Patient blood management in Europe

A. Shander1*, H. Van Aken2, M. J. Colomina3, H. Gombotz4, A. Hofmann5, R. Krauspe6, S. Lasocki7, T. Richards8, R. Slappendel9 and D. R. Spahn10

1 Department of Anaesthesiology, Critical Care Medicine, Pain Management and Hyperbaric Medicine, Englewood Hospital and Medical Center, 350 Engle Street, Englewood, NJ, USA
2 Department of Anaesthesiology and Intensive Care, University Hospital, Münster, Germany
3 Department of Anaesthesia, Hospital Universitario Vall D’Hebron, Barcelona, Spain
4 Department of Anaesthesiology and Intensive Care, General Hospital, Linz, Austria
5 Centre for Population Health Research, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
6 Department of Orthopaedics, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
7 Division of Anaesthesiology and Reanimation, University Hospital Angers, France
8 Division of Surgery and Interventional Science, University College London Hospital, London, UK
9 Department of Quality and Safety, Amphia Hospital, Breda, The Netherlands
10 Institute of Anaesthesiology, University Hospital and University of Zurich, Zurich, Switzerland

* Corresponding author. E-mail: aryeh.shander@ehmc.com

Editor’s key points

- Perioperative anaemia is common in patients presenting for major surgery.
- Blood transfusion has traditionally been the treatment, but this has a number of problems.
- Patient blood management aims to minimize the need for transfusion.
- Early detection and treatment of anaemia and minimizing blood loss are key strategies.

Summary. Preoperative anaemia is common in patients undergoing orthopaedic and other major surgery. Anaemia is associated with increased risks of postoperative mortality and morbidity, infectious complications, prolonged hospitalization, and a greater likelihood of allogeneic red blood cell (RBC) transfusion. Evidence of the clinical and economic disadvantages of RBC transfusion in treating perioperative anaemia has prompted recommendations for its restriction and a growing interest in approaches that rely on patients’ own (rather than donor) blood. These approaches are collectively termed ‘patient blood management’ (PBM). PBM involves the use of multidisciplinary, multimodal, individualized strategies to minimize RBC transfusion with the ultimate goal of improving patient outcomes. PBM relies on approaches (pillars) that detect and treat perioperative anaemia and reduce surgical blood loss and perioperative coagulopathy to harness and optimize physiological tolerance of anaemia. After the recent resolution 63.12 of the World Health Assembly, the implementation of PBM is encouraged in all WHO member states. This new standard of care is now established in some centres in the USA and Austria, in Western Australia, and nationally in the Netherlands. However, there is a pressing need for European healthcare providers to integrate PBM strategies into routine care for patients undergoing orthopaedic and other types of surgery in order to reduce the use of unnecessary transfusions and improve the quality of care. After reviewing current PBM practices in Europe, this article offers recommendations supporting its wider implementation, focusing on anaemia management, the first of the three pillars of PBM.

Keywords: anaemia; outcome; patient blood management; transfusion

Anaemia affects ~1.6 billion people, 25% of the world’s population.1 Iron deficiency is the principal cause of anaemia2 and is a major contributory factor to the global disease burden.2 Anaemia, which can be due to underlying conditions or surgical blood loss, is commonly found in patients undergoing surgery.3 Major orthopaedic surgery is associated with substantial blood loss, leading to a significant decrease in haemoglobin (Hb) levels during surgery.4 5 A recent meta-analysis of 19 studies showed that 24% of patients undergoing total hip replacement (THR) or total knee replacement (TKR) and 44% of those with hip fracture had preoperative anaemia. As these procedures are associated with considerable blood loss (mean 1500 ml),6 7 after operation, 51% of patients undergoing THR/TKR and 87% of patients with hip fracture were anaemic.5 Between 22% and 75% of patients undergoing colorectal surgery and 34% of those undergoing other forms of non-cardiac surgery have also been reported to have preoperative anaemia.3 In a recent multicentre cohort study, the prevalence of preoperative anaemia in cardiac surgery patients ranged from 22% to 30%.8 Preoperative anaemia in patients undergoing major surgery is often caused by chronic disease, but hypochromic/microcytic anaemia may require iron studies.9 10

Prospective and retrospective cohort studies have consistently shown that patients with preoperative anaemia have poorer postoperative outcomes than non-anaemic patients. Early data suggested that severe preoperative anaemia...
Transfusion and preoperative anaemia

The Orthopaedic Surgery Transfusion Haemoglobin European Overview (OSTHEO) study prospectively analysed blood management data from 3996 patients undergoing elective orthopaedic surgery in Europe in 1999. Data were collected from 225 centres in France, Germany, Greece, Italy, the Netherlands, and Spain. Overall, 69% of patients received transfusion, including 35% who received autologous transfusions only and 25% who received allogeneic blood transfusions (ABTs) only.

Around 45% of major orthopaedic surgery patients receive perioperative RBC transfusion. Orthopaedic surgery is the leading surgical indication for transfusion, accounting for ~10% of all RBC units transfused. Patients with preoperative anaemia are more likely to receive perioperative blood transfusions in the setting of orthopaedic and other types of surgery, than non-anaemic patients. For example, in 1142 patients undergoing elective hip or knee surgery in the UK in 2000–1, 42.0% of anaemic patients received a transfusion compared with 21.3% of patients overall, and a preoperative Hb level of <11.0 g dl\(^{-1}\) was strongly and independently associated with transfusion (odds ratio 13.92; P<0.001). In a prospective, observational Austrian study, the main predictors for allogeneic RBC transfusions were preoperative and lowest Hb and surgical blood loss.

The use of ABTs to correct anaemia in surgical patients is not supported by evidence of benefit. Transfusions increase Hb levels in critically ill patients, but they do not appear to reliably improve tissue oxygenation. ABTs are associated with a number of risk factors that can be divided into transfusion-transmitted infectious complications (e.g. HIV and hepatitis), immunological complications (e.g. immune-modulation resulting in postoperative infection, sepsis, antibody-mediated alloimmunization, graft-vs-host disease (GVHD), haemolytic transfusion reactions, and allergic reactions), transfusion-related acute lung injury (TRALI; which has both immunological and non-immunological properties), and non-infectious non-immunological complications (e.g. acute lung injury, transfusion errors, non-haemolytic and haemolytic reactions, circulatory overload, and metabolic disturbances).

Cohort studies have documented an increased risk of infectious complications, fluid overload, delay in wound healing, and prolonged hospital stay in transfused patients undergoing orthopaedic surgery. Adverse transfusion outcomes have also been documented in critically ill patients, trauma patients, and cardiac or colorectal surgery.

Observational studies have found higher postoperative mortality rates in transfused patients undergoing cardiac surgery compared with those who were not transfused, even after adjustment for other risk factors. Randomized controlled trials (RCTs) in patients undergoing cardiac surgery have shown that white blood cell (WBC)-reduced blood products carry a lower mortality risk than non-WBC-reduced products. However, this has not been observed after other types of surgery, and this issue is not resolved.

TRALI, acute transfusion reactions, haemolytic transfusion reactions, transfusion-transmitted infections, circulatory overload, and (in the UK) transfusion-associated GVHD are the main causes of death and morbidity related to ABT. TRALI has a presentation similar to acute respiratory distress syndrome, which has also been linked to transfusion. Different models have been proposed for the pathogenesis of TRALI. An antibody-mediated immune reaction, whereby antibodies in donated plasma activate recipient neutrophils within the lung, has been proposed. Alternatively, the ‘two-event’ model proposes that factors present in transfused stored blood products trigger TRALI in patients in whom endothelial activation is already present due to an initial proinflammatory event, for example, infection, surgery,
or trauma. Transfusion-related immunomodulation proposes that deleterious proinflammatory effects result from a complex interplay between transfusion effects, genetic factors, intercurrent illnesses, and inflammatory mediators and effector cells.

However, a causal relationship between transfusion and these serious complications is not established. Much of the evidence for these complications comes from retrospective, uncontrolled, non-randomized, observational cohort studies that may be subject to bias and confounding factors, and predominantly demonstrate correlations rather than causal relationships. Patients who are less well relative to healthy patients are more likely to receive transfusion. Thus, transfusion may be a surrogate for other causes of poor outcome. However, the association between allogeneic RBC transfusions and adverse outcome has been shown so consistently over the last three decades, that causation is highly likely.

The storage of donated RBCs has enabled a more efficient use of blood supplies. However, allogeneic blood undergoes changes during prolonged storage (storage lesions), which may affect patient outcome. These changes include the accumulation of proinflammatory metabolic and breakdown products (e.g. lysophospholipids) that may be linked to TRALI, changes in cell shape, acidosis, membrane loss, haemolysis, increased rigidity, and stronger endothelial attachment. Some studies have correlated the use of older, stored RBCs with an increased risk of complications and mortality in cardiac surgery and trauma patients. However, the impact of storage on post-surgical outcome is a matter of debate. The evidence supporting this association comes from observational studies that could be subject to bias and confounding factors. Some studies have reported that the storage age of RBCs was not independently associated with poorer outcomes, while a recent meta-analysis concluded that the available data do not support an association between older RBCs and increased morbidity or mortality.

The risks of transfusion are acknowledged by the American Association of Blood Banks, American Blood Commission, and American Red Cross. The 2009 International Consensus Conference on Transfusion and Outcomes (ICCTO; Phoenix, AZ, USA) concluded that, based on available evidence and considering a number of scenarios in which transfusions are commonly given, ABT is not likely to improve patient outcome in most scenarios (but may even cause harm). The impact of ABT on patient outcomes remains uncertain and in need of further investigation, providing a rationale for more judicious use of ABT.

Additional disadvantages with the use of transfusions relate to scarcity and cost of blood. The supply of blood for transfusions is limited by an ageing population and increasingly restrictive screening criteria. The chain of supply can also be overwhelmed by disaster events, potentially leading to blood shortages at the local level. While more blood may be donated in response to disaster events, the daily supply margin is limited and days during which there is a sudden increase in the use can disrupt the blood supply. While this may be a problem in developing nations, it may still affect first-world countries with established infrastructure. The increasing scarcity of blood and measures to reduce the risks of infection transmission have increased the direct costs of transfusion. The true costs of transfusion services are likely to have been underestimated owing to their complexity. A detailed study of the costs associated with all activities involved in providing transfusion services in surgical patients in four hospitals in the USA, Austria, and Switzerland recently estimated expenditures ranging from $1.62 to $6.03 million per hospital. The total costs were 3- to 5-fold higher than blood product acquisition costs alone. Indirect costs have previously associated with the legal ramifications of contaminated blood supplies, and also the personal costs to affected donors and patients.

Despite the risks, limited benefits, costs, and scarcity, a substantial proportion of RBC transfusions given today may not be appropriate or justified according to the report of the ICCTO panel and several reports on variable transfusion practices in otherwise comparable populations. These findings support a more cautious transfusion strategy than the current system. A retrospective study in two US hospitals found a significant correlation between inadequate or suboptimal documentation and failure to justify transfusion, with 73% of inadequately documented transfusions not meeting hospital guidelines. Inappropriate transfusion practices may endanger patients and waste resources. A recent RCT demonstrated that a liberal transfusion strategy (a higher Hb threshold of 10 g dl⁻¹) did not improve outcomes (death, inability to walk independently at a 60 day follow-up and in-hospital morbidity) compared with a restrictive strategy (Hb threshold of <8 g dl⁻¹), in a population of high-risk patients after hip-fracture surgery.

Patient blood management

The clinical, logistic, and economic disadvantages of RBC transfusion have prompted recommendations for its restriction, particularly unnecessarily transfused stored blood and an interest in new approaches. The concept of PBM (or ‘blood conservation’) has been developed to promote ‘the appropriate provision and use of blood, its components and derivatives, and strategies to reduce or avoid the need for a blood transfusion’. However, the concept has been developed with more emphasis on preventative measures and improving patient outcome. PBM relies on three key strategies to achieve its goals: optimize the patient’s own RBC mass, minimize blood loss, and harness and optimize physiological tolerance of anaemia. Therefore, PBM requires a multidisciplinary, multimodal, individualized strategy for avoiding and controlling blood loss, and to systematically identify, evaluate, and manage anaemia (Fig. 1).
Perioperative measures

Before operation, PBM involves a careful assessment of bleeding risk and anaemia well in advance of surgery (e.g. 30 days) to allow full evaluation and correction of anaemia. This has been specifically recommended in patients undergoing orthopaedic surgery. The patient’s own blood should be conserved by restricting blood drawn for tests and by restricting the use of antiplatelet and anticoagulant agents to situations where these drugs are indicated. Pharmacological and mechanical venous thromboembolism prophylaxis measures are both widely used in patients undergoing THR and TKR, with recommendations of better compliance with established evidence-based guidelines. Autologous preoperative donation was once promoted to decrease the need for ABT. However, predonated blood is also subject to storage lesion, and is labour intensive, expensive, and inefficient, with almost half of predonated autologous units not used. Some patients may not be able to predonate blood due to comorbidities and current or potential anaemia. There are possible deleterious effects of blood storage for units predonated weeks ahead of surgery.

It has been suggested that Hb levels before elective orthopaedic surgery should be within the normal range defined by the World Health Organization (WHO; ≥12 g dl⁻¹ in women; ≥13 g dl⁻¹ in men). Iron supplementation should be used to correct iron deficiency. Oral iron is effective in reducing the need for transfusion before orthopaedic surgery. Erythropoiesis-stimulating agents (ESAs) may need to be added in patients with preoperative anaemia. Data from prospective, non-randomized case series suggest that i.v. iron can correct iron deficiency anaemia before elective orthopaedic surgery and reduce rates of ABT, postoperative infection, and mortality in patients with hip fracture, compared with historical controls. Another case series found that the perioperative use of i.v. iron in conjunction with ESA therapy in anaemic patients with hip fracture (Hb levels of <13 g dl⁻¹) reduced the proportion of patients requiring transfusion, the number of units transfused, and...
the rate of postoperative infections compared with a parallel
control group. There was no difference in the 30 day mortal-
ity or the mean duration of hospitalization. Previous re-
commendations that patients with preoperative anaemia due to
iron deficiency or chronic disease may receive preoperative
treatment with i.v. or oral iron, depending on the timing of
surgery, the patient’s tolerance of oral iron, and iron status,71, 72
are based on low-to-moderate-quality evidence. Further RCTs of i.v. iron are currently underway.

ESA therapy may be used within PBM strategies. ESA
increases Hb and reduces the need for transfusion in patients
undergoing orthopaedic and cardiac surgeries.1 3 5 26 62 73 It
has been suggested that ESA should be used in anaemic patients in whom iron deficiency anaemia has been ruled out or corrected.55 Iron supplementation plus ESA corrected
normocytic anaemia due to chronic disease in preoperative
orthopaedic surgery patients;10 this can lead to increased
transfusion avoidance.74 Patients should receive iron sup-
plementation (preferably i.v.) throughout the use of ESA to
avoid functional iron deficiency.63 73 A recent study evalu-
ated a blood conservation protocol involving a restrictive
transfusion trigger (Hb < 8 g dl−1) and peripерative adminis-
tration of i.v. iron with (n=115) or without (n=81) ESA in
patients undergoing hip fracture repair.75 Patients who
received ESA therapy together with i.v. iron had a significantly
lower allogeneic transfusion rate (60% vs 42%, P=0.013) and
higher postoperative Hb than those who received iron alone,
but there was no difference in postoperative complications
or 30 day mortality rate. The combination of a restrictive Hb
trigger, i.v. iron, and ESA reduced the use of ABT in patients
(n=139) undergoing TKR surgery.76 In this study, patients
who received unwashed shed blood after operation (if their
preoperative Hb was <13.0 g dl−1), in addition to ESA and
i.v. iron, showed a significantly reduced hospital stay com-
pared with those who received i.v. iron and ESA alone
(P<0.05). A more conservative use has been advocated
because of concerns about side-effects of ESAs. After regula-
tory changes in the light of safety concerns, the use of ESA has
significantly decreased in cancer centres, but no effect was
seen on transfusions.77 These changes in usage may impact
upon individual PBM strategies, as alternatives to ESA
become important.

Intraoperative measures to prevent blood loss include
patient positioning and the use of electrocautery, tourni-
quets, vasoconstrictors, and topical or systemic (e.g. tranex-
amic acid epsilon aminocaproic acid, aprotinin, and
desmopressin) and local haemostatic agents.22 24 25 78–80
Acute normovolaemic haemodilution, where blood is col-
clected of the operation for potential transfusion after oper-
ation and replaced by a crystalloid or colloid solution, can
be used to lessen the loss of RBCs and clotting factors
during bleeding. Reviews of the use of colloids and crystal-
loids have shown that while there is no difference in overall
patient survival between the two forms, specific products
are best suited to certain situations.81 82 Autologous blood
cell salvage is particularly useful for procedures involving
massive blood loss and in patients who object to the use of
ABT. Postoperative measures include close monitoring of
bleeding and anaemia and the continuing various measures
described above.24 27 Individual blood conservation approaches may each save ~1–2 units of blood, and when
multiple approaches are used together, 2 units of blood can usually be saved.24 25

Implementation and effectiveness of PBM programmes
A cluster randomization study in Canadian hospitals demon-
strated that a multicomponent blood conservation algorithm
reduced the use of ABT and increased ESA use in orthopaedic
surgery patients.83 Similarly, in France, a blood conservation
algorithm introduced in one orthopaedic unit in 2005
changed local practice, reducing the overall use of trans-
fusions by 56% and wastage of autologous blood units by
50% (P=0.002), and increasing the rate of ESA usage (from
6.6 to 17.3%; P<0.05). These changes were associated
with a 50% reduction in hospital costs that offset the costs
associated with increased ESA usage, resulting in no signifi-
cant change in overall costs.84

There is increasing awareness of the need to integrate
PBM within routine surgical care. PBM has been successfully
implemented in some centres in the USA.23 The Government
of Western Australia has implemented PBM state-wide as the
standard of care.80 The Australian Red Cross has also issued
guidance on measures to reduce the need for ABT, including
in surgical patients.85

Current European PBM practice
Overview
The implementation of PBM in Europe has been variable
and inconsistent (Tables 1 and 2). While some countries, such
as the Netherlands, have been using some PBM strategies for a
decade, other countries have adopted few, if any, of these
measures. Notably, no widely accepted guidelines exist to
aid the process of PBM implementation.

Typically, anaesthetists, surgeons, or both are responsible
for the preoperative assessment of anaemia in patients
undergoing surgery. However, as in the Netherlands, other
healthcare personnel may be included as part of a multidis-
ciplinary approach. Variations exist between countries in the
reported or estimated prevalence rates of preoperative
anaemia and in the extent to which it is investigated. The
timeframes for the preoperative assessment of anaemia
appear to vary from 1 day to 6 weeks before surgery. Shorter
timeframes restrict the treatment of preoperative
anaemia, because of the pressure not to delay surgery. There
also appears to be considerable variation in the
availability and use of guidelines for preoperative anaemia
treatment and transfusion between countries. The reported
frequency of transfusion in orthopaedic surgery in hospitals
ranges from <2 to ~40% (Tables 1 and 2).

Austria
Patterns of blood use in patients undergoing surgery for
THR/TKR were documented by the Austrian Benchmark
Downloaded from https://academic.oup.com/bja/article-abstract/109/1/55/236570 by guest on 14 October 2018

59
transfusion guidelines of the ASA are followed. 86 PBM strategies are established in only a few hospitals in Austria, and broad implementation is necessary.

Study, a prospective observational study in 18 hospitals between 2004 and 2005. 33 Preoperative anaemia was ≏ 3-fold more common in patients who received transfusions compared with those who did not receive transfusions (28.6% vs 6.7% in patients undergoing THR, 29.9% vs 9.3% in TKR, 33.1% vs 12.6% in CABG). Variations were observed between centres in the number of RBCs transfused, the use of blood salvage, and the return of shed blood. The second Austrian benchmark study confirmed that anaemic patients received transfusions twice as often as non-anaemic patients, and up to four times as many transfusions (unpublished data; personal communication of H.G., P.H. Rehak, A.S., and A.H.).

There are no national guidelines for the management of preoperative anaemia or transfusion guidelines. However, treatment is guided by algorithms, and includes iron and vitamin B12 supplementation as necessary (Table 2). The transfusion guidelines of the ASA are followed. 86 PBM strategies are established in only a few hospitals in Austria, and broad implementation is necessary.

France

Hb is typically measured 2 or 30 days before operation (Table 1). Preoperative anaemia is not usually investigated further. French guidelines 87 recommend the use of ESA, with iron supplementation, when Hb is <13 g dl⁻¹, although this is limited predominantly to hip surgery. I.V. iron is indicated for the correction of postoperative anaemia when oral iron is insufficient or not well tolerated. Some institutions customize ESA use, but ≏ 50% do not treat anaemia before operation.

As described above, at least one report of the successful implementation of a PBM algorithm in France has been published, showing a reduction in transfusions and an increase in the use of ESA with no increase in overall costs. 84

Germany

There appears to be limited awareness or appreciation of the problem of preoperative anaemia in this setting in Germany. Anaemia is generally assessed the day before surgery and is usually investigated further if Hb is <8 g dl⁻¹. No preoperative anaemia treatment guidelines exist, and transfusion guidelines are determined locally by hospitals.

Spain

The risk of transfusion varies according to the patient’s level of preoperative anaemia (Table 1). The rate of transfusion in Spain varies significantly between centres and surgical teams; as such, rates for the country as a whole are uncertain. Orthopaedic surgery patients undergo a comprehensive preoperative assessment and, if present, preoperative anaemia is usually investigated further (Table 2).

No specific national guidelines for preoperative anaemia exist, although an algorithm is used where PBM is implemented. 88 Transfusion is normally recommended for patients with Hb <7 g dl⁻¹, but this threshold can be <10 g dl⁻¹ in patients with active bleeding or who are receiving chemotherapy (Table 2). 89

Switzerland

The prevalence of preoperative anaemia in patients undergoing THR or TKR surgery in Switzerland is ≏ 16–21% with transfusion rates of ≏ 19–22% in primary repair surgery and 30–40% in surgical revisions. 67 Various laboratory tests, including iron status tests, are performed by primary-care physicians/surgeons in the days or weeks before surgery (Table 2), although less severe anaemia (Hb 10–13 g dl⁻¹) may often be missed. Recommended transfusion triggers depend on the type of surgery (e.g. Hb <6 g dl⁻¹ in obstetrics, <7 g dl⁻¹ in general surgery, and <8 g dl⁻¹ in obstetrics).

Table 1 Estimates of preoperative anaemia prevalence and transfusion rates in orthopaedic surgery patients in selected European countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence of preoperative anaemia</th>
<th>Frequency of transfusion use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>16–18%</td>
<td>TKR ≏ 41.3% (varied from 12% to 87% between centres); THR ≏ 42.5% (varied from 16% to 85% between centres); <10% receive predonated autologous blood; patients with anaemia receive 2 × amount of blood received by those without anaemia</td>
</tr>
<tr>
<td>France</td>
<td>Estimate: ~20% (no precise data)</td>
<td>Estimate: ~40% (despite ESA use)</td>
</tr>
<tr>
<td>Germany</td>
<td>Not known</td>
<td>Not known</td>
</tr>
<tr>
<td>Spain</td>
<td>In general, 18.3% (but almost one-third of patients have Hb levels of <13 g dl⁻¹) 91</td>
<td>Transfusion risk (varies among centres): Hb ≤10 g dl⁻¹: 93.2%; Hb=14 g dl⁻¹: 19.75%; Hb=13 g dl⁻¹: 40%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Estimates in selected centres: 16–21%</td>
<td>Estimates in selected centres: primary repair: 19–22%; repeat operations: 30–40%</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Estimate of anaemia (Hb levels of <13 g dl⁻¹): 15–20% for major orthopaedic surgery</td>
<td>TKR <2%; THR <5%</td>
</tr>
<tr>
<td>UK</td>
<td><12 g dl⁻¹ in 15% and <13 g dl⁻¹ in 37% of patients (within 28 days of surgery)</td>
<td>57% of patients with a preoperative Hb level of <12 g dl⁻¹; 20% of patients with a preoperative Hb level of ≥12 g dl⁻¹</td>
</tr>
</tbody>
</table>
Table 2 PBM practices in orthopaedic surgery in selected European countries. COX, cyclo-oxygenase; CRP, C-reactive protein; EPO, recombinant human erythropoietin; ESA, erythropoiesis-stimulating agents; Hb, haemoglobin; MCH, mean corpuscular haemoglobin; MCV, mean cell volume; NSAID, non-steroidal anti-inflammatory drugs; PBM, patient blood management; SOC, standard of care; TBC, total blood count; TSAT, transferrin saturation

<table>
<thead>
<tr>
<th>Country</th>
<th>Assessment procedures, responsible person, and haematological parameters</th>
<th>If present, is preoperative anaemia investigated further?</th>
<th>Anaemia management</th>
<th>Are PBM strategies in place for major elective surgery?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Complete preoperative investigation performed at clinic visit 4 weeks before surgery, with preparation for anaesthesia and implementation of PBM</td>
<td>Yes</td>
<td>Iron supplementation if MCV < 80 fl, ferritin < 100 ng litre$^{-1}$, transferrin saturation < 20%</td>
<td>Yes, but only in a few hospitals</td>
</tr>
<tr>
<td></td>
<td>Tests: TBC, followed by MCV, creatinine, ferritin depending on Hb</td>
<td></td>
<td>Vitamin B12 if MCV > 100 fl</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Patient assessed 2 days before operation when no planned indication for ESA, 30 days before operation when ESA planned</td>
<td>Usually not</td>
<td>Preoperative transfusion only when anaemia is profound or if surgery is delayed/cancelled (rare)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Tests: Hb concentration only, platelet count</td>
<td></td>
<td>Responsible person: anaesthetist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Responsible person: anaesthetist</td>
<td></td>
<td>ESA are used mainly in hip surgery</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Patients usually assessed the day before surgery</td>
<td>Usually, if Hb level is < 8 g dl$^{-1}$</td>
<td>When transfusion is performed, erythrocyte concentrates are usually given</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Tests: Hb, haematocrit, platelet parameters, electrolytes</td>
<td></td>
<td>Responsible persons: surgeons (before and after operation), anaesthetist (intraoperatively)</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Patients assessed 4–6 weeks before surgery (average 30 days)</td>
<td>Usually</td>
<td>Analysis of patient’s condition</td>
<td>Yes, including the following:</td>
</tr>
<tr>
<td></td>
<td>Tests: Hb, reticulocyte count, MCH, MCV, % of hypochromic erythrocytes, vitamin B12, folic acid, iron indices (ferritin, TSAT). Other tests include medical history and bleeding tendency, viral infections, drugs, previous transfusion, body weight and height, ASA status, ECG, X-ray (optional), general lab tests</td>
<td></td>
<td>Analysis of transfusion risk</td>
<td>Correction with iron and vitamin supplementation, and ESA before elective surgery</td>
</tr>
<tr>
<td></td>
<td>Anaemia part of systematic protocol for all major elective orthopaedic surgery</td>
<td></td>
<td>Review of laboratory tests</td>
<td>Discontinuation of anticoagulants and antiplatelet agents before elective surgery, when this measure is safe</td>
</tr>
<tr>
<td></td>
<td>Responsible person: anaesthetist</td>
<td></td>
<td>Date of surgery considered</td>
<td>Autologous blood predonation in complex surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Responsible person: usually anaesthetist (in some cases, haematologist)</td>
<td>Use of better anaesthetic and surgical techniques to minimize blood loss during surgery</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Country</th>
<th>Assessment procedures, responsible person, and haematological parameters</th>
<th>If present, is preoperative anaemia investigated further?</th>
<th>Anaemia management</th>
<th>Are PBM strategies in place for major elective surgery?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switzerland</td>
<td>Lab tests (including Hb, MCV, ferritin, TSAT, and CRP) performed by primary care physician/surgeons days/week before surgery Hb measured on the day before surgery</td>
<td>Yes</td>
<td>1–1.5 g iron carboxymaltose for ‘pure’ iron deficiency anaemia 40 000 units EPO added to i.v. iron for ‘combined’ forms of anaemia</td>
<td>Yes, in limited number of hospitals</td>
</tr>
<tr>
<td></td>
<td>Blood volume calculation: takes account of patient’s blood volume, Hb transfusion trigger, and expected blood loss based on each centre’s data</td>
<td></td>
<td></td>
<td>University Hospital of Zurich: introduction of PBM in orthopaedic surgery has been agreed, including change in logistics to see all patients (surgeons and anaesthesiologist) 4 weeks before surgery. Coagulation management and perioperative thromboembolic prophylaxis in discussion, with a governmental grant received</td>
</tr>
<tr>
<td></td>
<td>Responsible person: anaesthetist and surgeon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Complete preoperative assessment (3–4 weeks before surgery): medical history, physical exam, drug history, laboratory tests (Hb and MCV) Hb level of <10 g d l⁻¹ and/or MCV < 80 fl; further investigation and referral to internal medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Responsible person: anaesthetist, nurse anaesthetist, resident surgeon, pharmacy assistant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery cancelled until outcome known</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspected by Health Authority every year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preoperative: ESA, COX-2-selective NSAIDs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perioperative: surgery technique, temperature, transfusion trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Postoperative: cell-saving (Bellovac™ ABT), transfusion trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
traumatic brain injury) and on the stability of the patient. PBM strategies are in place in a limited number of hospitals.

The Netherlands

Dutch hospitals began to implement PBM ~10 yr ago, especially for major orthopaedic surgery (Table 2). There is a legal requirement for a complete preoperative assessment 3–4 weeks before all elective surgery. Importantly, anaesthetists can cancel surgery until the outcome of treatment for anaemia is known. Preoperative PBM precautions include the use of cyclooxygenase-2-selective non-steroidal anti-inflammatory drugs to reduce the risk of bleeding after taking known risk factors into consideration.90–93 The introduction of ESA use for patients undergoing other surgery types is likely to occur in the future. National transfusion triggers were instituted in 2000 (e.g. Hb of 6.4 g dl⁻¹ for normal healthy patients).

All hospitals in the Netherlands report transfusion rates in knee and hip surgery, and these can be compared on the central website of the Dutch Health Authority.94 The results of national surveys of Dutch orthopaedic surgery departments performed in 2002 and 2007 have documented the increasing use of PBM measures to avoid transfusion.95 The use of preoperative autologous blood donation was similar in 2002 and 2007 for both hip and knee arthroplasty (Fig. 2). However, the preoperative use of ESA approximately doubled between 2002 and 2007, while the use of postoperative autologous cell salvage increased by 4- to 5-fold. Smaller increases were observed in the use of intraoperative autologous cell salvage.

Annual reports from the Dutch blood bank Sanquin96 showed a decline in the total number of allogeneic transfusions by 12% in the period from the year 2000 to 2009 (Fig. 3). This decrease was concurrent with an increase in healthcare usage. Hospital admissions increased from 1600 to 2300 per year per 10 000 inhabitants from 2000 to 2009. Based on the current price of an allogeneic transfusion of RBCs at €204, PBM is estimated to have saved a net cost of €100 million nationwide every year.

Table 2 Continued

<table>
<thead>
<tr>
<th>Country</th>
<th>Assessment procedures, responsible person, and haematological parameters</th>
<th>If present, is preoperative anaemia investigated further?</th>
<th>Anaemia management</th>
<th>Are PBM strategies in place for major elective surgery?</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>Preoperative clinic scheduled 2–6 weeks before all elective surgery</td>
<td>Usually not. If unexpected anaemia identified patient referred back to general practitioner for investigation</td>
<td>Patient cross-matched for anticipated blood transfusion requirement</td>
<td>Some centres now developing pilot studies on PBM in the UK</td>
</tr>
</tbody>
</table>

Tests: Hb electrolytes, ECG, or per departmental/procedural protocol. Complex patients identified from clinic are seen in pre-assessment by anaesthetists. Investigation of anaemia not part of current SOC

Protocols established to withhold anticoagulation and antiplatelet therapy before operation

Intraoperative cell salvage used in major non-oncological surgery

Tranexamic acid increasingly used in significant haemorrhage
United Kingdom

In the UK, elective surgery patients attend a pre-admission clinic for review 2–6 weeks before operation where routine health checks and blood tests, ECG, and, where appropriate, anaesthetic review are undertaken. The aim of pre-assessment is to reduce hospital stay by facilitating admission on the day of operation, and to reduce the risk of operative cancellations (Table 2). An internal audit at one UK centre prospectively reviewed all patients admitted for elective operation over a 4 month period. Of 1532 patients seen in all specialties, preoperative anaemia was present in 252 (16%). Most patients had a normocytic normochromic pattern with one-third having iron deficiency (ferritin < 30 ng litre$^{-1}$ with hypochromia or microcytosis). The perioperative transfusion rate was 26% in anaemic patients and 5% in those with normal Hb levels. Both preoperative anaemia and transfusion were associated with increased length of hospital stay.

A national comparative audit of blood use in elective primary THR surgery was conducted in the UK in 2006–7. Almost all of the participating hospitals performed preoperative anaemia assessments, although 29% of patients did not have a presurgery Hb level recorded. Fewer than half of the hospitals (47%) had a transfusion policy. Overall, 25% of patients were transfused within the period from 28 days presurgery to 14 days postsurgery, but this figure varied from 0% to 100% between hospitals. Data from pilot studies suggested that PBM in anaemic patients before primary joint replacement or major abdominal surgery may reduce the need for RBC transfusion by 30–40%. Translating these projections to the National Health Service (NHS), 60 500 major operations and 119 600 primary THR and TKR procedures were projected. A reduction in RBC transfusion alone would translate into the NHS saving £3 782 552, reducing hospital stay by 1 day in 4.51% would equate to a saving of £14.3 million, and complications could be prevented in 5397 patients, saving £17.1 million. Overall, PBM could produce a conservative annual saving of ~£35 million to the NHS. As the audit is now several years old, it is worth noting that some of these improvements and savings may have already been made. An RCT is under consideration by the National Institute for Health Research in the UK to further assess the findings from these pilot studies.

A wider implementation of PBM within perioperative care in European countries may be hindered by a variety of potential barriers. This group recommends that authorities responsible for PBM implementation consider these barriers in conjunction with a variety of recommendations to enable an efficient implementation across Europe (Table 3).

In conclusion, there is an urgent need for European healthcare providers to fully recognize the deleterious effects of preoperative anaemia and the risks associated with perioperative blood transfusion, and to integrate multi-modal PBM strategies into routine care for patients undergoing orthopaedic and other types of surgery. Implementing PBM requires a paradigm shift in preoperative care whereby anaemia is detected well in advance of elective surgery and treated using effective measures that reduce the requirement for blood transfusion and improve the quality of care. Transfusion should be the last option in the treatment of anaemia, rather than the first choice. The implementation of PBM requires liaison and partnership between all personnel and organizations responsible for perioperative care, including Blood Service authorities.
Currently, the implementation of PBM in Europe is limited, and considerable variations exist in the assessment and treatment of preoperative anaemia. Lessons can be learned from countries and centres where PBM has already been integrated into routine practice, for example, in the USA, Western Australia, and in the Netherlands. It is hoped that this report also aids the wider implementation of PBM in Europe.

Declaration of interest

A.H. is currently receiving grant support from the Federal Austrian Ministry of Health and the Western Australian Department of Health. In addition, in the past 5 yr, he has received honoraria or travel support for consulting or lecturing from the following companies and legal entities: Amgen GmbH, Switzerland; Australian Red Cross Blood Service, Brisbane, Australia; CSL Behring GmbH, Marburg, Deutschland; Dynabyte GmbH, Munich, Germany; Fresenius Kabi GmbH, Bad Homburg, Germany; Haemonetics GmbH, Munich, Germany; Janssen-Cilag GmbH, Austria; Johnson & Johnson Ethicon Biosurgery, USA; Novo Nordisk A/S, Bagsværd, Denmark; Pentapharm/TEM GmbH, Germany; United Biosource Corporation, Bethesda, MD, USA; and Vifor Pharma Ltd, Glattbrugg, Switzerland. R.K.’s department is participating in studies for which reimbursements are paid to the university hospital. He has received geographical travel support for consultancy from Bayer, Synthes, Globus Medical, Vifor, Ipsen, and Corim in the past 5 yr. S.L. has received funding for his laboratory work from Vifor. T.R.
discloses that University College London received a research grant from Vifor in 2009 and that he received a Health Foundation SHINE award for innovation to investigate the problem of anaemia in surgery and potential solutions. D.S.’s academic department is receiving grant support from the Swiss National Science Foundation, Bern, Switzerland (grant numbers: 33CM30_124117 and 406440-131268), the Swiss Society of Anesthesiology and Reanimation (SGAR), Bern, Switzerland (no grant numbers are attributed), the Swiss Foundation for Anesthesia Research, Zurich, Switzerland (no grant numbers are attributed), Bundesprogramm Chancengleichheit, Bern, Switzerland (no grant numbers are attributed), CSL Behring, Bern, Switzerland (no grant numbers are attributed), and Vifor SA, Villars-sur-Glâne, Switzerland (no grant numbers are attributed). D.S. was the chairman of the ABC Faculty and is a member of the ABC Trauma Faculty which both are managed by Thomond Physicians World GmbH, Mannheim, Germany, and sponsored by an unrestricted educational grant from Novo Nordisk AIS, Bagsværd, Denmark, and CSL Behring GmbH, Hattersheim am Main, Germany. In the past 5 yr, D.S. has received honoraria or travel support for consulting or lecturing from Bagsværd, Denmark, and CSL Behring GmbH, Hattersheim am Main, Germany. In the past 5 yr, D.S. had received honoraria or travel support for consulting or lecturing from the following companies: Abbott AG, AstraZeneca AG, Bayer (Schweiz) AG, Baxter S.p.A., B. Braun Melsungen AG, Boehringer Ingelheim (Schweiz), Bristol-Myers-Squibb, CSL Behring GmbH, Curacyte AG, Ethicon Biosurgery, Fresenius SE, Galemica AG (including Vifor SA), GlaxoSmithKline GmbH & Co. KG, Janssen-Cilag AG, Janssen-Cilag EMEA, Merck Sharp & Dohme-Chibret AG, Novo Nordisk, Octapharma AG, Organon AG, Oxygen Biotherapeutics, Pentapharm GmbH (now t.em Innovations), Roche Pharma (Schweiz) AG, and Schering-Plough International, Inc.

Funding
This study is based on discussions held at an expert panel meeting funded by Vifor Pharma Ltd, Switzerland. The authors acknowledge medical writing support funded by Vifor Pharma Ltd and provided by Prism Ideas (Nantwich, Cheshire, UK). Vifor Pharma Ltd is funding the open access.

References

Food and Drug Administration. Fatalities reported to FDA following blood collection and transfusion: annual summary for Fiscal Year 2009. 2009

Sparrow RL. Red blood cell storage and transfusion-related immunomodulation. Blood Transfus 2010; 8: s26–30

Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang 2009; 96: 93–103

Vamvakas EC. Meta-analysis of clinical studies of the purported deleterious effects of ‘old’ (versus ‘fresh’) red blood cells: are we at equipoise? Transfusion 2010; 50: 600–10

Friedman MT, Ebrahim A. Adequacy of physician documentation of red blood cell transfusion and correlation with assessment of transfusion appropriateness. Arch Pathol Lab Med 2006; 130: 474–9

74 Auerbach M, Goodnough LT, Picard D, Maniatis A. The role of intravenous iron in anaemia management and transfusion avoidance. *Transfus* 2008; 48: 988–1000

78 Sepah YJ, Umer M, Ahmad T, Nasim F, Chaudhry MU, Umar M. Use of tranexamic acid is a cost effective method in preventing blood loss during and after total knee replacement. *J Orthop Surg Res* 2013; 8: 22

