Performance of influenza-specific triage tools in an H1N1-positive cohort: P/F ratio better predicts the need for mechanical ventilation and critical care admission†

B. Morton1,*, L. Tang2, R. Gale3, M. Kelly3, H. Robertson4, M. Mogk5, N. Robin4 and I. Welters2,3

1Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK, 2Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK, 3Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, UK, 4Critical Care Department, Countess of Chester Hospital, UK, and 5MoReData GmbH, Giessen, Germany

*Corresponding author. E-mail: ben.morton@lstmed.ac.uk

Abstract

Background: Pandemic influenza presents a major threat to global health and socioeconomic well-being. Future demand for critical care may outstrip supply and force clinicians to triage patients for admission. We evaluated the Simple Triage Scoring System (STSS), Ontario Health Plan for an Influenza Epidemic (OHPIP) and PaO2/FiO2 (P/F) ratio to determine utility in predicting need for mechanical ventilation.

Methods: We conducted a retrospective case note review of patients admitted to two centres, Royal Liverpool University Hospital and Countess of Chester Hospital, during the UK influenza pandemic of 2010–11. Demand for critical care during this period forced hospitals in Cheshire and Merseyside to implement escalation policies and increase capacity. Inclusion criteria were polymerase chain reaction–confirmed H1N1 influenza and age >18 years. Exclusion criteria were no evidence of treatment for influenza, patient not admitted to hospital or the inability to locate case notes.

Results: One hundred and one patients were included, 29 were admitted to critical care and 23 required mechanical ventilation. The P/F ratio predicted the need for mechanical ventilation with a receiver operating characteristic area under the curve (ROC AUC) of 0.885 (CI 0.817–0.952). Predictive ability was not reduced when the P/F ratio had to be estimated using the Pandharipande tool. The STSS score predicted the need for mechanical ventilation [ROC AUC 0.798 (CI 0.704–0.891)]. The reverse triage component of the OHPIP tool was a poor predictor of patient outcome.

Conclusions: The P/F ratio was a better predictor of need for mechanical ventilation than STSS. The P/F ratio is a simple and accepted determinant of hypoxaemia and should be used if secondary triaging becomes necessary during future influenza pandemics.

Key words: critical care; influenza, human; pandemics; patient admission; triage

† This article is accompanied by Editorial Aev141.

Accepted: December 22, 2014

© The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved.

For Permissions, please email: journals.permissions@oup.com
Pandemic influenza presents a major threat to global health and socio-economic well-being, therefore governments need to plan for future outbreaks to ensure that demand for critical care resources does not overwhelm supply. When demand for resources is high, clinicians must triage patients to select those most likely to benefit from critical care. Two triage tools developed specifically for future pandemics are the Ontario Health Plan for an Influenza Epidemic (OHPIP) and the Simple Triage Scoring System (STSS).

The STSS is a secondary triage tool designed for use in the emergency department to identify patients at risk of deterioration and promote appropriate referral to critical care. The STSS is calculated using routine patient observations (respiratory rate, heart rate, blood pressure, pulse oximetry, and consciousness level) to calculate a five-component score; this does not require a detailed medical history or laboratory data (online only, Supplementary material Table 1). The OHPIP is a tertiary triage tool designed for use by critical care physicians to allocate critical care resources that combines the established Sequential Organ Failure Assessment (SOFA) score with a set of inclusion and exclusion criteria agreed upon by expert consensus. Briefly, inclusion criteria are the need for mechanical ventilation and refractory hypotension. In addition, multiple life-limiting exclusion criteria are defined (e.g. severe trauma, cardiac arrest, metastatic malignant disease). The SOFA score and inclusion and exclusion criteria are combined to give a four-part triage code: limit to medical management or palliate, admit with high priority, admit with intermediate priority, or discharge (online only, Supplementary material Tables 1 and 2). We applied a published tool for approximation of the P/F ratio in the absence of an arterial blood gas (log Pa_2/$\text{Fi}_2 = 0.48 \times 0.78 \times \log \text{Sa}_2$/$\text{Pa}_2$). In addition, we used the Richmond Agitation and Sedation Score to approximate the Glasgow Coma Scale if the patient was sedated at the point of referral. We used a priori criteria to determine when the retrospective assessment should be applied. If the patient was not referred to critical care, we used their initial emergency department consultation. If the patient was referred to critical care, we used their point of referral. We used a priori criteria to determine when the retrospective assessment should be applied. If the patient was not referred to critical care, we used their initial emergency department consultation. If the patient was referred to critical care, we used their point of referral.

Methods

Patients

We performed a retrospective case note review of patients with confirmed H1N1 influenza during the UK influenza pandemic of 2010–11. Two centres were included in the review: the Royal Liverpool University Hospital, an inner-city tertiary care centre with >28,000 accident and emergency (A&E) department admissions per year, and the Countess of Chester Hospital, a district general hospital with >16,000 A&E admissions per year. One hundred and forty-nine patients tested positive for H1N1 influenza across the two hospital sites, 134 patients at the Royal Liverpool and 15 patients at the Countess of Chester. Patients were included if they had H1N1 influenza confirmed by polymerase chain reaction (PCR) and were age >18 years. Patients were excluded if laboratory results did not correlate with the clinical notes (e.g. no evidence of treatment for influenza), the patient was admitted to the hospital (e.g. nasal swab sent from community) or if case notes could not be located. One hundred and one patients met the criteria for inclusion (Fig. 1). We reviewed medical case notes, laboratory results and Intensive Care National Audit and Research Centre (ICNARC) case-mix programme data for analysis. Two independent reviewers examined the records; databases were then cross-checked, with any outstanding disparities judged by the senior author. There was a need for senior arbitration in two cases. The Bristol Research Ethics Committee approved the study plan (13/LO/0609) and deemed that individual patient consent was not necessary for this study.

Triage tools

We retrospectively applied the OHPIP and STSS tools to predict the need for mechanical ventilation in a representative patient cohort. Determination of the utility of the proposed triage tools will help to inform clinicians and health care service providers in planning for future pandemics.
We used the critical care consultation immediately prior to admission. In addition, we applied the OHPIP reassessment tool to patients who had critical care stays longer than 48 h. The hypothetical reverse triage tool output was then compared against clinical outcome measures for individual patients.

Statistical analysis

The primary outcome measure was the ability of the OHPIP and STSS tools and the P/F ratio to predict the need for mechanical ventilation. Secondary outcomes were the ability to predict the need for critical care admission and mortality. We determined that mechanical ventilation is a more objective outcome measure compared with critical care admission, as the decision to intubate and ventilate is more patient rather than institution dependent. The criteria for critical care admission may vary regionally, nationally, and internationally. Statistical analysis was performed with R (version 3.0.1; R Project for Statistical Computing, Vienna, Austria).

Descriptive data are presented as median and interquartile range (IQR; range for age). Categorical variables are given in cross-tables. Data were examined for normal distribution using normal Q-Q plots and the Shapiro–Wilk test. For non-normally distributed data, the Mann-Whitney U-test was performed to assess differences between groups. The Fisher’s exact test was used to determine associations in categorical variables. For multiple comparisons, P-values were adjusted using the Bonferroni-Holm method. Receiver operating characteristic (ROC) curves were plotted to determine the ability of the selected variable to predict outcomes. We determined that an area under the curve (AUC) of 0.7 equated to a ‘fair’ predictor, 0.8 a ‘good’ predictor, and 0.9 an ‘excellent’ predictor.\(^{15}\)

Results

We assessed the P/F ratio, STSS score, and OHPIP score in 101 patients with confirmed H1N1 influenza admitted to two UK hospitals during the winter of 2010–11. Demand for critical care during this period forced hospitals in Cheshire and Merseyside to implement ‘escalation’ policies, cancelling all elective surgery to increase capacity.

Twenty-three of 101 patients required mechanical ventilation (out of 29 admitted to critical care) (Table 1). Eighty-six patients with positive H1N1 PCR nasal swab were included in the study (Figure 1). Patients were excluded for various reasons: influenza A negative, no hospital admission, or case notes unavailable.

Mechanical ventilation (n=23)

No mechanical ventilation (n=78)

<table>
<thead>
<tr>
<th>Age, median (IQR), years</th>
<th>47 (18–67)</th>
<th>38 (17–86)</th>
<th>0.048</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males, n (%)</td>
<td>11 (47.8)</td>
<td>33 (42.3)</td>
<td>0.661</td>
</tr>
<tr>
<td>Mortality, n (%)</td>
<td>7 (30.4)</td>
<td>4 (5.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospital LOS, median (IQR)</td>
<td>20 (12–30)</td>
<td>3 (2–7.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>SOFA, n (%)</td>
<td>4 (3–6)</td>
<td>2 (1–3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ventilator-dependent days, median (IQR)</td>
<td>10 (6–18)</td>
<td>N/A</td>
<td><0.001</td>
</tr>
<tr>
<td>Critical care admission, n (%)</td>
<td>23 (100)</td>
<td>6 (7.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Critical care LOS, median (IQR)</td>
<td>12 (7–20)</td>
<td>4.5 (0–11)</td>
<td>0.035</td>
</tr>
<tr>
<td>APACHE II, median (IQR)</td>
<td>16 (11–22)</td>
<td>16 (10–27)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
were from hospital admission areas (66 emergency department, 20 acute medical unit), 14 patients were from medical wards, and 1 patient was a critical care transfer from another hospital.

Patients who required mechanical ventilation were more likely to die (mortality 30.4% vs 5.1%, P ≤ 0.001), had more severe organ impairment (median SOFA 4 vs 2, P ≤ 0.001), and were older (median age 47 vs 38 years, P = 0.048). Patients who required ventilation had more severe symptoms of respiratory distress (higher respiratory rate, lower SaO2, lower pH, and lower P/F ratio) and a more pronounced acute phase response (lower serum albumin concentrations, higher CRP levels) (online only, Supplemental material Table 3).

The STSS scores are compared against actual patient outcomes in Table 2. Figure 2A and B demonstrate the ROC curves using the STSS for mechanical ventilation [AUC 0.798 (CI 0.704–0.891)] and critical care admission [AUC 0.816 (CI 0.727–0.904)].

The OHPIP score suggested that 19 patients should be admitted to critical care with the highest priority and 4 with intermediate priority (Table 3). Using the cut-off values ‘red’ and ‘orange’ to admit and ‘blue’ and ‘green’ to not admit, the tool predicted critical care admission with a sensitivity and specificity of 79.3% and 98.6%, respectively. With the same cut-off values, the OHPIP predicted the need for mechanical ventilation with a sensitivity of 82.6% and a specificity of 93.6%. Eleven patients met the OHPIP exclusion criteria and therefore two of this study population would have been refused admission using the tool.

The OHPIP reverse triage tool mandates re-evaluation of patients admitted to critical care at 48 and 120 h. Based on this, a recommendation is made to either withdraw critical care and palliate or continue active treatment (or discharge if the patient does not require critical care). Table 4 displays the recommendation that would have been made had the reverse triage tool been applied vs the actual outcome for patients.

P/F ratio [Pao2, (mmHg)/Fio2] predicted the need for mechanical ventilation with an AUC of 0.885 (CI 0.817–0.952) (Fig. 2C) and critical care admission with an AUC of 0.885 (CI 0.807–0.964) (Fig. 2D). When no arterial blood gas sample was taken during patient assessment (90/101 patients), the P/F ratio was estimated using the previously validated Pandharipande tool.13 Using a cut-off value P/F ratio <260, the P/F ratio predicted the need for mechanical ventilation with a sensitivity and specificity of 87.0% and 76.6%, respectively. If the Pandharipande tool was used alone, ignoring measured values, the estimated P/F ratio predicted the need for ventilation with an AUC of 0.921 (CI 0.869–0.972) and critical care admission with an AUC of 0.934 (CI 0.887–0.981). A cut-off value of P/F<280 combined the best sensitivity and specificity for mechanical ventilation (95.7% and 77.6%, respectively) (see Supplementary material Fig. 1). The SOFA score was a less useful predictor of both mechanical ventilation and critical care admission (online only, Supplemental material Fig. 2).

Discussion

Our study demonstrates that oxygen exchange (P/F ratio) better predicts the need for mechanical ventilation and critical care admission than the STSS triage tool. Patients who required mechanical ventilation were statistically more likely to present with respiratory distress and have a more pronounced acute phase reaction. The reverse triage component of the OHPIP tool was a poor predictor of patient outcome and we recommend that it should not be used in the H1N1 population. Based on our results, we recommend that the P/F ratio should be preferred to STSS as a secondary triage tool and prompt referral to critical care if the ratio is <300.

Our patient cohort broadly matches previously published work on critically ill patients with pandemic H1N1 influenza.11 16 Patients who required mechanical ventilation and or critical care were more likely to have respiratory distress (increased respiratory rate and hypoxaemia). In our patient cohort we noted that critical care patients had decreased albumin concentrations (median 31 vs 38 g Litre−1, P ≤ 0.001). This marker has not been reported previously as a marker of severity in pandemic influenza, although it is known that albumin levels are inversely related to mortality in acute illness.17

The P/F ratio was the best predictor of the need for mechanical ventilation in our patient cohort [0.885 (CI 0.817–0.952)]. In addition, there are a number of advantages to using this single parameter over the STSS. No additional training is required; it is a standard measurement used widely by emergency, respiratory, and critical care physicians; and it is part of the diagnostic criteria for ARDS.12 An interesting finding is that estimated P/F ratios calculated using the Pandharipande equation actually had greater predictive ability than arterial blood gas values in this cohort (Supplementary material Fig. 1). Why an estimated P/F ratio should perform better than the actual value is unclear, but this finding does have potential implications: the estimation is based on a non-invasive calculation, derived from SaO2 and FiO2, that is quick and easy to perform and may be of particular value in resource-poor geographical settings or to signpost those patients that should have arterial blood gas analysis (e.g. on handover from nurse triage to initial medical assessment). While the Pandharipande15 formula itself is complex, its use could be facilitated by setting up a software macro to automatically generate a P/F ratio with entry of SaO2 and FiO2 as part of patient data management systems.

The STSS tool predicted the need for mechanical ventilation with an AUC of 0.798 (CI 0.704–0.891) in our patient cohort, less accurate than in a study by Adeniji et al.10 (AUC 0.91 (CI 0.83–0.99)). However, our cohort more accurately reflects the intended population for the triage tool: our patients were admitted to hospital during a pandemic when escalation procedures were required and our sample size was larger (101 vs 62 patients assessed). We found that an STSS score ≥ 2 was the best predictor of critical admission (sensitivity 69.6%, specificity 76.9%). Tools with AUC values >0.8 on ROC analysis are considered to be good predictors of outcome. However, when used with a specific cut-off (required for practical prospective application), the tool did not perform well, limiting utility in clinical practice.

We found that OHPIP predicted critical care admission with a positive predictive value of 95.7%, sensitivity of 75.9%, and specificity of 91.0%. Sensitivity and specificity in our cohort were higher than those reported by Guest et al.8 (29% and 84%, respectively), however, they applied the tool to general case-mix

![Table 2](https://academic.oup.com/bja/article-abstract/114/6/927/253328)
intensive care admissions, not to the intended triage tool population. The OHPIP tool requires a detailed medical history to determine if exclusion criteria are met. Although we did not specifically evaluate the ease of application, a detailed medical history is required to determine exclusion criteria, some of which (e.g., spirometry) was not available, even on retrospective evaluation with full case notes. Authors of the OHPIP themselves have stated that the ‘Ontario protocol is complex, requires laboratory investigations and has not been fully evaluated’. They also demonstrated that, even as experts and authors of the tool, the OHPIP is difficult to apply, with frequent disagreements between triage officers.

In common with the study by Khan, we found that the reverse triage component of the tool poorly predicted patient
outcome: only two of nine and one of five patients who would be recommended for palliation at 48 and 120 h assessment subsequently went on to die. We found a signal of increased critical care length of stay for those patients who would have been palliated using the reverse triage tool, but this did not reach statistical significance. Based on this, we agree with the assertion made by Khan et al. that application of the reverse triage tool would lead to inappropriate withdrawal of care. The tool is applied at 48 and 120 h. The table demonstrates the number of patients who met the criteria at each time point and the number of those patients who went on to die in hospital. STSS could not be calculated in patients who were sedated, mechanically ventilated, and required cardiovascular support. IQR, interquartile range.

Table 3: Ontario Health Plan for an Influenza Pandemic (OHPIP) tool recommendations compared with actual patient outcomes. The table shows the number of patients admitted with H1N1 influenza that met OHPIP criteria and compares this to the number who were admitted to critical care, those who required mechanical ventilation, and those who survived. Exclusion criteria as follows: 2, metastatic malignant disease; 3, severe irreversible neurological conditions; 5, end-stage organ failure; 1, SOFA >14. Of the 11 patients who met the criteria for exclusion (code blue), 3 died during their hospital stay, 1 died during critical care admission, and 2 were referred but refused admission.

<table>
<thead>
<tr>
<th>Code</th>
<th>OHPIP criteria</th>
<th>Action</th>
<th>Frequency</th>
<th>Admitted</th>
<th>Ventilated</th>
<th>Survived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Exclusion criteria met or SOFA >11</td>
<td>No admission</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Red</td>
<td>SOFA ≤7 or single organ failure</td>
<td>Highest priority</td>
<td>20</td>
<td>19</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Orange</td>
<td>SOFA 8–11</td>
<td>Intermediate priority</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Green</td>
<td>No significant organ failure</td>
<td>No admission</td>
<td>66</td>
<td>4</td>
<td>3</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td>29</td>
<td>23</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 4: Reverse triage component of the Ontario Health Plan for Influenza Pandemic (OHPIP) tool. The table demonstrates the output from the reverse triage component of the OHPIP tool. The decision to palliate is made if the SOFA score is >11 or exclusion criteria are met. Continued treatment is recommended if the SOFA score is <11 and discharge from critical care if the patient is no longer dependent on mechanical ventilation. The tool is applied at 48 and 120 h. The table demonstrates the number of patients who met the criteria at each time point and the number of those patients who went on to die in hospital. STSS could not be calculated in patients who were sedated, mechanically ventilated, and required cardiovascular support. IQR, interquartile range.

<table>
<thead>
<tr>
<th>Decision</th>
<th>48 h assessment</th>
<th>Survived to discharge</th>
<th>Hospital length of stay, median (IQR)</th>
<th>120 h assessment</th>
<th>Survived to discharge</th>
<th>Hospital length of stay, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palliate</td>
<td>9</td>
<td>7</td>
<td>32 (16–49)</td>
<td>5</td>
<td>4</td>
<td>29 (23–32)</td>
</tr>
<tr>
<td>Continue active treatment or discharge from critical care</td>
<td>17</td>
<td>12</td>
<td>20 (12–26)</td>
<td>17</td>
<td>13</td>
<td>25 (13–30)</td>
</tr>
</tbody>
</table>

We pragmatically applied the tools at emergency department admission if no referral was made or upon referral to critical care. This may have introduced bias, but the median time from hospital admission to critical care referral in this cohort was 5 h, so we believe this to be minimal. Examining those patients who would have been referred to critical care (n=72), 71 were discharged home and 1 was discharged to a rehabilitation facility, and the median hospital length of stay was 3 days (IQR 2–6). Therefore we would argue that there were no inappropriate ‘non-referrals’ in this cohort. Some case notes from PCR confirmed H1N1-positive patients were not available for inclusion, a common limitation of retrospective studies. We mitigated for potential differences in methods of data collection at the two hospitals with one consistent investigator (B.M.) in conjunction with separate independent investigators at each site. The transferability of our results to future influenza pandemics will depend upon the presentation of the disease: hypoxaemia was a cardinal feature of H1N1 influenza but may not be common to future outbreaks.

There are a number of ethical implications to consider when interpreting our results. The implementation of triage tools leaves the physician in conflict: on the one hand, the ethical principles of distributive justice, and on the other, legal obligations to individual patients. Our recommendation to use the P/F ratio as a secondary triage tool applies to only those patients with a presumptive diagnosis of influenza, not all emergency admissions, who may present with a variety of physiological disturbances. In this context, a P/F value of <300 was 95.6% sensitive and had a 44% positive predictive value for mechanical ventilation, a useful cut-off to guide referral from emergency to critical care physicians. However, despite the great complexity of the OHPIP tool to guide critical care admission, it did not accurately replace decisions based on experience and clinical judgement in our cohort. Improper use of triage tools could lead to increased deaths and promote public mistrust of the health care system and health professionals. Therefore further work is required to develop tools that can engender health professional and public trust for critical care resource allocation.

In summary, we found that the P/F ratio was a better predictor of both need for critical care admission and mechanical ventilation than the STSS. In the absence of an arterial blood gas, the P/F ratio can be accurately estimated with the Pandharipande tool using simple observational data (SaO2 and FIO2). Low oxygen exchange at critical care admission can be used to stratify risk in severe sepsis. Therefore there is strong rationale for using the P/F ratio to assess the severity of H1N1 influenza, a disease characterised by refractory hypoxaemia. We propose that patients with a P/F value <300 should be referred for critical care assessment. The OHPIP tool should be simplified and undergo further evaluation before it can be implemented in disaster.
scenarios such as pandemic influenza. Based on our and previously published results, we believe that the reverse triage component of the OHFIP tool should not be implemented in the event of a future pandemic.

Authors' contributions

B.M.: designed the study protocol, prepared and submitted the ethical application, designed an a priori database for data collection, examined all sets of notes as an independent investigator, interpreted results, and wrote the manuscript. L.T.: contributed to the ethical application process, was an independent investigator, performed preliminary data analysis, and contributed to the preparation of the manuscript. R.G.: contributed to preparation of the study protocol and ethical documentation, was an independent investigator, and contributed to interpretation of the data. M.K.: made a significant contribution to design of the study and collected initial pilot data. H.R.: was an independent investigator, jointly developed the a priori database, and collated results at the Chester site. M.M.: performed the statistical analysis for the project. N.R.: developed the initial concept for the study, acted as a senior adjudicator at the Chester site, and contributed to preparation of the manuscript. I.W.: was the chief investigator for the study, interpreted study results, and contributed to preparation of the manuscript. All authors read and approved the final manuscript.

Supplementary material

Supplementary material is available at British Journal of Anaesthesia online.

Acknowledgements

The authors would like to acknowledge Sister Karen Williams and Sister Anna Walker for their support during this project.

Declaration of interests

The authors declare no financial or non-financial competing interests in the preparation of this manuscript.

Funding

The NHS pays most of the authors’ salaries and no additional funding was received in the preparation of this manuscript. M. M. (statistician) is not paid by the NHS, he works for a private company.

References

14. Felton TW, Sander R, Al-Aloul M, Dark P, Bentley AM. Can a P/F ratio predicts the need for ventilation in H1N1 influenza. JAMA 2011; 305: 206
20. O’Laughlin DT, Hick JL. Ethical issues in resource triage. Respir Care 2008; 53: 190–7; discussion 197–200

Handling editor: J. P. Thompson