
doi:10.1093/bja/aeu173

Saline and metronidazole

Editor—We read with interest the correspondence by Loader and Brooks1 alerting the readers about the packaging similarities of paracetamol and metronidazole.

We would like to draw attention to a similar situation that arose in our hospital when metronidazole (Baxter, 500 mg in 100 ml) and sodium chloride 0.9% w/v (Baxter, 100 ml) were introduced at the same time without much staff consultation.

We raised an alert locally in our department as to the existence of the situation. We also ensured that the two products were separated and finally one of the products was replaced by a different manufacturer with a very different packaging.

We agree that the person administering the product should check the content before administration and holds a responsibility for the effects. This type of organizational circumstance which provides for human error to occur in a stressful situation could be avoided by a simple method of changing the packaging of one of the products. This aspect has been highlighted in a large-scale survey among anaesthesia practitioners.2 The use of colour, graphics, and typography has been recommended by the safety agency in an effort to avoid errors.3

Declaration of interest

None declared.

G. Ramaswamy*
R. Naik
Enfield, UK
*E-mail: g.ramaswamy@nhs.net


doi:10.1093/bja/aeu177

Cerebral blood flow is determined by arterial pressure and not bypass flow rate

Editor—Moerman and colleagues4 reported that in cardiac surgery patients, restoration of arterial pressure with i.v. phenylephrine during low-flow cardiopulmonary bypass decreased cerebral oxygen saturation. They conclude that this decrease in cerebral oxygen saturation may be due to decreased cerebral blood flow.

Nevertheless, they discuss the possibility that the decrease in cerebral oxygen saturation may result from measurement artifact due to cutaneous vasoconstriction by phenylephrine and the failure of cerebral oximeters to account for extra cranial contamination.2 Indeed, laboratory and clinical studies of cerebral blood flow during cardiopulmonary bypass support the position that it is measurement artifact that explains their results.

In our baboon model, phenylephrine administered to increase arterial pressure during low-flow bypass markedly increased cerebral blood flow.3 In both laboratory and clinical studies, when arterial pressure and cardiopulmonary bypass flow rate were varied, cerebral blood flow was dependent on mean arterial pressure and not bypass flow rate.4 5 Additionally, measurements of cerebral metabolic rate for oxygen in these studies further support the conclusion that the small changes in cerebral oxygen saturation observed by Moerman and colleagues indicate extra cranial contamination and not decreased cerebral blood flow.

Declaration of interest

None declared.

A. E. Schwartz
New York, USA
E-mail: arthur.schwartz@mountsinai.org


Cerebral blood flow is determined by arterial pressure and not bypass flow rate

Editor—Many of the opinions expressed by Knipe and Hardman in their recent editorial1 have previously been published as correspondence by Poplett and Smith with a comprehensive reply from ourselves2 after publication of the Association of Anaesthetists of Great Britain and Ireland (AAGBI) guidelines on ‘Do Not Attempt Resuscitation (DNAR) Decisions in the perioperative period’.

Do not attempt resuscitation decisions in the perioperative period

Editor—Many of the opinions expressed by Knipe and Hardman in their recent editorial1 have previously been published as correspondence by Poplett and Smith with a comprehensive reply from ourselves2 after publication of the Association of Anaesthetists of Great Britain and Ireland (AAGBI) guidelines on ‘Do Not Attempt Resuscitation (DNAR) Decisions in the