Pharmacodynamic changes with vecuronium in sepsis are associated with expression of α7- and γ-nicotinic acetylcholine receptor in an experimental rat model of neuromyopathy

L. Liu¹, S. Min¹*, W. Li², K. Wei¹, J. Luo¹, G. Wu¹, L. Ao¹, J. Cao¹, B. Wang¹ and Z. Wang¹

¹ Department of Anesthesiology, First Affiliated Hospital of Chongqing Medical University, You Yi Road 1#, Yuan Jia Gang, Chongqing 400016, China
² Department of Anesthesiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
* Corresponding author. E-mail: minsu89011069@yahoo.com.cn

Non-depolarizing neuromuscular blocking agents (NMBAs) are frequently used for the management of septic patients who require mechanical ventilation during anaesthesia and intensive care. Sepsis attenuates the intensity of the neuromuscular blocking effects of NMBAs. Thus, elucidating the pathogenic mechanism by which sepsis alters the pharmacodynamics of NMBAs is useful to determine appropriate doses for the safe use of NMBAs.

The altered responses to NMBAs are associated with quantitative or qualitative changes on nicotinic acetylcholine receptors (nAChRs). Martyn and colleagues first reported on the resistance to the neuromuscular effects of NMBAs after burns, immobilization, and denervation. Some possible mechanisms have been revealed, including plasma protein binding, muscle atrophy, and up-regulation of nAChRs. Interestingly, similar pharmacodynamic changes in NMBAs also occurred in septic patients. However, quantitative increases of nAChR have not been observed in septic muscles. Whether qualitative changes occur in nAChRs is still unknown. Three variants of post-junctional nAChRs have been identified: adult- (ε-nAChR), fetal- (γ-nAChR), and neuronal α7 type (α7-nAChR). Normally, only ε-nAChR is synthesized in muscle cells and is anchored to the end-plate membrane, which maintains the neuromuscular transmission function. In the early fetal stage, two other isoforms, the γ- and α7-nAChR, are scattered throughout the muscle membrane before innervation. Denervation and some other pathological states (e.g. burn and immobilization) lead to the re-expression of γ- and α7-nAChR. These receptors alter drug sensitivity. Ulinastatin, a protease inhibitor purified from human urine, has anti-inflammatory effects and increases the release of acetylcholine at the neuromuscular

Editor’s key points

- This study in rats demonstrates that the pharmacodynamics of non-depolarizing neuromuscular blocking agents in sepsis is associated with the expression of α7- and γ-nAChR in the skeletal muscle.
- Ulinastatin, a protease inhibitor, can improve the effects of systemic inflammation on the expression of these receptors.

Background. Resistance to non-depolarizing neuromuscular blocking agents induced by sepsis is associated with the qualitative change in the nicotinic acetylcholine receptor (nAChR). This study aims to investigate the effects of sepsis on the neuromuscular block properties of vecuronium in relation to the expression of fetal and neuronal α7 type nAChR.

Methods. Male Sprague–Dawley rats were randomly divided into sham and sepsis groups. Sepsis was induced by caecal ligation and puncture (CLP). The rats were injected i.v. with ulinastatin or normal saline on Day 10. Neuromuscular block properties of vecuronium were evaluated and neuromuscular function was assessed by electromyography on Days 1, 3, 7, and 14 after CLP. Expression of fetal and neuronal type α7-nAChR on the tibialis anterior muscle was assessed using immunohistochemistry and western blot. The mRNA encoding for γ- and α7 subunits was evaluated by real-time polymerase chain reaction.

Results. The half maximal inhibitory response of vecuronium in the sepsis group significantly increased, peaked on Day 7, and then declined on Day 14 (P<0.05). The neuromuscular function decreased with increasing postoperation time in the sepsis group (P<0.05). Sepsis significantly increased the expression of γ- and α7-nAChR along with expression of γ- and α7 subunits mRNA, peaked on Day 7, and declined on Day 14 (P<0.05). Ulinastatin suppressed the expression of receptor protein and mRNA encoding for γ- and α7 subunits (P<0.05).

Conclusions. Pharmacodynamic changes with vecuronium seem to be associated with the expression of γ- and α7-nAChR in the skeletal muscle. Ulinastatin can improve this effect by inhibiting the expression of these receptors.

Keywords: neuromuscular blocking agents; pharmacology; receptors, nicotinic; sepsis

Accepted for publication: 28 May 2013
Acetylcholine-induced electrical activity suppresses the expression of \(\alpha 7 \)- and \(\gamma \)-nAChR. Thus, we hypothesized that the expression of \(\alpha 7 \)- and \(\gamma \)-nAChR can be improved by ulinastatin treatment.

This study in rats tested the hypothesis that the expression of \(\alpha 7 \)- and \(\gamma \)-nAChR on the septic muscle attenuates the muscle-relaxing effect of NMBAs. We used surgical peritonitis to induce a sepsis model avoiding steroid use or surgical denervation to investigate the alteration of neuromuscular block properties of vecuronium, a non-depolarizing NMA. We also assessed neuromuscular function in relation to mRNA encoding for the \(\gamma \) and \(\alpha 7 \) subunits of acetylcholine receptor and for the expression of protein receptors.

Methods

Animals

Male Sprague–Dawley rats (age: 2–3 months, weight range: 200–220 g) were obtained from the Experimental Animal Centre of Chongqing Medical University (Chongqing, China). All rats received humane care according to the Care and Use Committee of Chongqing Medical University. One week before the experiments, the rats were housed in a specific pathogen-free laboratory in an acclimatized room at standard room conditions [25 (2) °C, 55% humidity] with a 12 h light/dark cycle. The rats were given free access to water and standard chow. All experimental procedures involving animals were approved by the Animal Ethics and Use Committee of Chongqing Medical University.

Anaesthesia and vital parameters

For neuromuscular functional and pharmacological studies, the animals were anaesthetized with 10% chloral hydrate \([350 \text{ mg kg}^{-1} \text{ intraperitoneal (i.p.)} \text{ on the day of the experiment.}]\). The animals were tracheotomized, and their lungs were mechanically ventilated. The mean arterial pressure, heart rate and body temperature (°C) were continuously monitored. \(\text{PaO}_2 , \text{PaCO}_2 , \) and acid–base status were intermittently measured and corrected to ensure stable haemodynamic conditions. The rats were excluded from the experiment if haemodynamically unstable (mean arterial pressure < 10.7 kPa) or if the blood gas level was not within the range \([\text{PaO}_2 > 13.3 \text{ kPa}; \text{pH} 7.36–7.44; \text{PaCO}_2 < 0–5.8 \text{ kPa}; \text{base excess} < 2 (2) \text{ mEq} \text{].}]\)

Animal models and group assignments

For surgical intervention, the rats were anaesthetized with i.p. administration of 10% chloral hydrate \([350 \text{ mg kg}^{-1} \text{].}]\) All the rats were weighed daily and randomly divided into two groups: (i) the sepsis group in which caecal ligation and puncture (CLP) was performed; and (ii) the sham group in which a sham operation was performed \((n = 6)\). Given the time frame of the sepsis model, the rats in the sepsis group were assigned to four subgroups: Day 1 \((n = 6)\), Day 3 \((n = 6)\), Day 7 \((n = 12)\), and Day 14 \((n = 24)\). After 10 days of CLP, the rats in the sepsis group were i.v. injected with ulinastatin \([5000 \text{ U kg}^{-1} \text{] (}n = 12)\) or 0.9% normal saline (NS) \((n = 12)\). The group assignments are shown in Figure 1.

In the sepsis group, sepsis was induced by CLP, which was performed as described previously.\(^{22}\) In this sepsis model, the rats were considered septic at 6 h after CLP.\(^{23}\) Midline laparotomy was performed to expose the caecum. The caecum was ligated tightly with a 3-0 silk suture at its base below the ileocaecal valve and punctured with a 24-gauge needle avoiding bowel obstruction. A small amount of faeces was exteriorized by gentle pressure applied on the ligated caecum. Then, the caecum was returned to the peritoneal cavity. The abdomen was closed with 3-0 silk. The rats in the sham group received

![Flow diagram of the experiments](https://academic.oup.com/bja/article-abstract/112/1/159/241939/fig1)

Fig 1 A flow diagram of the experiments. A total of 48 rats were assigned to the sepsis groups (Day 1, \(n = 6\); Day 3, \(n = 6\); Day 7, \(n = 12\); Day 14, \(n = 24\)) and 30 rats were assigned to the sham groups (Day 1, \(n = 6\); Day 3, \(n = 6\); Day 7, \(n = 6\); Day 14, \(n = 6\)). The rats in the Day 14 group were divided into two subgroups: 0.9% NS \((n = 12)\) and ulinastatin \((n = 12)\). Given the exclusion of 19 rats because of death or haemodynamic and metabolic instability, the final statistical analysis included 29 animals in the sepsis groups.
the same anaesthesia and surgical manipulation without CLP. Immediately after surgery, each rat received once paracetamol (100 mg kg\(^{-1}\) i.p.), antibiotic primaxin (25 mg kg\(^{-1}\) i.p., Merck), and 0.9% NS (10 ml kg\(^{-1}\) i.p.), and was rewarmed for \(~3\) h. Primaxin is a mixed formulation composed of imipenem (N-formimidoylthienamycin monohydrate) and cilastatin sodium. It is a commonly used antibiotic that could elevate the survival of septic animal models constructed by CLP.

Evaluation of neuromuscular function

Electromyographic (EMG) recordings were measured at pre- and post-modelling. The data were obtained from the right sciatic nerve that was stimulated supramaximally (intensity, 3 V; duration, 0.2 ms; and frequency, 1 Hz) by a direct stimulation electrode (RM6240 Systems, Inc., Cheng Du, China) from the sciatic nerve. Compound muscle action potential (CMAP) was recorded using a superficial disc electrode located on the tibialis anterior muscle before and at different times after surgery, as described previously.\(^2\)\(^4\) Electromyographical analysis used the RM6240USB2.0S (I) version 1.0.2 software (RM6240 Systems, Chengdu Instrument Company, Chengdu, China), with amplitude, and duration of CMAP as the parameters. The motor conduction velocity (MCV) was calculated as the distance of conduction/latency time. The temperature of each rat was kept at \(~36–37\) °C using a heating light. Neuromuscular dysfunction was defined as a decrease of \(\geq 20\%\) of the lower limit of the normal CMAP amplitude.\(^2\)\(^5\)\(^6\)

Pharmacodynamics of vecuronium

Neuromuscular block was monitored by evoked mechanomyography using a nerve stimulator (RM6240 Systems) and a RM6240-JZJ100 force transducer (RM6240 Systems). The rats were placed in the dorsal recumbent position. The tendon of the tibialis anterior muscle on each side (left or right side by random selection) was surgically exposed, severed, and then individually attached to separate transducers. Both sciatic nerves were exposed at the thigh. Stimulation electrodes were attached to measure nerve-mediated contraction of the tibialis anterior muscle. To ensure a force vector control, we stabilized each knee rigidly with a clamp. A preload of 30 g was applied to yield maximal isometric contractions. The nerve-evoked tensions of the respective tibialis anterior muscles were recorded by an amplifier and displayed using the RM6240USB2.0S (I) version 1.0.2 software.

The isometric twitch tension of the tibialis anterior muscle was estimated by researchers who were blinded from the experimental group of each specimen. Twitch tension was elicited by indirect supramaximal constant current stimulation at 0.1 Hz using a stimulator and a constant-current unit to deliver twitch tension. All forces were measured in grams. After the elicited twitch tension was stabilized, single-twitch tension (averaged in groups of five) was determined. The potency of vecuronium was tested using the cumulative dose–response method. Bolus doses of vecuronium were administered i.v. in increments of 0.05–1 mg kg\(^{-1}\) until the twitch height achieved maximal depression. Each incremental dose was given only after the twitches were allowed to recover to baseline values. The twitch tension inhibitory effect was normalized by the following equation: \(\%\) inhibition = \(\frac{100 \times B}{A} \) where \(A\) represents the minimal twitch height in the presence of vecuronium and \(B\) is baseline values of twitch height. Dose–response analysis: inhibitory effect vs dose data was fitted using a four-variable logistic sigmoidal dose–response model. The expression relating the dose to the inhibitory effect is as follows:

\[
Y = \left[\text{START} + (\text{END} - \text{START}) \frac{x^n}{IC_{50}^n + x^n}\right] \times 100%
\]

where \(Y\) represents the fraction of inhibition, START refers to \(Y\) for the minimal response, END is \(Y\) for the maximum response, \(n\) is the Hill coefficient (considered as a slope parameter), \(x\) is the administered dose, and 50% inhibitory concentration (IC\(_{50}\)) is the effective dose eliciting 50% of the maximal effect.

Tissue preparation

The animals were humanely killed by deep anaesthesia with sodium pentobarbital (65 mg kg\(^{-1}\) i.p.), the tibialis anterior muscle specimens of rats were collected in 4% paraformaldehyde or liquid nitrogen.

Immunohistochemistry

Immunostaining was performed using the streptavidin–peroxidase method. For detection of \(\alpha7\)-nAChR, the muscle specimens were immediately fixed with 4% paraformaldehyde in phosphate buffer saline (PBS) and embedded in paraffin. Another muscle specimens were collected in liquid nitrogen and were fixed in cold acetone for \(~1–2\) min. The endogenous peroxidase was inactivated by incubating the tissue sections in 3% hydrogen peroxide for 30 min at 25 °C. The sodium citrate buffer (0.01 mol litre\(^{-1}\), pH 6.0) was used to retrieve antigen at 96–98 °C for 10 min. Then, the rabbit anti-nAChR \(\alpha7\) pAb (ab10096, Abcam Ltd, dilution 1:800) was added into a humidity chamber and was incubated with samples at 4 °C overnight. For detection of \(\gamma\)-nAChR, the muscle specimens were collected in liquid nitrogen. Tissue sections were fixed in cold acetone for \(~1–2\) min and rehydrated in PBS. The anti-nAChR \(\gamma\) pAb (LS-C73537, LSBio, Inc., dilution 1:1000) was applied to the tissue sections. Then following anti-rabbit (for \(\alpha7\)-nAChR) or -mouse (for \(\gamma\)-nAChR) IgG secondary antibodies were used to detect each primary antibody. The sections were routinely counterstained with haematoxylin. Controls consisted of unstained and secondary antibody alone sections where all, or just the primary, antibodies were replaced with dilution buffer. The average optical density was analysed in 10 randomly selected microscopic fields in five sections of each group at a 400-fold magnification.

Western blot analysis

Tissues were homogenized using lysis buffer (Beyotime, China), and supernatants were collected after centrifugation at 12 000 \(\times\) g for 15 min at 4 °C. After quantitative analysis of protein concentration, total proteins were separated by
sodium dodecyl sulphate–polyacrylamide gel electrophoresis, transferred to polyvinylidene fluoride membranes (Millipore, Bilericca, MA, USA), blocked with 5% non-fat milk in Tris-buffered saline for 1 h at 37 °C, and then incubated overnight at 4 °C with sc-13998 (Santa Cruz Inc., dilution: 1:500) and ab10096 (1:1000) as primary antibodies. After incubation for 1 h at 37 °C with secondary antibody (1:2000; Beyotime), bands were seen using the enhanced chemiluminesence kit (Beyotime) according to the manufacturer’s protocol. All results were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels.

Real-time polymerase chain reaction analysis

The mRNA encoding for γ- and α7 subunits are CHRNG and CHRNA7, respectively. Total cellular RNA was isolated from the tibialis anterior muscle with TRIzol (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Real-time quantitative polymerase chain reaction (PCR) was performed using IQ SYBR Green Supermix on the iCycler iQ detection system (Bio-Rad, Hercules, CA, USA). The standard reaction volume was 20 μl and contained 1 μl QuantiTect SYBR Green PCR Master Mix (Qiagen, Valencia, CA, USA), 0.1 U AmpErase uracil N-glycosylase (UNG) enzyme (PE Biosystems, Foster City, CA, USA), 0.7 μl and contained 1 μl QuantiTect SYBR Green PCR Master Mix (Qiagen, Valencia, CA, USA), 0.1 U AmpErase uracil N-glycosylase (UNG) enzyme (PE Biosystems, Foster City, CA, USA), 0.7 μl cDNA template, and 0.25 μM forward and reverse primers. The initial step of PCR was 2 min at 50 °C for AmpErase UNG activation, followed by a 15 min hold at 95 °C. The reverse transcriptase (RT)–PCR programme on iCycler was 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s. All experiments were confirmed with three animals. The expression levels for each gene of interest were calculated by normalizing the quantified mRNA amount to the quantified mRNA amount of GAPDH. Primers for γ and α7 genes were designed using the Primer Express software (Perkin-Elmer, Foster City, CA, USA). Primer sequences are given in Table 1.

Statistical analysis

Competition analysis data [IC50 and slope at IC50] were determined from a four-variable logistic sigmoidal dose–response model fitted to the dose–response curves with Prism 4 (GraphPad Software, Inc., San Diego, CA, USA). Data on twitch tension inhibition rate were expressed as mean ± SEM. IC50 values were expressed as means with 95% confidence intervals, whereas the IC50 ratio and slope at log IC50 were expressed as mean ± SD. The IC50 ratio was defined as the IC50 of the dose–response curve in the sepsis group divided by that in the sham group. The remaining data were expressed as mean ± so. Real-time PCR data analysis was performed using the Q-Gene software, which expresses data as mean normalized expression (MNE).

MNE is directly proportional to the RNA amount of the target gene relative to the RNA amount of the reference gene. Statistical significance was assessed using one-way repeated-measures analysis of variance (ANOVA) followed by ANOVA with the Scheffe F-test. A P-value of <0.05 was considered to indicate statistical significance.

Results

Mortality, behaviour, and weight gain

No deaths occurred in the sham-operated rats (n=30). All deaths associated with CLP occurred after 5 days after laparotomy. The mortality rates were 25% (3 in 12 rats) on Day 7, 41% (5 in 12 rats) on Day 14 for 0.9% NS, and 33% (4 in 12 rats) on Day 14 for ulinastatin after CLP. Almost all of the CLP animals demonstrated crouching, piloerection, decreased spontaneous locomotor activity, and exudation around the eyes from Day 1 to Day 3 after laparotomy. From Day 6 to Day 7, 14 rats progressed to septic shock and 12 rats to death. The rats with septic shock were immobilization and showed motor restlessness, hair erection, and subconjunctival haemorrhage. At necropsy of the dead animals, the peritoneal cavity contained a large amount of bloody and malodorous fluid, and the caecum was distended and gangrenous. Only three rats did not exhibit the symptoms described above. Surviving CLP rats developed diarrhoea and failed to gain weight. From Day 9, the animals gained weight in parallel to that of the sham rats. However, decreased spontaneous locomotor activity and ruffled fur visually distinguished the CLP rats from the sham rats throughout the observation period.

Electrophysiological recordings

The CMAP recorded for each group is shown in Figure 2A. In the sham group, the amplitude of CMAP was 16.51 (2.53) mV. However, in the sepsis group, the amplitudes of CMAP decreased significantly, and the peak appeared on Day 7 post-operation (P<0.01; Fig. 2B). The duration of CMAP in the sepsis group was prolonged significantly, and the peak appeared on Day 7 post-operation (P<0.01). No significant difference was found between the duration of CMAP in the Day 14 group and that in the sham group (P>0.05; Fig. 2C). The nerve conduction velocity significantly decreased in the sepsis group compared with that in the sham group (P<0.05). The peak appeared on Day 7. The nerve conduction velocity recovered slightly after ulinastatin administration (P<0.01; Fig. 2D). In the sepsis group, the twitch tension magnitudes elicited by continuous stimulations were the largest in the Day 1 group, second largest in the Day 3 group, and smallest in the Day 14 group (P<0.05). No significant difference was found between

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Primer sequences for γ- and α7 subunits of nAChR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reverse</td>
</tr>
<tr>
<td>γ subunit</td>
<td>5'-GGGCCGAGTGCTGGACCG-3'</td>
</tr>
<tr>
<td>α7 subunit</td>
<td>5'-GGCCCCGAGGAGCAAGG-3'</td>
</tr>
</tbody>
</table>
the twitch tension elicited by stimulation in the Day 7 group and that in the ulinastatin group ($P>0.05$; Fig. 2).}

Vecuronium dose–response curves

Vecuronium reduced the magnitudes of indirectly elicited twitch tensions in a dose-dependent manner ($P<0.01$; Fig. 3). Fitting the vecuronium dose−response data to the four-variable logistic equation yielded IC$_{50}$ values, which quantitatively indicate the position of the curve. The IC$_{50}$ of vecuronium gradually increased from Day 1 to Day 14 in the sepsis group ($P<0.01$; Table 2). However, the IC$_{50}$ of vecuronium in the rats with ulinastatin was significantly lower than that in the rats with 0.9% NS in the Day 14 group ($P<0.01$). It was close to the IC$_{50}$ of the Day 7 group ($P>0.01$). The IC$_{50}$ ratio, which standardizes the magnitudes of the rightward shifts of the dose−responses curves, was significantly the largest for the rats with 0.9% NS, second largest for the rats in the ulinastatin and Day 7 groups, and smallest on Days 1 and 3 in the sepsis group ($P<0.01$). The slope at IC$_{50}$, which characterizes the slope of the curves, was not significantly different between the sham and Day 1 in the sepsis group ($P>0.05$). In the sepsis group, the slope at IC$_{50}$ gradually increased from Day 1 to Day 3 in the sepsis group ($P<0.01$). The slope at IC$_{50}$ for the rats with 0.9% NS was significantly less than that of the rats with ulinastatin in the Day 14 group ($P<0.01$; Table 2).

Immunohistochemical staining

In the sham muscle specimens, γ- and α_7-nAChR stains were not observed in the skeletal muscle membrane. In the septic
muscle specimens, the skeletal muscle membrane showed γ- and α7-nAChR immunoreactivity from Day 1 to Day 14 (Fig. 4A). On Day 14, the number of γ- and α7-nAChR on the skeletal muscle membrane peaked by positive immunostaining with anti-nAChR γ antibody and anti-nAChR α7 antibody (Fig. 4B). After ulinastatin administration, the expression levels of γ- and α7-nAChR decreased in the skeletal muscle membrane on Day 14, compared with those on Day 7 (P < 0.05).

Western blotting and RT–PCR
The relative protein levels to GAPDH of γ- and α7-nAChR significantly increased on Days 1, 3, 7, and 14 in the sepsis group compared with those in the sham group. The peak value appeared on Day 7 and 14 post-procedure for γ- and α7-nAChR, respectively, by semi-quantitative analysis (P < 0.05; Fig. 5). The γ- and α7 subunits of mRNA were detected in all muscle samples by RT–PCR. Similar to the results of western blot, the ratio of γ- and α7-mRNA to GAPDH mRNA significantly increased on Days 1, 3, 7, and 14 in the sepsis group compared with that in the sham group. The peak value appeared on Day 7 and 14 post-procedure for γ- and α7-nAChR, respectively (P < 0.05; Fig. 6).

Correlation between IC50 of vecuronium and γ-nAchR, or α7-nAchR protein
Statistically significant positive correlations were found between the IC50 of vecuronium and γ-nAchR protein level in the sepsis group (r = 0.864, P = 0.026). The level of α7-nAchR protein was correlated positively with the IC50 of vecuronium in the sepsis group (r = 0.765, P = 0.002).

Discussion
The results of this study demonstrated that sepsis results in resistance to the neuromuscular effect of vecuronium. This
Fig 4 Immunohistochemical staining of γ- and α7-nAChR in the tibialis anterior muscle samples (α, scale bar = 20 μm). The expression of γ- and α7-nAChR were detected on the skeletal muscle membrane, which appeared on Day 1, peaked on Day 7, and declined on Day 14 after ulinastatin administration. An average optical density of γ- and α7-nAChR is shown in graph (a). All values are expressed as mean (SD) (n=6). *P<0.05 vs Day 1; #P<0.05 vs Day 3; ♦P<0.05 vs Day 7; *P<0.05 vs 0.9% NS in the Day 14 group; and *P<0.05 vs the sham group.

Fig 5 Western-blot analysis of γ-nAChR (a) and α7-nAChR (a) protein from the tibialis anterior muscle specimens. Representative results from three individual animals are shown. Relative intensity of γ- or α7-nAChR to GAPDH is shown in the graphs. All values are expressed as mean (SD) (n=6). *P<0.05 vs Day 1; 6P<0.05 vs Day 3; ♦P<0.05 vs Day 7; *P<0.05 vs 0.9% NS in the Day 14 group; and *P<0.05 vs the sham group.
resistance manifested itself as early as Day 3 after CLP operation, persisted until Day 7, and recovered to some extent after ulinastatin administration. This resistance is related to qualitative (isoform) changes in the receptor. These receptors have different electrophysiological properties and ligand-specific sensitivity or affinity. This study has documented a relation between expression of α7- and γ-nAChR and resistance to NMBAs.

We used a septic neuromyopathy model that is considered to be more appropriate to study the physiopathology of neuromuscular disorders. CLP-induced sepsis is characterized by a hyperdynamic state in the early phase (the first 5 days after CLP) followed by a hypodynamic state in the chronic phase (6–28 days after CLP) in the laboratory. It is considered more relevant to clinical sepsis.29–31

It has been reported that acute sepsis stage-dependently attenuated the effect of NMBAs.32 However, the effect of chronic sepsis on NMBAs is still unclear. In the endotoxin model of repeated i.p. injections of lipopolysaccharide into mice, Tomera and Martyn33 reported a three-fold shift to the right of the dose–response curve of d-tubocurarine after 2 weeks. In this study, the rightward-shift magnitudes of the dose–response curves of vecuronium increased about three-fold at 14 days after CLP. Nevertheless, the rightward shift can be reversed partially by ulinastatin administration. The results suggest that systemic inflammation is an important factor, resulting in resistance to NMBAs in sepsis.

The mechanisms of sepsis-induced resistance to NMBAs include increased binding of NMBAs to α1-acid glycoprotein (AAG)11 and facilitated endplate potentials.34 AAG is a second-phase acute phase protein, which was primary protein binding to NMBAs. Its serum concentration increases ∼48 h after tissue injury. And this change reaches a maximum after 3–4 days and slowly declines during the next 10–14 days. Fink and colleagues reported that resistance to atracurium during systemic inflammation is attributable to increased drug binding to AAG. They used an α-bungarotoxin to quantitate the nAChRs. Nevertheless, this ligand does not differentiate nAChRs in muscles.43–52 Kim and colleagues53 demonstrated the capacity of AAG binding to NMBAs, which was significant but limited. Martyn’s group reported resistance to neuromuscular blockade induced by NMBAs in burned and trauma was related to up-regulation of nAChRs. Elevated plasma binding did not explain the potentiating effect of resistance to NMBAs.7,16,37 In our study, γ- and α7-nAChR were found on the skeletal muscle membrane by molecular biological and immunological techniques. The levels of these receptors were highly correlated with the IC50 of the dose–response curves of vecuronium. These results suggested that sepsis-induced hyposensitivity to NMDAs was associated with changes in the quality of post-junctional nAChR. The reduced slope of dose–response curves in septic rats also indicated that sepsis altered the affinities of nAChR to NMDAs, which also originated from quality alteration of nAChR. Thus, different pharmacokinetic and pharmacodynamic factors can potentially contribute to this resistance.

Compared with ε-nAChR, 1/10th – 1/100th doses of agonists affect depolarization in the γ-nAChR.54–56 Low antagonist concentration effectively antagonizes the actions of iontophoretically applied Ach in nAChR.57 α7-AChR has a lower affinity for antagonists. Chiodini and colleagues58 investigated the effects of atracurium on α7-nAChR by biochemical and electrophysiological methods. A comparable inhibition of acetylcholine-evoked current for α7-nAChR was rapid and readily reversible. Higher concentrations of these drugs were required to block α7-AChR than ε-nAChR.59 Thus, γ- and
α7-nAChR expressed on the muscle membrane can lead to lower affinity for NMBAs, thus requiring higher concentration of these drugs for inhibition.

The preliminary indirect evidence indicated that inflammatory cytokines and magnesium can produce a ‘denervation-like state’. The denervation-like state of the skeletal muscle induces an expression of heterogeneous nAChRs. Compared with denervation, the denervation-like state can be considered a state of dysfunction. In our study, we found that sepsis damaged function of motor nerve, including CMAP amplitude of and decreased MCV.

Ulinastatin, a protease inhibitor, was administered to septic rats. Ulinastatin can improve resistance to vecuronium induced by sepsis and inhibit the expression of heterogeneous nAChRs. The effects of ulinastatin included two aspects: (i) ulinastatin inhibit proinflammatory cytokine release, especially TNF-α and IL-6, which serve as moderators of muscle dysfunction and cytokine-mediated muscle damage, and the nerve-induced electrical activity suppresses the expression of α7- and γ-nAChR. Ulinastatin increases acetylcholine release at the neuromuscular junction and enhances neuromuscular electrical activity.

In summary, this study demonstrates that the pharmacodynamics of NMBAs changes in sepsis is associated with the expression of α7- and γ-nAChR in the skeletal muscle. Ulinastatin can improve the effects of systemic inflammation on the expression of these receptors.

Authors’ contributions
L.L. contributed to the design of the experimental protocol and participated in the establishment of the animal model, pharmacodynamic testing, and data analysis. L.L. and Z.W. prepared the manuscript. W.L. contributed to the design of the experimental protocol and participated in the data collection. K.W. and J.C. contributed to the electrophysiological testing and data interpretation. J.L. and L.A. performed immunohistochemical staining and molecular biological detection. B.W. and G.W. contributed to the data analysis. S.M. approved the final manuscript. K.W., J.C., and L.L. attest to the integrity of the original data and the analysis reported in this manuscript. L.L. is the archival author.

Declaration of interest
None declared.

Funding
This study was supported by funds from the National Key Clinical Specialist of Ministry of Public Health, the Medical Key Subjects in Chongqing province, and Wu Jie Ping Medical Science Foundation of China.

References
5 Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 2006; 104: 158 – 69
7 Hogue CW Jr, Itani MS, Martyn JA. Resistance to d-tubocurarine in lower motor neuron injury is related to increased acetylcholine receptors at the neuromuscular junction. Anesthesiology 1990; 73: 703 – 9
8 Ibebunjo C, Nosek MT, Itani MS, Martyn JA. Mechanisms for the paradoxical resistance to d-tubocurarine during immobilization-induced muscle atrophy. J Pharmacol Exp Ther 1997; 283: 443 – 51
10 Hinohara H, Morita T, Okano N, Kunimoto F, Goto F. Chronic intraperitoneal endotoxin treatment in rats induces resistant to d-tubocurarine, but does not produce up-regulation of acetylcholine receptors. Acta Anaesthesiol Scand 2003; 47: 335 – 41
12 Tsukagoshi H, Morita T, Takahashi K, Kunimoto F, Goto F. Cecal ligation and puncture peritonitis model shows decreased nicotinic acetylcholine receptor numbers in rat muscle: immunopathologic mechanisms? Anesthesiology 1999; 91: 448 – 60
14 Ibebunjo C, Martyn JA. Fiberatrophy, but not changes in acetylcholine receptor expression, contributes to the muscle dysfunction after immobilization. Crit Care Med 1999; 27: 275 – 85
17 Fletcher GH, Steinbach JH. Ability of nondepolarizing neuromuscular blocking drugs to act as partial agonists at fetal and adult mouse muscle nicotinic receptors. Mol Pharmacol 1996; 49: 938 – 47
18 Kopta C, Steinbach JH. Comparison of mammalian adult and fetal nicotinic acetylcholine receptors stably expressed in fibroblasts. J Neurosci 1994; 14: 3922 – 33

23 Remick DG, Bolgos GR, Siddiqui J, Shin J, Nemzek JA. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 2002; 17: 463–7

34 Niiya T, Namikita E, Namiki A. Acute late sepsis attenuates effects of a nondepolarizing neuromuscular blocker, rocuronium, by facilitation of endplate potential and enhancement of membrane excitability in vitro. Anesthesiology 2006; 105: 968–75

36 Kim CS, Arnold FJ, Itani MS, Martyn JA. Decreased sensitivity to metocurine during long-term phenytoin therapy may be attributable to protein binding and acetylcholine receptor changes. Anesthesiology 1992; 77: 500–6

38 Fambrough DM. Control of acetylcholine receptors in skeletal muscle. Physiol Rev 1979; 59: 165–227

40 Chiodini F, Charpentier E, Muller D, et al. Blockade and activation of the human neuronal nicotinic acetylcholine receptors by atracurium and laudanosine. Anesthesiology 2001; 94: 643–51

41 Placzek AN, Grassi F, Papke T, Meyer EM, Papke RL. A single point mutation confers properties of the muscle-type nicotinic acetylcholine receptor to homomeric alpha7 receptors. Mol Pharmacol 2004; 66: 169–77

42 Rosenheimer JL. Factors affecting denervation-like changes at the neuromuscular junction during aging. Int J Dev Neurosci 1990; 8: 643–54

Handling editor: M. M. R. F. Struys