Alternative intubation techniques vs Macintosh laryngoscopy in patients with cervical spine immobilization: systematic review and meta-analysis of randomized controlled trials

L. Suppan1,*, M. R. Tramèr2,3, M. Niquille1, O. Grosgurin1 and C. Marti1

1Division of Emergency Medicine, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 2, CH-1211 Geneva 14, Switzerland, 2Division of Anaesthesiology, Geneva University Hospitals, Geneva, Switzerland, and 3Faculty of Medicine, University of Geneva, Geneva, Switzerland

*Corresponding author. E-mail: laurent.suppan@hcuge.ch

Abstract

Background: Immobilization of the cervical spine worsens tracheal intubation conditions. Various intubation devices have been tested in this setting. Their relative usefulness remains unclear.

Methods: We searched MEDLINE, EMBASE, and the Cochrane Library for randomized controlled trials comparing any intubation device with the Macintosh laryngoscope in human subjects with cervical spine immobilization. The primary outcome was the risk of tracheal intubation failure at the first attempt. Secondary outcomes were quality of glottis visualization, time until successful intubation, and risk of oropharyngeal complications.

Results: Twenty-four trials (1866 patients) met inclusion criteria. With alternative intubation devices, the risk of intubation failure was lower compared with Macintosh laryngoscopy [risk ratio (RR) 0.53; 95% confidence interval (CI) 0.35–0.80]. Meta-analyses could be performed for five intubation devices (Airtraq, Airwayscope, C-Mac, Glidescope, and McGrath). The Airtraq was associated with a statistically significant reduction of the risk of intubation failure at the first attempt (RR 0.14; 95% CI 0.06–0.33), a higher rate of Cormack–Lehane grade 1 (RR 2.98; 95% CI 1.94–4.56), a reduction of time until successful intubation (weighted mean difference −10.1 s; 95% CI −3.2 to −17.0), and a reduction of oropharyngeal complications (RR 0.24; 95% CI 0.06–0.93). Other devices were associated with improved glottis visualization but no statistically significant differences in intubation failure or time to intubation compared with conventional laryngoscopy.

Conclusions: In situations where the spine is immobilized, the Airtraq device reduces the risk of intubation failure. There is a lack of evidence for the usefulness of other intubation devices.

Key words: airway; complications, spinal injury; intubation, tracheal tube; trauma

Accepted: April 27, 2015

© The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Failure to perform adequate immobilization of the cervical spine during orotracheal intubation in patients with cervical spine injury or in patients at risk of cervical injury may result in a devastating neurological outcome. International guidelines recommend manual or mechanical cervical immobilization in these patients. Manual in-line stabilization (MILS) is the preferred technique to maintain the cervical spine immobile during tracheal intubation and has been shown to limit cervical spine displacements during orotracheal intubation compared with the use of a cervical collar. While cervical immobilization may prevent injury of the cervical spine, it also worsens intubation conditions. In particular, cervical spine immobilization may prevent adequate alignment of the oral, pharyngeal, and tracheal axes, jeopardizing visualization of the glottis when direct laryngoscopy is attempted. Moreover, the use of a cervical collar reduces mouth opening, which may further complicate orotracheal intubation. The most relevant outcome in this context is intubation failure. Various alternative intubation devices have been compared with the classic Macintosh blade in randomized controlled trials (RCTs), but it remains unclear whether these devices perform better compared with conventional laryngoscopy. The aim of our analysis was systematically to review the evidence from RCTs comparing alternative intubation devices with the standard Macintosh laryngoscope in subjects with cervical spine immobilization.

Methods

Search strategy, study selection, data extraction, and analysis were performed according to a predefined protocol (available from the authors). Data reporting followed the PRISMA statement (Supplementary material, Appendix SA).

Study selection

To identify relevant articles, two authors (L.S. and C.M.) searched Medline, EMBASE, and the Cochrane Library (CENTRAL) using the keywords ‘intubation’, ‘spine’ or ‘cervical’ or ‘axis’, and ‘immobilisation’ or ‘immobilization’ or ‘stabilisation’ or ‘stabilization’, and combinations of those (Supplementary material, Appendix SB). Searches were performed to October 2014 and were restricted to RCTs. Bibliographies of retrieved articles were manually checked for additional references. Titles and abstracts were screened by two authors independently (L.S. and C.M.). All retrieved articles were reviewed by two authors (L.S. and C.M.). Any disagreement was resolved through consensus or, if necessary, by discussion with a third author (M.R.T.).

Inclusion criteria

We included RCTs comparing any alternative intubation device with the Macintosh laryngoscope in adult patients under cervical immobilization. Cervical immobilization had to be performed using the MILS technique, head immobilization by fixation of at least two points, or a cervical collar. Crossover studies were included if the sequence of use of intubation devices was randomized. Manikin studies were not considered.

Outcomes

The primary end point was the risk of intubation failure at the first attempt. Secondary end points were the proportion of subjects with Cormack-Lehane grade 1, time to successful intubation (duration of the first successful attempt), and the risk of immediate complications, such as tooth damage or oropharyngeal trauma.

Data extraction

One author (L.S.) extracted all relevant information from the original reports and entered the data into an electronic data sheet specifically designed for this study. Extracted data were cross-checked by a second author (C.M.). Discrepancies were resolved by consensus. Authors of original reports were contacted when data were missing or were reported in a format that did not allow statistical analysis.

Quality of data reporting

We assessed the quality of data reporting using a modified four-item Oxford scale, taking into account allocation concealment, sequence generation, blinding, and description of dropouts (Supplementary material, Appendix SC). Additionally, we assessed outcomes and selective reporting.

Data synthesis and analyses

All analyses were performed according to the intention-to-treat principle. The Mantel–Haenszel method was used to pool dichotomous data and to compute pooled risk ratios (RRs) with 95% confidence intervals (CIs). The inverse variance method was used to pool dichotomous data and to calculate weighted mean differences with 95% CIs.

The significance level was set at 0.05 for all analyses. Subgroup analyses for individual devices were performed when relevant data were reported in at least three studies or at least 100 patients. Statistical heterogeneity was evaluated using the I² statistic. A random-effects model was used throughout. Potential factors explaining heterogeneity were explored by prespecified subgroup analyses, including immobilization technique, experience of the operators, and the use of a stylet in the control group.

Sensitivity analyses were conducted to check for the robustness of the data by removing each study one by one, excluding lower quality studies (Oxford score <4), excluding studies not using or not mentioning the use of a stylet in the control group, and excluding studies using immobilization techniques other than MILS. To evaluate the impact of the cervical immobilization technique and the use of a stylet on the incidence of intubation failure during Macintosh intubation, we compared the mean incidence of intubation failure in the control groups of studies using MILS vs other stabilization, and studies using a stylet in the control group vs studies not using or not mentioning the use of a stylet, and calculated the RR of failure using the χ² statistic. For statistically significant dichotomous results, we calculated numbers needed to treat (NNT) and numbers needed to harm (NNH) with 95% CIs using the inverse of the absolute risk reduction. When continuous data were not reported as means with standard deviations, we contacted the authors to obtain this information. If this request was unsuccessful, these data...
were not analysed because a skewed distribution could not be ruled out. Publication bias was assessed using visual inspection of the funnel plot.

Analyses were performed using the Cochrane Review Manager software (RevMan 5.2.8; © The Nordic Cochrane Centre, The Cochrane Collaboration, 2013) and the Medcalc® online relative risk calculator (www.medcalc.org/calc/relative_risk.php).

Results
Study selection and characteristics
We retrieved 767 references; 212 were double hits (Fig. 1). Of the 555 remaining articles, 416 were excluded based on title and abstract. Full texts were obtained for the 139 remaining articles. Of these, 38 were non-randomized trials, 23 did not use conventional laryngoscopy in the control group, 20 used an inadequate immobilization technique, 16 were performed on manikins, and 18 provided insufficient data. One additional study was identified during the peer review process. We finally included 24 studies with data of 1866 patients evaluating 16 different alternative intubation devices. Intubations were performed exclusively by experienced anaesthetists in patients without cervical trauma undergoing elective surgery. For cervical immobilization, MILS was used in the majority of studies (Table 1). None of the studies included patients with expected difficult intubation, and conventional induction sequences using non-depolarizing neuromuscular blocking agents were performed throughout. In control groups, there were a total of 646 intubation attempts with the Macintosh blade; the failure risk ranged from 0.19 to 63%.

Intubation failure at first attempt
Eighteen studies (1500 patients) reported on intubation failure at first attempt. On average, the risk of intubation failure at first attempt was 9.9% with alternative devices and 24.5% with Macintosh laryngoscopy; RR 0.53 (95% CI 0.35–0.80), NNT 9.1 (95% CI 5.2–33; Fig. 2). Sufficient data to perform meta-analyses were available for the Airtraq, Airway scope, C-Mac, Glidescope, and McGrath devices (Supplementary material, Appendix SD). On average, the risk of intubation failure with Airtraq (five studies, 294 patients) was 3.4%, compared with 28.6% with Macintosh laryngoscopy; RR 0.14 (95% CI 0.06–0.33), NNT 5.0 (95% CI 3.9–8.1). The risk of intubation failure was not significantly different with each of the four other devices (Airway scope, C-Mac, Glidescope, and McGrath) compared with Macintosh laryngoscopy (Fig. 3).

Cormack–Lehane grade
Fifteen studies (1684 patients) reported on the Cormack–Lehane grade. On average, 66% of patients had Cormack–Lehane grade 1 with alternative devices compared with 18% with Macintosh laryngoscopy; RR 3.44 (95% CI 2.78–4.26), NNT 4.1 (95% CI 3.6–4.8). Sufficient data to perform meta-analyses were available for all five devices, and all were associated with a significantly higher rate of Cormack–Lehane grade 1 compared with Macintosh laryngoscopy: Airtraq, RR 2.98 (95% CI 1.94–4.56); Airway scope, RR 5.16 (95% CI 3.19–8.33); C-Mac, RR 1.92 (95% CI 1.00–3.72); Glidescope, RR 4.33 (95% CI 2.43–7.70); and McGrath, RR 3.57 (95% CI 2.84–4.49; Fig. 4).

Time to intubation
Seventeen studies (1441 patients) reported on the time to successful intubation. It was generally reported as the time between the beginning of laryngoscopy and the confirmation of tracheal tube placement through direct visualization of the vocal cords or capnography. Sufficient data to perform

Fig 1 Study flow chart. RCT, randomized controlled trial.

Pubmed 374 hits
Embase 310 hits
Cochrane 75 hits
Bibliographies 8 hits

555 references examined*
416 excluded based on title or abstract
139 potentially relevant references
38 not RCT
23 inadequate control group
20 inadequate or no stabilization technique
18 insufficient data
16 manikin RCT
24 included RCT
Table 1 Characteristics of included trials. *Crossover study. ILMA, intubating laryngeal mask airway; MILS, manual in-line stabilization

<table>
<thead>
<tr>
<th>Citation</th>
<th>Intubation techniques used (number of patients)</th>
<th>Use of a stylet in the control group</th>
<th>Patients with difficult intubation criteria excluded</th>
<th>Level of experience of the operators</th>
<th>Cervical immobilization technique used</th>
<th>Randomization (0–2)</th>
<th>Concealment (0–1)</th>
<th>Blinding (0–1)</th>
<th>Follow-up (0–2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amor and colleagues 15</td>
<td>Macintosh (60) Airtraq (60)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aoi and colleagues 16</td>
<td>Macintosh (18) Airway Scope (18)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>Cervical collar</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bharti and colleagues 17</td>
<td>Macintosh (19) McCoy (21) Truview EVO2 (20)</td>
<td>Not systematic</td>
<td>Yes</td>
<td>One experienced anaesthetist</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Byhahn and colleagues 18</td>
<td>Macintosh (38) Bonfils Fiberscope (38)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>Cervical collar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gercek and colleagues 19</td>
<td>Macintosh (12) Flexible fibre-optic (oral) (12) Flexible fibre-optic (nasal) (12) ILMA (12)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gupta and Thukral 20</td>
<td>Macintosh (30) C-MAC, without stylet (30) C-MAC, with stylet (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Ilyas and colleagues 21</td>
<td>Macintosh (64) McGrath (64)</td>
<td>Yes</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Kihara and colleagues 22</td>
<td>Macintosh (96) StyletScope (97)</td>
<td>Yes</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Koh and colleagues 23</td>
<td>Macintosh (25) Airtraq (25)</td>
<td>Not at first attempt</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>Cervical collar</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Kok and colleagues 24*</td>
<td>Macintosh (94) Levitan FPS (91)</td>
<td>Yes</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Lim and Yeo 25</td>
<td>Macintosh (30) GlideScope (30)</td>
<td>Yes</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Maharaj and colleagues 26</td>
<td>Macintosh (20) Airtraq (20)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Malik and colleagues 27</td>
<td>Macintosh (30) Truview EVO2 with stylet (30) GlideScope with stylet (30) Airway Scope (30)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Malik and colleagues 28</td>
<td>Macintosh (30) Airway Scope (30) LMA Ctrach (30)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Maruyama and colleagues 29*</td>
<td>Macintosh (11) Airway Scope (11)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>Head immobilizer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>McElwain and Laffey 30</td>
<td>Macintosh (31) Airtraq (29) C-MAC, with stylet (29)</td>
<td>No</td>
<td>Yes</td>
<td>Experienced anaesthetists</td>
<td>MILS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Complications

Fourteen studies (1325 patients) reported on local complications (supraglottic or lip trauma, minor bleeding). Sufficient data to perform meta-analysis were available on Airtraq, Airway scope, C-Mac, and GlideScope and MacGrath devices.

The Airtraq device was associated with a statistically significant reduction in the incidence of local complications compared with conventional laryngoscopy; RR 0.24 (95% CI 0.06–0.93). The incidence of local complications was not different compared with Macintosh laryngoscopy with Airway scope (RR 1.21; 95% CI 0.49–2.94), C-Mac (RR 1.07; 95% CI 0.37–3.12), GlideScope (RR 0.40; 95% CI 0.13–1.21), and MacGrath (RR 0.63; 95% CI 0.32–1.23; Supplementary material, Appendix SF).

Sensitivity analyses and sources of heterogeneity

The outcome of intubation failure at the first attempt was not sensitive to a single study, and pooled RR remained statistically significant and of similar magnitude after exclusion of individual studies. Likewise, exclusion of studies using immobilization techniques other than MILS (RR 0.56, 95% CI 0.35–0.91 for the overall comparison; RR 0.17, 95% CI 0.06–0.44 for the Airtraq device) or exclusion of studies of lower quality did not significantly alter the estimates. The pooled RR of the primary outcome was slightly increased and lost statistical significance (RR 0.57; 95% CI 0.29–1.11) after exclusion of studies not using or not mentioning the use of a stylet in the control group. The comparison between the Airtraq device and Macintosh laryngoscopy was no longer possible because the five studies evaluating the Airtraq device did not explicitly use a stylet in the control group. Regarding the quality of glottis visualization, studies using immobilization techniques other than MILS were associated with a higher estimate of treatment effect (RR 15.99, 95% CI 5.29–48.3 vs RR 3.28, 95% CI 2.76–3.89). The rate of intubation failure in control groups was significantly higher in studies using a cervical collar than in those using MILS (RR 2.05, 95% CI 1.53–2.75), but no statistically significant difference was observed between studies using or not using, or not mentioning, the use of a stylet (RR 1.13, 95% CI 0.86–1.50). Moderate heterogeneity ($I^2=37\%$) was detected for the overall comparison of the primary outcome but appeared to result mainly from the diversity of devices; no or low heterogeneity was detected in the per device subgroup analyses except for the McGrath device. The main sensitivity analyses are provided in the Supplementary material, Appendix SG, SH and SI.

Publication bias

On visual inspection of the funnel plots, there was no evidence of publication bias for the primary and secondary outcomes (Supplementary material, Appendix SJ).
other devices, con-
Alternative intubation techniques vs Macintosh laryngoscopy in patients with cervical spine immobilization

Lack of blinding may represent a potential source of observer bias and tends to overestimate treatment effect estimates. Lack of blinding may lead an operator to act (consciously or not) in a manner that increases the failure rate in the control group. Control group bias has previously been reported in studies evaluating the efficacy of alternative intubation devices compared with Macintosh laryngoscopy.

Third, none of these studies included true trauma patients and none used a rapid sequence induction procedure. It may be difficult to perform such studies because of logistic and ethical constraints. Moreover, operators were specifically trained for the use of alternative devices, and their performance may differ in a real-world setting because the use of such devices requires training for acquisition and maintenance of skills. Consequently, data from these trials have to be regarded as surrogates; these results may not necessarily be extrapolated to the real-world setting.

Finally, the present work was dedicated to evaluate the efficacy of alternative devices compared with the Macintosh laryngoscope for tracheal intubation in subjects with cervical spine immobilization but did not evaluate their impact on cervical spine movement during the procedure. Human cadaveric studies with simulated cervical instability have suggested that alternative intubation devices, such as the Airtraq device, may result in significantly less angular motion and anterior translation compared with Macintosh laryngoscopy. Despite these limitations, the present work is, to our knowledge, the first systematic review specifically designed to evaluate the benefit of alternative intubation devices compared with Macintosh laryngoscopy in subjects with cervical immobilization and to allow indirect comparisons between different devices. Alternative devices, particularly the Airtraq device, may reduce the rate of intubation failure at the first attempt in patients with confirmatory evidence on the performance of alternative devices in cervical spine immobilization.

Fig 3 Intubation failure at first attempt; individual alternative devices vs Macintosh laryngoscopy.

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Alternative Events Total</th>
<th>Macintosh Events Total</th>
<th>Risk ratio M-H, Random, 95% CI</th>
<th>Risk ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Airtraq</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amor 2013</td>
<td>3 60 20 60</td>
<td>55.3%</td>
<td>0.15 [0.05, 0.48]</td>
<td></td>
</tr>
<tr>
<td>Koh 2010</td>
<td>1 25 15 25</td>
<td>19.6%</td>
<td>0.07 [0.01, 0.47]</td>
<td></td>
</tr>
<tr>
<td>Maharaj 2007</td>
<td>0 20 1 20</td>
<td>7.5%</td>
<td>0.33 [0.01, 7.72]</td>
<td></td>
</tr>
<tr>
<td>McElwain 2011</td>
<td>1 29 6 31</td>
<td>17.6%</td>
<td>0.18 [0.02, 1.39]</td>
<td></td>
</tr>
<tr>
<td>Turkstra 2009</td>
<td>0 13 0 11</td>
<td></td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>147 147 100.0%</td>
<td></td>
<td>0.14 [0.06, 0.33]</td>
<td></td>
</tr>
<tr>
<td>3.1.2 Airway scope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aoi 2010</td>
<td>4 18 4 18</td>
<td>49.4%</td>
<td>1.00 [0.29, 3.39]</td>
<td></td>
</tr>
<tr>
<td>Malik 2008</td>
<td>3 30 4 30</td>
<td>37.2%</td>
<td>0.75 [0.18, 3.07]</td>
<td></td>
</tr>
<tr>
<td>Malik 2009</td>
<td>2 30 1 30</td>
<td>13.4%</td>
<td>2.00 [0.19, 20.90]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>78 78 100.0%</td>
<td></td>
<td>0.99 [0.42, 2.33]</td>
<td></td>
</tr>
<tr>
<td>3.1.3 C-Mac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gupta 2013</td>
<td>0 60 2 30</td>
<td>16.0%</td>
<td>0.10 [0.01, 2.05]</td>
<td></td>
</tr>
<tr>
<td>McElwain 2011</td>
<td>3 29 6 31</td>
<td>84.0%</td>
<td>0.53 [0.15, 1.94]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>89 61 100.0%</td>
<td></td>
<td>0.41 [0.12, 1.37]</td>
<td></td>
</tr>
<tr>
<td>3.1.4 Glidescope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lim 2005</td>
<td>2 30 4 30</td>
<td>50.0%</td>
<td>0.50 [0.10, 2.53]</td>
<td></td>
</tr>
<tr>
<td>Malik 2008</td>
<td>2 30 4 30</td>
<td>50.0%</td>
<td>0.50 [0.10, 2.53]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>60 60 100.0%</td>
<td></td>
<td>0.50 [0.16, 1.57]</td>
<td></td>
</tr>
<tr>
<td>3.1.5 McGrath</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilyas 2014</td>
<td>5 64 0 64</td>
<td>49.8%</td>
<td>11.00 [0.62, 194.90]</td>
<td></td>
</tr>
<tr>
<td>Taylor 2013</td>
<td>0 44 16 44</td>
<td>50.2%</td>
<td>0.03 [0.00, 0.49]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>108 108 100.0%</td>
<td></td>
<td>0.57 [0.00, 194.02]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>38 8 100.0%</td>
<td></td>
<td>0.14 [0.06, 0.33]</td>
<td></td>
</tr>
</tbody>
</table>

Test for subgroup differences: $\chi^2=10.09, \text{df}=4$ ($P=0.04$); $I^2=60.4%$
cervical spine immobilization. Given their higher cost and some limitations in the available evidence, it remains unclear whether the Airtraq device should be recommended as the first intention. Insufficient evidence is available to recommend the use of other devices. Further studies testing alternative devices in a rapid sequence setting, using proper immobilization (MILS), and adequate intubation technique in the control group (use of a stylet) are warranted to confirm our conclusions.

Conclusions

Using conventional laryngoscopy with a Macintosh blade, intubation failure is frequent in patients with cervical immobilization. In such situations, the Airtraq device reduces the risk of intubation failure. There is a lack of evidence of the usefulness of other alternative intubation devices.

Authors’ contributions

L.S. and C.M. conceived the study, wrote the protocol draft, performed the literature searches, extracted the data, carried out the statistical analysis, and wrote the article draft. M.R.T. participated in the study conception, analysis interpretation, and article writing by critically revising the study protocol and the article draft. O.G. and M.N. participated in interpretation of the analysis and article writing by critically revising the study protocol and the article draft.

Supplementary material

Supplementary material is available at British Journal of Anaesthesia online.
References

32. Smith CE, Pinchak AB, Sidhu TS, Radesic BP, Pinchak AC, Hagen JF. Evaluation of tracheal intubation difficulty in patients with cervical spine immobilization: fiberoptic...
(WuScope) versus conventional laryngoscopy. Anesthesiology 1999; 91: 1253–9

Handling editor: P. S. Myles