containing a balanced electrolyte system. The proposed benefit of colloids in balanced solutions and not in saline-based fluids is avoidance of clinically relevant hyperchloraemic acidosis. However, as we have seen from the published article by Awad and colleagues, administration of 6% HES, and not the unbalanced 4% succinylated gelatine, was associated with a significant and sustained hyperchloraemia and tendency to hyperchloraemic acidosis. A recent review of balanced solutions vs isotonic saline fluids, including crystalloids and colloids, concluded that dilutional hyperchloraemic acidosis is a side-effect, mainly observed after the administration of large volumes of isotonic saline as a crystalloid and not colloid and that there is a relative paucity of data documenting the detrimental effects of this acidosis. There is currently little published data on the effects of balanced colloid solutions on outcome and therefore until such time, their routine use is questionable.

Declaration of interest

None declared.

N. Lawrence*
N. Levy
Suffolk, UK
*E-mail: natasha.lawrence@wsh.nhs.uk

Declaration of interest

R.G.H. is a researcher in the field of dilution kinetics.

R. G. Hahn*
Linköping University, Sweden
*E-mail: r.hahn@telia.com

Haemodilution made difficult

Editor—I have read the BJA article comparing the effects of Gelofusine and Voluven on the blood volume (BV). The variations in BV were assessed by changes in haematocrit. As I have an interest in dilution kinetics, I inserted arbitrary data into the presented equations to see if they yield logical results. Unfortunately, that is not the case.

Suppose that we infuse a patient having a BV of 5 litres (BV0) with enough Gelofusine to decrease the haematocrit from 0.40 to 0.36. The second equation reading \(\Delta \text{Hct} \) gives 100 × (Hct0 − Hct0)/Hct0 then gives 100 × (0.40 − 0.36)/0.40 = 10%. So far, so good.

The third equation is intended to convert \(\Delta \text{Hct} \) into the percentage increase in BV (\(\Delta \text{BV} \)). In my example, one would expect \(\Delta \text{BV} \) to be something in the range of 10%, or 0.5 litres. However, the equation reads \(\Delta \text{BV} = 100 \times \text{BV}0 \times \Delta \text{Hct}/\text{Hct0} \) which yields 100 × 5 × 0.1/0.36, that is, that the BV increases by 139%, or by almost 7 litres. With this result half-way through the math section, it is time to review the accuracy of all presented equations.

I find one minor error, one major error, and one ambiguity.

The minor error is introduced already in the first equation where BV0 is derived from anthropometric measures. The referred paper by Nadler and colleagues proposes different equations for males and females. The one used here is applicable for males only, although the number of females in the present study outnumbered the males by 3:1.

This major error is that conversion from the percentage increase in BV to the corresponding volume increase is made twice, both in the third and fourth equations. In fact, the third equation gives BV instead of \(\Delta \text{BV} \), and the fourth equation is therefore superfluous.

The ambiguity is that \(\Delta \text{Hct} \) in the third equation must represent the absolute difference in haematocrit, that is, Hct0 − Hctt, to make sense. However, the authors have already defined \(\Delta \text{Hct} \) as the relative difference in the second equation. This fooled me in my example. I perceive the percentage sign as a scaling factor, while the authors probably mean that \(\Delta \text{Hct} \) is the absolute difference and that \(\Delta \text{Hct}(\%) \) is the relative difference. If not, \(\Delta \text{BV} \) in the third equation (which is, in fact, BV0) is obtained by dividing Hct0 − Hctt by both Hct0 and Hctt while it should be divided only by Hctt.

The series of five equations is constructed so that any error will be perpetuated and affect the final result, which is \(\Delta \text{BV} \) (litre). The same set was recently used by the same group in another high-impact journal, the Annals of Surgery. Both articles refer to a previous work to support the accuracy of the equations used, but the critical conversion of \(\Delta \text{Hct} \) to \(\Delta \text{BV} \) is made differently there.

These mathematical problems suggest that authors, reviewers, editors, and/or journal statisticians should insert simple assumed data into equations to see if they yield logical results. Equations must also be clear enough to preclude variability in interpretation. The results presented later in the cited papers show that the actual calculations have been carried out by following a course different from the one outlined in the Methods section.

Correspondence
The incorrect formula
\[\Delta BV_t(\%) = BV_0 \left(\frac{\Delta Hct_t}{Hct_0} \right) \times 100 \]

The correct formula
\[\Delta BV_t(\%) = \left[\frac{100}{100 - \Delta Hct_t(\%)} \right] \times 100 - 100 \]

However, the formulae utilized in the spreadsheets for calculations were the correct ones. Hence, while we apologize for this error, we would like to state that this did not affect the results of our calculations.

Declaration of interest

None declared.

S. Awad*
D. N. Lobo
Nottingham, UK

*E-mail: sherif.awad@nottingham.ac.uk

1 Awad S, Dharmavaram S, Wearn CS, Dube MG, Lobo DN. Effects of an intraoperative infusion of 4% succinylated gelatine (Gelofusine®) and 6% hydroxyethyl starch (Voluven®) on blood volume. *Br J Anaesth* 2012; **109**: 168–76

2 Lobo DN, Stanga Z, Aloysius MM, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatine (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way cross-over study in healthy volunteers. *Crit Care Med* 2010; **38**: 464–70

doi:10.1093/bja/aet322