IU h\(^{-1}\) (=0.067 IU min\(^{-1}\)) in a 70 kg patient.\(^{9}\) CON animals \((n=8)\) served as controls.

After animal preparation and a resting period of 60 min, baseline measurements were performed \((BL; t=0 \text{ min})\): systemic haemodynamics, mesenteric artery blood flow, \(P_{\text{O}2}\text{muc}, \text{HbO}_2\), arterial and mesenteric-venous blood gas and acid–base parameters, and serum lactate concentrations (Fig. 1). Subsequently, a 200 \(\mu\)g i.v. bolus of *Escherichia coli* lipopolysaccharide (LPS; serotype O111:b4, Difco Laboratories, Detroit, MI, USA) was given, followed by a continuous infusion of 0.1 \(\mu\text{g kg}^{-1} \text{min}^{-1}\) LPS throughout the experiment. Thirty minutes after starting LPS, a further measurement was performed \((BL-LPS; t=30 \text{ min})\). Afterwards, infusion of study drugs (NE and NE-AVP), respectively, and solvent (CON) was started. Further measurements were conducted at 20 min intervals \((M1–M5; t=50, 70, 90, 110, \text{and } 130 \text{ min})\).

At the end of each experiment, the animals were killed by a bolus injection of midazolam, fentanyl, and potassium chloride 40 mM.

Statistical methods

Systemic oxygen delivery, oxygen consumption, and systemic and mesenteric oxygen extraction ratio were calculated according to the standard formulae. \(P_{\text{O}2}\text{muc and}
HbO$_2$ were recorded for a period of at least 100 s. Mean values of these variables were used for statistical comparison.

The Shapiro–Wilk test was used to test normality and Levene's test to control the homogeneity of the variance. Analysis of variance for repeated measurements was performed to analyse differences in means between and within the groups (time × group effect and time effect, respectively). The global hypothesis was tested two-tailed at the $P<0.05$ significance level. Multiple comparisons between the vasopressor groups and the control group were performed by the two-tailed Dunnett’s t-test. A Bonferroni correction was used for comparison of multiple measurements within the groups vs baseline. Data in text, tables, and figures are presented as mean values (SD), if not indicated otherwise.

Results
At baseline ($t=0$) and after beginning of LPS administration ($t=30$ min), no significant differences between the groups were detected. Arterial normoaxemia and normocapnia were maintained in all groups (Table 1). Central venous pressure and pulmonary capillary wedge pressure did not differ between the groups throughout the experiments. For spontaneous changes of measured variables over the time in a control group without any intervention, we would like to refer to previous studies.14,16,24

Systemic and intestinal variables after endotoxin administration

Infusion of E. coli LPS was characterized by an increase in mean pulmonary artery pressure and a decrease of mean arterial pressure over time (Fig. 2). LPS administration led to a decrease in systemic oxygen delivery index due to a decrease in cardiac output at time points 110 and 130 min, which was accompanied by a decrease in arterial and mesenteric venous pH, and an increase in arterial and mesenteric venous lactate (Figs 2 and 3, Table 1). Furthermore, mesenteric artery blood flow decreased significantly after endotoxin administration, leading to an increase in intestinal oxygen extraction ratio (Fig. 3). This decrease in mesenteric artery blood flow was more pronounced compared with the decline in systemic blood flow (54% vs 34% from baseline).

Table 1. Arterial and intestinal venous blood gases and pH in control (CON), norepinephrine (NE), and norepinephrineARGININE-VASOPRESSIN (NE/AVP) treated animals. *Significant vs baseline. BL, baseline; BL-LPS, baseline-lipopolysaccharide administration; M, measurement; Art pH, arterial pH; Art P$_{O_2}$, arterial oxygen tension; Art P$_{CO_2}$, arterial carbon dioxide tension; Int ven pH, intestinal venous pH; Int ven P$_{O_2}$, intestinal venous oxygen tension; Int ven P$_{CO_2}$, intestinal venous carbon dioxide tension. Values are mean (SD).

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0 min</th>
<th>30 min</th>
<th>50 min</th>
<th>70 min</th>
<th>90 min</th>
<th>110 min</th>
<th>130 min</th>
<th>150 min</th>
<th>Time effect</th>
<th>Time– group interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs (μg kg$^{-1}$ minute$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>CON 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P<0.001</td>
<td>P=0.421</td>
</tr>
<tr>
<td>NE 0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>P=0.235</td>
<td>P=0.994</td>
</tr>
<tr>
<td>NE/AVP 0</td>
<td>0</td>
<td>0</td>
<td>0.05/57</td>
<td>0.1/57</td>
<td>0.5/57</td>
<td>1.0/57</td>
<td>2.0/57</td>
<td>3.0/57</td>
<td>P<0.001</td>
<td>P=0.621</td>
</tr>
<tr>
<td>Art pH CON 7.45 (0.01)</td>
<td>7.41 (0.04)*</td>
<td>7.42 (0.05)</td>
<td>7.41 (0.07)</td>
<td>7.39 (0.08)</td>
<td>7.38 (0.08)</td>
<td>7.37 (0.09)*</td>
<td>P<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 7.44 (0.03)</td>
<td>7.43 (0.02)</td>
<td>7.43 (0.03)</td>
<td>7.40 (0.05)</td>
<td>7.38 (0.07)*</td>
<td>7.36 (0.07)*</td>
<td>7.34 (0.12)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE/AVP 7.43 (0.04)</td>
<td>7.42 (0.03)</td>
<td>7.40 (0.04)</td>
<td>7.40 (0.07)</td>
<td>7.38 (0.05)</td>
<td>7.36 (0.03)*</td>
<td>7.36 (0.07)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art P$_{O_2}$ (kPa)</td>
<td></td>
</tr>
<tr>
<td>CON 15.3 (1.3)</td>
<td>15.3 (1.6)</td>
<td>14.8 (2.4)</td>
<td>14.8 (1.6)</td>
<td>15.0 (2.1)</td>
<td>14.8 (1.2)</td>
<td>14.4 (1.7)</td>
<td>14.1 (1.7)</td>
<td>P=0.235</td>
<td>P=0.994</td>
<td></td>
</tr>
<tr>
<td>NE 15.0 (1.7)</td>
<td>15.2 (1.6)</td>
<td>14.0 (1.2)</td>
<td>14.2 (1.5)</td>
<td>14.0 (1.7)</td>
<td>14.0 (1.2)</td>
<td>14.2 (1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE/AVP 15.3 (1.5)</td>
<td>14.8 (0.9)</td>
<td>14.2 (1.6)</td>
<td>14.4 (1.9)</td>
<td>14.2 (1.9)</td>
<td>14.0 (1.7)</td>
<td>14.1 (1.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art P$_{CO_2}$ (kPa)</td>
<td></td>
</tr>
<tr>
<td>CON 5.1 (0.1)</td>
<td>5.1 (0.3)</td>
<td>5.2 (0.4)</td>
<td>5.5 (0.5)</td>
<td>5.5 (0.7)</td>
<td>5.3 (0.4)</td>
<td>5.3 (0.5)</td>
<td>P<0.001</td>
<td>P=0.621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 4.9 (0.3)</td>
<td>5.1 (0.3)</td>
<td>5.3 (0.4)</td>
<td>5.5 (0.5)</td>
<td>5.5 (0.5)*</td>
<td>5.6 (0.3)*</td>
<td>5.6 (0.5)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE/AVP 5.1 (0.4)</td>
<td>4.9 (0.3)</td>
<td>5.1 (0.7)</td>
<td>5.5 (0.5)</td>
<td>5.2 (0.3)</td>
<td>5.3 (0.4)</td>
<td>5.5 (0.4)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int ven pH CON 7.38 (0.02)</td>
<td>7.34 (0.04)*</td>
<td>7.36 (0.05)</td>
<td>7.33 (0.06)*</td>
<td>7.31 (0.06)</td>
<td>7.30 (0.07)*</td>
<td>7.26 (0.12)*</td>
<td>P<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 7.38 (0.05)</td>
<td>7.36 (0.04)</td>
<td>7.37 (0.07)</td>
<td>7.35 (0.06)</td>
<td>7.33 (0.06)</td>
<td>7.30 (0.07)*</td>
<td>7.27 (0.11)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE/AVP 7.39 (0.04)</td>
<td>7.37 (0.03)</td>
<td>7.35 (0.04)</td>
<td>7.34 (0.05)</td>
<td>7.30 (0.03)*</td>
<td>7.30 (0.03)*</td>
<td>7.28 (0.04)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int ven P$_{O_2}$ (kPa)</td>
<td></td>
</tr>
<tr>
<td>CON 6.1 (0.7)</td>
<td>5.7 (0.5)</td>
<td>5.2 (0.7)*</td>
<td>5.1 (0.5)*</td>
<td>5.3 (0.8)</td>
<td>4.8 (0.5)*</td>
<td>4.5 (1.3)*</td>
<td>P<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 5.3 (0.5)</td>
<td>5.3 (0.8)</td>
<td>5.3 (0.7)</td>
<td>5.6 (0.9)</td>
<td>5.7 (1.1)</td>
<td>5.5 (1.2)</td>
<td>5.5 (1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE/AVP 5.6 (1.1)</td>
<td>5.6 (1.1)</td>
<td>5.6 (0.9)</td>
<td>5.1 (0.9)</td>
<td>5.6 (0.8)</td>
<td>5.5 (0.8)</td>
<td>5.5 (0.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int ven P$_{CO_2}$ (kPa)</td>
<td></td>
</tr>
<tr>
<td>CON 6.0 (0.3)</td>
<td>6.0 (0.4)</td>
<td>6.1 (0.5)</td>
<td>6.8 (1.1)</td>
<td>6.8 (1.1)</td>
<td>6.8 (1.1)*</td>
<td>7.0 (1.5)</td>
<td>P<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 6.0 (0.3)</td>
<td>6.1 (0.5)</td>
<td>6.4 (0.7)</td>
<td>6.7 (0.8)*</td>
<td>6.7 (0.9)</td>
<td>6.9 (0.8)*</td>
<td>7.0 (1.1)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE/AVP 5.9 (0.4)</td>
<td>5.9 (0.4)</td>
<td>6.3 (0.5)</td>
<td>6.7 (0.4)*</td>
<td>6.7 (0.4)*</td>
<td>6.8 (0.5)*</td>
<td>7.0 (0.7)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from https://academic.oup.com/bja/article-abstract/103/5/691/242458 by guest on 17 February 2019
Endotoxinaemia and small intestinal mucosal tissue oxygenation

HbO$_2$j and P$_{O2}$muc decreased significantly after LPS administration in control animals (Fig. 4).

Systemic and intestinal variables after vasopressor administration

Both NE and NE+AVP infusion increased heart rate and arterial pressure (Fig. 2). Pulmonary artery hypertension persisted throughout the experiment and was not significantly influenced by NE alone or in combination with AVP. Parallel to an increase in cardiac output, mesenteric artery blood flow increased significantly after vasopressor administration when compared with CON (Figs 2 and 3). Systemic oxygen delivery increased in both the NE and the NE+AVP groups, in a dose-dependent manner, accompanied with a decreased systemic oxygen extraction compared with CON. Vasopressor administration did not alter metabolic, blood gases, or acid–base balance between the groups (Table 1, Fig. 3).

Fig 2 Systemic haemodynamic and oxygen transport variables. *Significant vs baseline. #Significant vs control.
Vasopressor and intestinal tissue oxygenation
Vasopressor administration increased P_{O_2}muc and HbO$_2$ (Fig. 4). Whereas the combination of AVP with NE increased P_{O_2}muc only in the highest concentration, NE alone improved P_{O_2}muc at any dosage administered. NE alone was superior in restoration of P_{O_2}muc and HbO$_2$ when compared with NE+AVP.

Discussion
Administration of NE increases jejunal P_{O_2}muc and HbO$_2$ in an acute endotoxaemic pig model at all dosages administered. This favourable effect was significantly attenuated by concomitant administration of AVP at a fixed dose.

Administration of E. coli LPS led to pulmonary hypertension, a progressive decline in cardiac index, paralleled by a decrease in mean arterial pressure. In this model, the reduction of mesenteric arterial blood flow was out of proportion to the decline in whole systemic blood flow (54% vs 34%). The pronounced decrease in splanchnic blood flow obviously must have occurred in favour to other organs, most likely reflecting particular blood flow hierarchy among different organs and tissues similar to observations in various other shock states. Heterogeneity in vessel receptor types, receptor density, the magnitude of regional sympathoadrenergic activity, and the importance of local blood flow autoregulation have been used as explanations for disparity in organ blood flow under pathophysiological conditions. Administration of LPS not only decreased mesenteric arterial blood flow and increased intestinal oxygen extraction ratio, but also resulted in a decrease in mesenteric venous pH and an increase in arterial and mesenteric venous lactate concentration without an apparent increase in splanchnic lactate production.

On the microcirculatory level, HbO$_2$ and P_{O_2}muc decreased significantly after LPS administration. LPS effects on jejunal mucosal tissue oxygen supply have been reported to result from regional vasoconstriction and probably tissue damage mediated by some direct or indirect endotoxin effects. In support of this concept, LPS has
been shown to reduce microvascular mucosal villus blood flow and to reduce the density of perfused capillaries in small intestinal villi.27,28

Although P_{O2}
\textsubscript{muc} and HbO_2j decreased, this was not accompanied by an apparent increase in splanchnic lactate production. Nonetheless, one should be very cautious in stating that this finding indicates no oxygen debt in the mucosal tissue, as no regional tissue metabolic measurements were assessed and only the acute phase of the endotoxinaemia was examined. The mucosal endothelial tissue is very vulnerable to attenuation in oxygen supply leading to a breakdown of the barrier between the intestinal lumen and the blood stream.

Both NE and the combination of NE with AVP were equally effective in increasing perfusion pressure and systemic oxygen delivery due to an increase in cardiac output mainly generated by an increase in heart rate. The development and degree of acute pulmonary hypertension was not modified by the infusion of increasing dosages of NE with or without AVP. Interestingly, despite increasing dosages of NE in both animal groups, the drug effect on mean arterial pressure attenuated during the experiment regardless of a concomitant infusion of AVP. In face of the progressive increase in cardiac index, this result can only be interpreted by an increase in systemic vascular conductance. We can only speculate on the organ most likely involved in arterial vasodilatation at higher dosages of NE. In a previous investigation in healthy pigs, we compared the effects of NE and phenylephrine on systemic haemodynamics, oxygen delivery, and tissue oxygen supply to the jejunal mucosa.14 NE administration exhibited a similar haemodynamic response, that is, significant increase in cardiac index mediated by progressive tachycardia and a transient increase in mean arterial pressure at moderate dosages. In contrast, phenylepinephrine, which is predominantly an α_1-adrenergic agonist, increased mean arterial pressure in a dose-dependent relationship with only small effects on systemic blood flow.14 Therefore, one might speculate that some β_2-agonistic activity of NE might mediate vasodilatation, presumably in the vasculature of skeletal muscle, accounting for the observed attenuation of pressor response at higher dosages in the pig.

Of course, major differences do exist in the haemodynamic response of septic shock patients to an infusion of NE or a combination of NE and AVP when compared with our animal experiments. In human septic shock, the effects of NE on heart rate and cardiac index after adequate volume resuscitation may be quite variable. In
patients with normal cardiac pump function, infusion of moderate dosages of NE typically results in reversal of hypotension with a clear dose–response relationship without major changes in heart rate and cardiac index. In contrast, patients with compromised systolic pump function, that is, an ejection fraction of <45%, may exhibit a significant decrease in cardiac index in response to an increase in left ventricular afterload necessitating additional infusion with an inotropic agent.\(^{29}\) If high dosages of NE are infused, catecholamine toxicity manifesting as tachycardia, tachyarrhythmia, and probably deterioration of pulmonary hypertension and a decrease in cardiac index may develop. In patients with advanced vasodilatory shock, we have demonstrated that administration of high dosages of NE before introducing AVP into the therapeutic regimen was associated with significantly increased mortality.\(^{30,31}\) In addition, in patients with vasodilatory shock, co-administration of AVP at a fixed rate of 4 IU h\(^{-1}\) resulted in a significant reduction in heart rate and a decrease in the development of new-onset tachyarrhythmias. Both findings are most likely explained by the ‘NE-sparing effects’ of AVP administration with significant reduction of \(\beta_1\)-adrenoreceptor excitation.\(^{9}\) In this acute, short-term endotoxin model, pulmonary hypertension was not modified by additional administration of AVP. Prolonged infusion of AVP in septic shock has been shown to result in a significant decrease of pulmonary artery pressure probably related to some vasomotorial effects of AVP mediated by \(V_2\)-receptors on pulmonary artery smooth muscle cells.\(^{31}\)

Infusion of NE alone significantly improved jejunal \(P_{O_2}\) muc and \(HbO_2\) j after endotoxaemia. This improvement was accompanied by an increase in systemic blood flow and a normalization of mesenteric artery blood flow when compared with control animals. In a previous study in normal pigs, increasing dosages of NE similar to the dosages applied in this experiment significantly increased cardiac output and systemic oxygen delivery, but had no effect on mesenteric oxygen extraction ratio, jejunal \(P_{O_2}\) muc, or \(HbO_2\) j.\(^{14}\) During acute endotoxaemia, infusion of NE increased mesenteric arterial blood flow to baseline values already at moderate dosages. A normalization of \(P_{O_2}\) muc and \(HbO_2\) j occurred in parallel to the improvement in mesenteric arterial blood flow strongly suggesting a cause to effect relationship. Since the pressure response to NE disappeared at higher dosages, this improvement cannot be simply explained by an increase in systemic perfusion pressure. The natural agonist NE activates, with variable affinity and intrinsic efficacy, all adrenoceptors in mammals. However, the effect responsible for the amelioration of mucosal tissue oxygenation by NE administration was probably not due to \(\beta_2\)-adrenoceptor activation. In all likelihood, a redistribution of blood flow occurs away from the submucosal and muscularis layer in favour of the mucosal tissue layer after NE administration, an effect attenuated by the additional AVP infusion.

However, when discussing catecholamine effects on regional haemodynamics, we have to keep in mind that significant species differences in the response of the splanchnic vascular bed to NE have been reported in the literature.\(^{32–35}\) Therefore, extrapolation of experimental results obtained from animal models to the clinical situation can only be made with great caution. In patients suffering from septic shock, NE has been reported to increase splanchnic blood flow and tonometrically derived gastric mucosal pH and to decrease splanchnic lactate production.\(^{36–38}\) In contrast, in one study, an unpredictable effect of NE on splanchnic blood flow was reported.\(^{39}\) In addition, the study period is limited to the very acute phase of endotoxaemia. No conclusions can be made on long-term effects of these vasopressors in the present investigation.

In previous studies in pigs, we have already demonstrated that administration of AVP in increasing dosages up to a maximal dose of 0.229 U kg\(^{-1}\) h\(^{-1}\) did not additionally compromise jejunal mucosal oxygenation in comparison with untreated control animals during endotoxaemia.\(^{15}\) In contrast, in healthy animals, the same dosages significantly decreased jejunal microvascular blood flow and mucosal oxygen supply in a dose-dependent manner.\(^{16}\) In the present study, administration of AVP at a fixed dose comparable with 4 IU h\(^{-1}\) in a 70 kg patient reversed the beneficial regional effect of NE on mucosal oxygen supply, despite a comparable increase in mesenteric arterial blood flow in NE+AVP animals. Therefore, the improvement in regional splanchnic oxygen supply in particular to the mucosal layer brought about by the administration of NE was entirely blunted by concomitant administration of AVP. AVP and NE exhibit distinctive haemodynamic effects on the splanchnic vasculature which may account for the observed decrease in mucosal tissue oxygen supply. In vitro experiments using rat and human mesenteric arteries have demonstrated that AVP even at very low dosages causes a concentration-dependent potentiation of the contractions elicited by NE, that is, a shift of the dose–response contraction curve to NE to the left.\(^{40,41}\) This effect could be impeded by pre-treatment with a specific \(V_{1a}\)-receptor antagonist. Therefore, it is conceivable that the addition of AVP greatly enhances the vasoconstrictor response to NE explaining the observed decrease in \(P_{O_2}\) muc and \(HbO_2\) j in our experiments. Unfortunately, little is known on specific receptor density and in particular receptor distribution within the vasculature of the different layers of the small intestine. In our experiment, we observed a significant reduction in \(P_{O_2}\) muc and \(HbO_2\) j, despite similar mesenteric blood flow when AVP was additionally infused to NE. This finding strongly suggests that redistribution of blood flow at the expense of the submucosal and mucosal tissue layers must have occurred in the presence of AVP implying significant differences in \(V_{1a}\)-receptor density, distribution within the microvasculature of the different intestinal layers, or both.
Administration of this amount of *E. coli* LPS does not cause a vasoplegic shock in this pig model of endotoxinaemia. For that reason, we are not able to say if we would see the same effects on haemodynamic alterations in pigs with manifest vasoplegic shock, although we do see a significant and pronounced decrease in mucosal tissue oxygenation. This impairment in mucosal tissue oxygenation due to LPS in the blood was shown to be independent of systemic haemodynamics,\(^4\) such that interpretation of the results is unlikely.

Conclusion

This is the first study investigating the combined effects of NE and AVP vs sole administration of NE on jejunal tissue oxygen supply in an endotoxin model in the pig. The addition of AVP to NE attenuated any beneficial effect of NE on tissue oxygen supply, in particular to the jejunal mucosa, without affecting the effects of NE on systemic haemodynamics and mesenteric arterial blood flow. Our findings strongly suggest that administration of AVP with NE at any dosage results in a significant redistribution of jejunal blood flow at the expense of the mucosa and probably the submucosal tissue compartment. These results are of potential clinical importance and underline the necessity for a caution when AVP treatment is given in addition to patients receiving an NE infusion.

Funding

This research was conducted with the financial support of the Österreichische Nationalbank (Anniversary Grant Nr. 11022).

References

32 Immink WF, Beijer HJ, Charbon GA. Hemodynamic effects of norepinephrine and isoprenaline in various regions of the canine splanchnic area. Pflugers Arch 1976; 365: 107–18