Background. A limitation of Bier’s block or i.v. regional anaesthesia (IVRA) is tourniquet pain. We hypothesized that tourniquet placement on the forearm vs upper arm during IVRA for distal upper extremity surgery may result in less tourniquet pain, lower the need for analgesic interventions, and decrease post-anaesthesia care unit (PACU) admission.

Methods. Patients for distal upper extremity surgery were randomized into upper or forearm single-cuff tourniquet placement. IVRA was either performed with 15 ml of 2% lidocaine and 20 mg ketorolac in the upper group or 8 ml of 2% lidocaine and 10 mg ketorolac in the forearm group. Vital signs and visual analogue scale (VAS) score were recorded. If VAS score was >4, 50 μg fentanyl was injected. If the patient had VAS scores >6 with fentanyl, deep sedation with propofol was administered.

Results. Twenty-eight subjects were in each group. There were no significant differences in patient characteristics, tourniquet time, or pressure between the groups. Ten patients in the forearm vs 27 in the upper arm group had a VAS score >4. The mean fentanyl use was 30 μg in the forearm group vs 104 μg in the upper arm group. One patient in the forearm group required propofol vs 22 in the upper arm group. PACU bypass to phase 2 recovery occurred 19 times in the forearm group vs zero times in the upper arm group (P<0.0001).

Conclusions. Our results indicate that the placement of the tourniquet on the forearm resulted in less discomfort, fewer sedation interventions, and greater likelihood of bypassing the PACU when compared with upper arm tourniquet.

Keywords: Bier block; regional anaesthesia

Accepted for publication: 27 December 2012

I.V. regional anaesthesia (IVRA) or Bier’s block provides effective anaesthesia of the distal extremity of short duration and is particularly useful for ambulatory surgery procedures. IVRA requires the use of tourniquets that are applied to the extremity to sequester the local anaesthetic and to create a bloodless surgical field. However, ischaemic pain due to tourniquet compression can occur. As a result, IVRA may require sedation or additional parentally administered analgesia, which may impact postoperative cognitive function, nausea, vomiting, and time to discharge from the hospital. Although studies exist examining forearm tourniquets for IVRA, it has not been clearly demonstrated that pain is less than upper arm tourniquets. It also has not been studied in a surgical setting where parenteral sedative interventions were utilized. A few studies have reported success with forearm tourniquet for IVRA, but did not compare this group with an upper arm tourniquet. Additional studies compared upper arm and forearm tourniquet groups. While some results showed no difference in pain scores, others showed lower pain scores in the forearm group, but did not have patients who were undergoing surgery. This left a knowledge gap that our study attempts to examine.

Our study not only compares two tourniquet locations, but also has patients undergoing surgery with i.v. sedation which more closely resembles clinical practice. We hypothesized that single-cuff tourniquet placement on the forearm vs upper arm during IVRA for distal upper extremity surgery may result in less tourniquet pain, lower the need for i.v. adjuvants (fentanyl and propofol), and decrease post-anaesthesia care unit (PACU) admission for patients undergoing distal upper extremity surgery.

†Post-Graduate Assembly in Anesthesiology 2011—awarded second place in the Current Research by New Investigators competition.
Methods

Patients having distal upper extremity surgery under IVRA were enrolled in the study which was approved by the IRB. Written informed consent was obtained. Patients were eligible to participate in the study if between age 18 and 70 and of ASA status I–III with normal preoperative diagnostic studies. Patients with allergy to local anaesthetics, local infections, open wounds of the surgical hand, seizure disorder, severe coagulopathy, peripheral vascular disease, chronic opioid use, extremes of body weight, or pregnancy were excluded from the study.

Patients were randomly assigned using a computer-based random number generator to one of the two study groups, either the upper arm tourniquet or forearm tourniquet placement. Sealed envelopes were opened before block placement. Before block placement, subjects were also educated in reporting the pain score using the visual analogue scale (VAS) score from 0 to 10; 0 representing no pain and 10 for the worst pain. A peripheral i.v. line was placed on the non-operative arm in the holding area. In the operating theatre, standard monitoring included electrocardiography, oxygen saturation, end-tidal carbon dioxide, and non-invasive arterial pressure. A 22 G i.v. cannula was placed in the distal vein of the surgical hand and saline locked. The single-cuff pneumatic pressure tourniquet was placed immediately above or below the elbow crease and on the top of a circumferentially placed cotton cast padding before inflation. The patient’s extremity to be operated on was then exsanguinated with an Esmarch bandage. The radial artery pulse was checked before and after the tourniquet inflation to ensure arterial occlusion. Next, we slowly injected medication into the i.v. cannula of the surgical hand. We used a dose of local anaesthetic for upper arm Bier block: 15 ml of 2% lidocaine as described by the New York School of Regional Anesthesia (NYSORA) and supplemented this with 20 mg ketorolac. In the forearm group, we used 8 ml of 2% lidocaine supplemented with 10 mg ketorolac. Since, ketorolac has been shown to have beneficial effects in IVRA, it was added to the local anaesthetic solution at 20 mg for the upper arm group and 10 mg for the forearm group. The adequacy of analgesia was then tested before surgery by the surgeon who tested sensation in the radial, median, and ulnar distributions.

Thereafter, the patient’s surgical arm was covered with a drape concealing the site of the tourniquet. The patients were constantly monitored and decisions made by an anaesthesiologist who was unaware of patient allocation, and was instructed by the protocol to only administer medications according to the VAS score by a predetermined schedule of administration. The patient’s VAS score was assessed every 5 min until the tourniquet cuff was released. If the VAS score was >4, 50 µg fentanyl was injected i.v. Additional fentanyl was subsequently given if VAS score remained higher than four unless respiratory rate was <10 bpm, or reached a maximum allowable dose by protocol of 3 µg kg⁻¹ of fentanyl. If the patient had VAS scores >6 under the treatment regimen of fentanyl, deep sedation with propofol was administered and VAS score was no longer recorded. After the procedure was finished, the tourniquet was deflated. Patients bypassed the PACU to phase 2 recovery, which refers to a step-down recovery unit of post-anaesthesia care with lower acuity and less monitoring, if they did not receive either propofol or fentanyl. All other patients went to the PACU.

Statistical analyses were performed using the following methods. For an effect size of >30% on pain ratings per group, power analysis for 90%, and α set to 0.05, 54 patients were required. We considered VAS scores as ordinal. Data analysis for all pain ratings was by the Mann–Whitney ‘U’. Group analysis was by parametric analysis for continuous variables and χ² for categorical variables. P<0.05 was considered significant.

Results

Fifty-nine patients were enrolled in the study. Surgeries in each group were similar and were completed without complications. Surgeries included ganglion cyst excision, mass excision, digital nerve repair, metacarpal and digital fracture pinning, and ORIF, ruptured tendon repair, and palmar fasciotomy. Anaesthesia was satisfactory in all patients at the start of surgery. Patient characteristics in the upper and forearm groups did not differ significantly (Fig. 1; Table 1). However, there were significant differences between the groups in VAS scores, fentanyl and propofol requirements, and PACU admission frequency (Table 2). Patients who had the tourniquet placed on the forearm had lower pain scores than those who had the tourniquet placed on the upper arm. VAS score was >4 in 10 patients in the forearm group vs 27 patients in the upper arm group (Table 2). The mean VAS score was lower in the forearm group at all time intervals (Fig. 2). Accordingly, the use of analgesic interventions was lower in the forearm group when compared with the upper arm group (Table 2). For instance, three to four times more fentanyl was required in patients having an upper arm when compared with a forearm tourniquet, 104 µg when compared with 30 µg, respectively. In addition, 19 patients having a forearm tourniquet were able to bypass the PACU when compared with zero in the upper arm group. Moreover, propofol was required for only one patient in the forearm group compared with 22 patients in the upper arm group. No signs of local anaesthetic toxicity were noted in any study patients.

Discussion

Our data indicate that placement of the tourniquet on the forearm rather than upper arm during IVRA for distal upper extremity surgery results in a greater proportion of patients with less tourniquet pain and as a by-product, less use of supplementary analgesia. This study is unique in that it compares two tourniquet locations in the surgical setting with supplementary sedation while demonstrating that the
forearm tourniquet is not equivocal to the upper arm tourniquet with respect to pain, sedation, and PACU bypass rates. In fact, the forearm location appears to be clearly less painful according to our results.

For the study design, we utilized the single-cuff tourniquet for several reasons. The double tourniquet cuff size is different from the single-cuff size which makes their direct comparison difficult. We believe the double-cuff tourniquet size is too large for placement on the forearm as this interferes with the surgical field. Consequently, our study design compared the same single-cuff tourniquet on the forearm and upper arm (Fig. 2).

All IVRAs in our study, regardless of where the tourniquet was placed, were successfully used for surgery. However, our results may be even more convincing because by design, we biased the results against the forearm tourniquet by using a lower dose of local anaesthetic in the forearm group. We used our Bier block dose in the upper arm based on external references. The optimal dose for Bier block is not established, but in general, it should not be over 300 mg i.v. In

Fig 1 CONSORT
other theories involve larger density of anaesthesia in only the humerus can absorb the pressure from the tourniquet when the tourniquet is placed on the upper arm, where dissipating pressure more evenly when compared with ‘double pillar’ that potentially reduces muscle ischaemia by reducing pressure more evenly when compared with when the tourniquet is placed on the upper arm, where only the humerus can absorb the pressure from the tourniquet. Other theories involve larger density of anaesthesia in the forearm since both groups had similar tourniquet pressures and duration of inflation (Table 1), we feel pressure and duration contributed little to the difference in VAS scores between the two groups.

Yet, forearm tourniquet placement has not been popular due to the theoretical risk of systemic leakage of the local anaesthetic via the interosseous vessels secondary to lower occlusion of the anterior and posterior interosseous arteries in the forearm. However, recent studies have shown that forearm tourniquet use does not increase the risk of local anaesthetic leakage; as a matter of fact, due to a smaller dose requirement to achieve a comparable level of anaesthetic, forearm tourniquet has been shown to be as safe as using upper arm tourniquet. In addition, forearm tourniquet position allows for preservation of some motor function of the long flexors and extensors of the wrist, which can be critical for some surgeries.

Regardless of the differences in doses of local anaesthetic and ketorolac favouring the upper arm group, patients having the tourniquet placed on the forearm still had less tourniquet pain than the upper arm group. This is important because the use of narcotics may be associated with longer recovery, nausea and vomiting, and impaired cognition. Additionally, most patients in the forearm group did not require deep sedation with propofol and thereby avoided undesirable side-effects. There were no postoperative complications in our study and no signs or symptoms suggestive of local anaesthetic toxicity.

We speculate that the difference in pain scores may be due to the anatomical differences between the upper arm and forearm. With the forearm technique, the tourniquet is placed around the radius and ulnar bones which creates a ‘double pillar’ that potentially reduces muscle ischaemia by dissipation pressure more evenly when compared with when the tourniquet is placed on the upper arm, where only the humerus can absorb the pressure from the tourniquet. Other theories involve larger density of anaesthesia in the forearm. Since both groups had similar tourniquet

Table 1 Upper arm and forearm group patient characteristics (n=56) (95% confidence interval). *Range of ages

<table>
<thead>
<tr>
<th></th>
<th>Forearm (n=28)</th>
<th>Upper arm (n=28)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (%)</td>
<td>64</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Age (yr)*</td>
<td>40.8 (22–67)</td>
<td>40.1 (22–66)</td>
<td></td>
</tr>
<tr>
<td>Body mass index (BMI) (kg m⁻²)</td>
<td>24.7 (23–26)</td>
<td>26.4 (24–29)</td>
<td></td>
</tr>
<tr>
<td>Tourniquet duration (min)</td>
<td>49.1 (43–55)</td>
<td>47.9 (41–54)</td>
<td></td>
</tr>
<tr>
<td>Tourniquet pressure (mm Hg)</td>
<td>270 (263–277)</td>
<td>271 (264–277)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Upper arm and forearm group patient results (n=56). VAS, visual analogue scale; PACU, post-anaesthesia care unit

<table>
<thead>
<tr>
<th></th>
<th>Forearm (n=28)</th>
<th>Upper arm (n=28)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS >4 (%)</td>
<td>10 (36%)</td>
<td>27 (96%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Average fentanyl (µg)</td>
<td>30</td>
<td>104</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fentanyl use (%)</td>
<td>8 (29%)</td>
<td>27 (96%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Propofol use (%)</td>
<td>1 (4%)</td>
<td>22 (79%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PACU bypass (%)</td>
<td>19 (68%)</td>
<td>0 (0%)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
is a generally acceptable score for intervening with analgesics in the operating theatre and postoperative period. Lastly, patients were not blinded as to where the tourniquet was placed. For patients, though, it was not intuitive to assume more or less pain with the upper arm tourniquet vs the forearm tourniquet when reporting their scores.

With greater popularity of ambulatory surgery, the ability to minimize the use of opioids and hypnotics is increasingly important. In this randomized prospective study, our results indicate that the placement of the tourniquet on the forearm resulted in less discomfort, fewer sedation requirements, and greater likelihood of bypassing the PACU when compared with upper arm tourniquet placement during IVRA for distal upper extremity surgery. The use of less local anaesthesia in the forearm group may also reduce the risk of systemic local anaesthetic toxicity with inadvertent tourniquet release. These contemporary characteristics of forearm tourniquet IVRA are particularly favourable in the office and ambulatory surgery centre where there are limited PACU facilities, or staff. We believe that the forearm tourniquet is a reassuring and safer alternative to IVRA.

Acknowledgements
The authors thank Dr Alan Santos, MD MPH, and Dr Admir Hadzic, MD PhD, for their critical review of the manuscript.

Declaration of interest
None declared.

Funding
The work was supported by the Department of Anesthesiology at St Luke’s Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons.

References
3 Chan CS, Pun WK, Chan YM, Chow SP. Intravenous regional analgesia with a forearm tourniquet. Can J Anaesth 1987; 34: 21 – 5
13 Lexi-Comp, Inc. (Lexi-DrugsTM). Lidocaine (Systemic) (Lexi-Drugs). Lexi-Comp, Inc., 2012
17 Chow SP, Pun WK, Luk KD, So YC, Ip FK, Chan KC. Modified forearm intravenous regional analgesia for hand surgery. J Hand Surg Am 1989; 14: 913 – 4

Handling editor: L. Colvin