New antiplatelet drugs and new oral anticoagulants

V. Koenig-Oberhuber1,2 and M. Filipovic1

1Division of Anaesthesiology, Intensive Care, Rescue and Pain Medicine, Kantonsspital St Gallen, Rorschacherstrasse 95, 9000 St Gallen, Switzerland, and 2Department of Anaesthesia, Kantonsspital Graubünden, Loëstrasse 170, 7000 Chur, Switzerland

*Corresponding author. E-mail: miodrag.filipovic@kssg.ch

Abstract

In our daily anaesthetic practice, we are confronted with an increasing number of patients treated with either antiplatelet or anticoagulant agents. During the last decade, changes have occurred that make the handling of antithrombotic medication a challenging part of anaesthetic perioperative management. In this review, the authors discuss the most important antiplatelet and anticoagulant drugs, the perioperative management, the handling of bleeding complications, and the interpretation of some laboratory analyses related to these agents.

Key words: antiplatelet agents; anticoagulants and haemorrhage; blood coagulation tests

Editor’s key points

- Antiplatelet agents significantly increase the risk of bleeding in high-risk surgery.
- A number of anticoagulant drugs that either inactivate factor Xa or directly inhibit thrombin have become available in recent years.
- Current data do not support the use of perioperative bridging therapy to cover the withdrawal of oral anticoagulants in patients at low risk of thromboembolism.
- Standard coagulation tests together with assay of factor Xa activity can be used to guide the management of new anticoagulant drugs in the perioperative setting.

Arterial and venous thrombosis have an important impact on worldwide morbidity and mortality. Worldwide, >10 million deaths per annum are caused by arterial thrombotic events (ischaemic stroke, heart disease, and peripheral gangrene). Platelets are the key prothrombotic element in arterial thrombosis, forming aggregates interconnected by fibrin. Antiplatelet treatment can counteract this process. For decades, aspirin has been the first-line antiplatelet drug of choice; recently, however, alternative antiplatelet substances have been introduced.

Half a million deaths related to venous thromboembolism occur in the European Union per year. Venous thrombi consist primarily of fibrin with some cells trapped in between. Anticoagulants are the drugs of choice to prevent or treat these conditions. For decades, warfarin and heparin were the mainstay of treatment, but the development of new anticoagulant drugs is constantly enlarging the pharmaceutical armamentarium.

In this review, the pharmacological properties of the new antiplatelet and new oral anticoagulant drugs, their usage in the perioperative setting, and the management of bleeding complications are discussed.

Antiplatelet agents (Table 1)

Platelet adhesion, activation, and aggregation are mediated by numerous adhesive proteins. The reactions of these proteins underpin the physiological responses to endothelial damage or rupture of atherosclerotic plaques. Amplification of these mechanisms and excessive thrombus formation endanger vascular flow, leading to occlusion of arteries and temporary or persistent ischaemia. Blocking such thrombus formation can prevent ischaemic events.

Treatment strategies for prevention or therapy of arterial thrombosis are changing constantly. The duration of treatment,
especially of dual or triple antiplatelet therapy, is highly dependent on the indication for treatment and, for percutaneous coronary intervention, the chemical constitution of any coronary stents (Table 2).4–6

Acetylsalicylic acid (aspirin)

For >50 yr, aspirin has been known to have antithrombotic and anti-inflammatory properties.7 Aspirin is a cyclooxygenase (COX) inhibitor that irreversibly inhibits COX1 and, in higher doses, COX2. Inhibition of COX1 is the main antithrombotic mechanism; the formation of prostaglandin H2 is blocked, thus thromboxane A2 cannot be synthesized. Thromboxane A2 activates platelets and stimulates their aggregation.8 The irreversibility of the effect of aspirin causes inhibition for the lifespan of a platelet (7–10 days). After the discontinuation of aspirin intake by a patient, their platelet function can be expected to increase by 10–15% per day as a result of new platelet formation.8,9 Aspirin is a key component of antiplatelet treatment to reduce death attributable to myocardial infarction or stroke.10 Bleeding risk is smaller with low doses (75–100 mg), which deliver an equivalent antithrombotic impact to higher doses (300 mg).11 Drug interactions with aspirin are scarce, but co-administration of non-selective COX1 inhibitors may impair its efficacy. Owing to potential aggravation of ischaemic heart diseases attributable to selective COX2 inhibitors, these drugs should be avoided in patients with coronary artery disease. About one-third of patients receiving aspirin manifest treatment failure (thrombotic complication or death). Non-compliance is a substantial problem but difficult to quantify, with estimates ranging between 3 and 40%. Adverse events resulting from rebound thrombocyte activation after aspirin withdrawal are frequent. Some patients show biochemical resistance or high platelet reactivity, detected by platelet function assays. Diabetes, cardiac surgery, or acute coronary syndromes, all of which are associated with an inflammatory response, are associated with high platelet reactivity. In addition, genetic polymorphisms (COX1, COX2 alleles, platelet glycoprotein receptors), or increased platelet turnover (bone marrow diseases) can reduce the effect of aspirin. The fact that aspirin has only a single binding site and does not influence

Table 1 Summary of the characteristics of currently available antiplatelet drugs

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Aspirin</th>
<th>Clopidogrel</th>
<th>Prasugrel</th>
<th>Ticagrelor</th>
<th>Cangrelor</th>
<th>Abciximab</th>
<th>Eptifibatide</th>
<th>Tirofiban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioavailability</td>
<td>68%</td>
<td>50%</td>
<td>80%</td>
<td>36%</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>Plasma peak concentration</td>
<td>30–40 mgA</td>
<td>30 min</td>
</tr>
<tr>
<td>Plasma half-life</td>
<td>15–30 min</td>
<td>8 h</td>
<td>7 h</td>
<td>7 h</td>
<td>7 h</td>
<td>7 h</td>
<td>7 h</td>
<td>7 h</td>
</tr>
<tr>
<td>Plasma protein binding</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Time from last dose to offset</td>
<td>7–10 days</td>
<td>7–10 days</td>
<td>7–10 days</td>
<td>5 days</td>
<td>60 min</td>
<td>12 h</td>
<td>2–4 h</td>
<td>2–4 h</td>
</tr>
<tr>
<td>Reversibility of platelet inhibition</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Recommended period of discontinuation before surgical intervention (see Fig. 2)</td>
<td>0–5 days</td>
<td>7 days</td>
<td>10 days</td>
<td>7 days</td>
<td>10 min</td>
<td>48 h</td>
<td>8 h</td>
<td>8 h</td>
</tr>
</tbody>
</table>

Table 2 Treatment recommendations for antiplatelet agents.4–6

<table>
<thead>
<tr>
<th>Condition</th>
<th>Treatment recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary prevention</td>
<td>Aspirin</td>
</tr>
<tr>
<td>Acute coronary syndrome</td>
<td>PCI: aspirin lifelong plus ticagrelor, prasugrel, or clopidogrel ≥12 months</td>
</tr>
<tr>
<td>Stable angina or former myocardial infarction</td>
<td>Aspirin lifelong plus clopidogrel</td>
</tr>
<tr>
<td>Recent stroke</td>
<td>Aspirin in high-risk situation plus clopidogrel 90 days</td>
</tr>
<tr>
<td>Past stroke</td>
<td>Aspirin or clopidogrel</td>
</tr>
<tr>
<td>PVD</td>
<td>Aspirin or clopidogrel</td>
</tr>
</tbody>
</table>
other thrombocyte receptors results in aspirin having less antithrombotic effect than many other agents.9 12 13

P2Y12 receptor antagonists

P2Y12 receptors are adenosine diphosphate (ADP) receptors expressed on the surface of thrombocytes, which can be blocked chemically. The overall effect of ADP on platelets, the change of formation, emergence of pseudopodia, platelet aggregation, and interaction with other cellular or plasma components to promote coagulation, is reduced.14 Currently, clopidogrel, prasugrel, and ticagrelor are in use, and cangrelor has recently been licensed. Those substances are often prescribed in conjunction with aspirin, i.e. dual antiplatelet therapy (DAPT).15

Clopidogrel

Clopidogrel is a thienopyridine and a prodrug, of which 85% is hydrolysed to an inactive metabolite. The remaining part is activated via cytochromes P3A4/3A5 and P2B6/1A2/2C9/2C19.6. The active metabolite binds irreversibly to P2Y12. For rapid onset of platelet inhibition, an initial loading dose is necessary.1 10 The pharmacological effect lasts for the lifespan of the affected thrombocytes.15 The CYP450 dependency makes clopidogrel susceptible to drug interactions. Proton-pump inhibitors can also reduce its effect. No studies have been published proving sufficient evidence that any other drug interactions have any impact on its therapeutic effect.17 Thirty per cent of patients treated with clopidogrel do not show adequate platelet inhibition. Genetic polymorphisms (CYP2C19, P2Y12 receptor) or altered intracellular signal pathways seem to be causative. Patients, especially if diabetic, may show high platelet reactivity even when receiving dual antiplatelet therapy. However, non-compliance, discontinuation of drug intake, or lack of access to clopidogrel are more frequent causes of inadequate platelet inhibition than pharmacological high platelet reactivity.15

Prasugrel

Prasugrel, a third-generation oral thienopyridine, is a prodrug, converted by CYP450 enzymes to its active metabolite. It binds irreversibly to P2Y12, inhibiting platelet function for the lifespan of the affected platelets. Prasugrel shows a more reliable conversion to the active drug and more rapid onset of action than clopidogrel. Prasugrel produces more effective platelet inhibition than clopidogrel. Genetic polymorphisms (CYP2C9, CYP2C19) do not influence the metabolism of prasugrel. Drug interactions attributable to CYP-dependent conversion have not been described.9

Ticagrelor

Ticagrelor is an oral non-thienopyridine reversible P2Y12-blocking agent. CYP3A4 and CYP3A5 are the enzymes involved in the hepatic metabolism of ticagrelor. One of its active metabolites also has an important platelet-inhibiting effect. Twenty-four hours after the last intake, the antiplatelet effect of ticagrelor has declined by 50%, and 20% of the antiplatelet activity remains after 3 days. CYP3A4, CYP3A5, and CYP2D6 are moderately inhibited by ticagrelor, and drug interactions associated with this effect have been reported. Digoxin concentrations should be monitored in the event of concomitant use. Serum concentrations of some statins (lovastatin and simvastatin) are increased. Concomitant use of CYP3A4 inhibitors (ketocazole, ritonavir, and clarithromycin) or inducers (rifampicin, phenytoin, carbamazepine, and dexamethasone) should be avoided.18

Cangrelor

Cangrelor is the most recently (June 2015) approved i.v. non-thienopyridine, reversible P2Y12-blocking agent. Steady-state concentrations are achieved after 18–24 h of i.v. infusion without a loading dose or a preliminary bolus being recommended. Platelet inhibition is >90%. Cangrelor is inactivated by plasma enzymes, and within 60 min of stopping the infusion the platelet function has recovered to normal.19 These favourable pharmacokinetic properties make cangrelor a promising agent for bridging of high-risk patients in the perioperative setting.20

Glycoprotein IIb/IIIa inhibitors

Glycoprotein IIb/IIIa (GpIIb/IIIa) receptors are the most numerous proteins on the platelet surface. Glycoprotein IIb/IIIa inhibitors block the adsorption of fibrinogen to the activated platelet, preventing the building of interplatelet bridges. Adhesion of fibronectin, von Willebrand factor, and vitronectin are inhibited. The activation of the GpIIb/IIIa receptor is one of the final steps in platelet activation, building cross-linked platelet–fibrinogen complexes. Glycoprotein IIb/IIIa inhibitors also contribute to a positive feedback mechanism with thrombin and collagen, producing a sustained prothrombotic effect.21 22 Abciximab, tirofiban, and eptifibatide are i.v. GpIIb/IIIa inhibitors that are currently in use.

Abciximab

Abciximab is a humanized monoclonal mouse antibody. It reversibly binds to thrombocytes within 1 min of administration. A loading dose is necessary to achieve a >80% receptor blockage. It shows the highest affinity to the GpIIb/IIIa receptor of the three licensed drugs.23 It has a short plasma half-life, but a long biological activity.

Tirofiban and eptifibatide

Tirofiban and eptifibatide are synthetic GpIIb/IIIa inhibitors that reversibly bind and rapidly dissociate (10–15 s) from the GpIIb/IIIa receptor. The plasma concentration of these drugs determines the receptor occupancy and extent of platelet inhibition. Both molecules compete with fibrinogen for the binding of the GpIIb/IIIa receptor. The affinity for the receptor is greater for tirofiban than for eptifibatide.23

Other antiplatelet agents

Cilostazol and dipyridamole are phosphodiesterase inhibitors that interfere with degradation of cyclic adenosine monophosphate and cyclic guanosine monophosphate. In addition to their antiplatelet action, they cause vasodilation because of an effect on vascular smooth muscle.

The protease-activated receptor-1 antagonists, agents such as vorapaxar and atorapax, inhibit platelet activation through alternative routes, including thrombin-mediated platelet aggregation. Numerous other platelet surface proteins (glycoprotein VI, glycoprotein Ib, prostaglandin E, nitrous oxid, and thromboxane A) are potential targets for inhibitory drugs currently under investigation.9 8

Management of antiplatelet therapy in the perioperative setting (Fig. 1)24 25

Dual antiplatelet therapy is known to reduce significantly the number of arterial thrombotic events in the perioperative period. Discontinuation of antiplatelet agents is associated with a risk of myocardial infarction, stent thrombosis, and death attributable...
New antiplatelet drugs and new oral anticoagulants | ii77

to inflammatory-mediated rebound effects of platelet adhesion. Persistent perioperative application is associated with higher risk of bleeding (2.5–20 vs 30–50%) and a 30% higher rate of blood cell transfusion; however, mortality linked to these circumstances is hardly increased. The necessity of elective surgery should be assessed on a patient-by-patient basis. Antiplatelet therapy and treatment for other co-morbidities should be optimized. The relative risks of a thromboembolic event and of bleeding should be weighed. Postoperative restarting of antiplatelet therapy depends on the individual patient’s cardiovascular risk profile, the bleeding risks associated with the particular operation, and the pharmacokinetics of each drug. The aim should be to re-establish the antiplatelet regimen as early as is reasonably possible. Hospital discharge without restarting treatment carries substantial risks.19 26

For operations with a low bleeding risk, antiplatelet therapy does not need to be interrupted. In procedures with a high risk of bleeding, aspirin should be maintained and other antiplatelet substances discontinued long enough before surgery to allow the antiplatelet effect to have waned. If possible, for example after percutaneous coronary angioplasty, the operation should be delayed until the patient has a lower risk of cardiovascular complications. In patients with a low risk of thromboembolic events who require surgery that carries a high risk of haemorrhage, antiplatelet therapy should be interrupted in the perioperative period. The continuous evaluation of the bleeding should guide intra- and postoperative therapeutic strategies.8 9 27 The management of bleeding is discussed below.

In situations where there is a high chance of bleeding and withdrawal of antiplatelet therapy carries a high risk of cardiovascular events, bridging of antiplatelet therapy can be considered. Bridging therapies involve replacing antiplatelet therapy using long-acting P2Y12 antagonists with a short-acting anti-coagulant or antiplatelet agent that can be discontinued shortly before surgery. The use of tirofiban and eptifibate has been described. More recently, cangrelor has become available and is recommended as a suitable drug because of its pharmacokinetic profile. In the situation of bridging, treatment with aspirin should be continued and the other oral agent stopped 5–7 days before surgery. A short-acting i.v. agent should be started no more than 72 h after the discontinuation of DAPT. Four to six hours (or 1 h for cangrelor) before surgery, the i.v. drug is discontinued and is restarted 6 h after surgery. The patient’s usual DAPT is restarted as soon as the risk of perioperative haemorrhage is negligible.

Heparinoids are sometimes used for bridging. This is based on their known effect in unstable angina and Non-ST-elevation myocardial infarction (NSTEMI); they do not have any protective effect against coronary or stent thrombosis. Heparin is not an appropriate substitute for antiplatelet agents. Non-steroidal

<table>
<thead>
<tr>
<th>Low bleeding risk e.g. endoscopy, body surface surgery</th>
<th>Low to moderate cardiovascular risk</th>
<th>High cardiovascular risk ACS >12 months preop PCI/DES >6 months preop PCI/BMS >1 month preop CABG >6 weeks preop CVA/TIA >1 month preop Peripheral vascular disease</th>
<th>Very high cardiovascular risk ACS <12 months preop PCI/DES <6 months preop PCI/BMS <1 month preop CVA/TIA <1 month preop CABG <6 weeks preop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay elective surgery to allow management of cardiovascular condition</td>
<td>Continue aspirin</td>
<td>Discontinue P2Y12 inhibitors</td>
<td>Urgent surgery e.g. cancer surgery requires multidisciplinary discussion of management. Consider:</td>
</tr>
<tr>
<td>Moderate bleeding risk e.g. biopsy, therapeutic endoscopy: cardiothoracic, urologic, orthopedic, vascular, visceral, ENT and surgery</td>
<td>Discontinue aspirin 5 days before surgery – to 7 days after surgery</td>
<td>Discontinue aspirin</td>
<td>- continuation of aspirin</td>
</tr>
<tr>
<td>Very high i.e. intracranial surgery</td>
<td>Moderate bleeding risk e.g. hepatobiliary and vertebrospinal surgery</td>
<td>Discontinue P2Y12 inhibitors</td>
<td>- discontinuation of P2Y12 inhibitors with/without bridging with tirofiban or cangrelor</td>
</tr>
</tbody>
</table>

Fig 1 Perioperative management of antiplatelet drugs. ACS, acute coronary syndrome; BMS, bare metal stent; CABG, coronary artery bypass graft; CVA, cerebrovascular accident; DES, drug-eluting stent; PCI, percutaneous coronary intervention; postop, postoperative; preop, preoperative; PVD, peripheral vascular disease; TIA, transient ischaemic attack.24 25
anti-inflammatory agents and, in particular, reversible COX1 inhibitors can be considered as short-term substitutes.8 26, 27

The management of bleeding

Antiplatelet drugs have haemorrhage as a common side-effect. Several factors associated with a higher risk of bleeding have been identified, including female sex, advanced aged (>75 yr), impaired renal function, anaemia, low body weight (<60 kg), and a history of transient ischaemic attack or stroke. In a surgical context, complex or urgent operations are considered as high-risk situations for bleeding.

Major surgical bleeding in patients treated with antiplatelet agents increases perioperative morbidity and mortality, as do blood transfusions. A restrictive transfusion management strategy is widely recommended, with transfusion thresholds of the order of a haemoglobin <80 g litre\(^{-1}\) or a haematocrit <25\%.23 No antagonists for antiplatelet agents are available. Management of significant haemorrhage is based on the administration of tranexamic acid, fibrinogen, factor XIII, desmopressin, platelets, and activated factor VIIa. The prothrombotic properties of these agents may pose a risk of major thrombotic complications.8 9, 34

Drug monitoring and laboratory tests

Numerous platelet function tests are available (e.g. turbidometric light transmittance, VerifyNow, Thrombelastogram, Multiplate, or Platelet Function Analyser-100). These were often initially designed to identify platelet function disorders (either dysfunction or hyperactivity). With the increasing armamentarium of platelet-inhibiting drugs, many of which display significant intra-individual variation in their efficacy, these assays have become more relevant to drug monitoring, the design of individualized pharmacotherapy, perioperative evaluation, and the planning of surgery. The results of platelet function tests vary between assays and depend on the cut-off values used to define a normal test. A further limitation is the dependency of these assays on haematocrit and platelet count.55–57

Anticoagulant agents (Table 3)

Anticoagulants inhibit the initiation and progress of coagulation and fibrin-clot formation and propagation. Their uses include the treatment or prevention of venous thromboembolism and atrial fibrillation. For acute treatment of venous thromboembolism and during revascularization therapy, immediately acting parenteral anticoagulants are used. Low molecular weight heparins and, recently, parenteral anti-factor Xa agents (fondaparinux) have widely replaced unfractionated heparin.38 39 Oral anticoagulants are indicated for long-term treatment or prevention of thromboembolic complications of different cardiovascular diseases, such as venous thromboembolism, myocardial infarction, or atrial fibrillation, and after implantation of mechanical valves.38

Parenteral anticoagulants

Unfractionated heparin and low molecular weight heparin

Heparins are indirectly acting anticoagulants that bind to and activate antithrombin. After inducing a conformational change in antithrombin, the heparins dissociate and bind to further antithrombin molecules. Activated antithrombin accelerates the inactivation of coagulation factors IIa, IXa, Xa, and XIIa. Unfractionated heparin dosing depends on the indication for its

Table 3 Summary of the characteristics of currently available anticoagulant drugs

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Warfarin</th>
<th>Oral Anticoagulant</th>
<th>Parenteral Low Molecular Weight Heparin (e.g., Enoxaparin)</th>
<th>Parenteral Direct Inhibition Factor Xa Agents</th>
<th>Parenteral Direct Inhibition Factor IIa/Xa Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Vitamin K inhibition</td>
<td>Direct inhibition</td>
<td>Direct inhibition</td>
<td>Direct inhibition</td>
<td>Direct inhibition</td>
</tr>
<tr>
<td>Bioavailability (%)</td>
<td>80–66</td>
<td>65–90</td>
<td>70–80</td>
<td>85–90</td>
<td>90–95</td>
</tr>
<tr>
<td>Plasma half-life (h)</td>
<td>20–48</td>
<td>6–12</td>
<td>8–15</td>
<td>10–14</td>
<td>24</td>
</tr>
<tr>
<td>Duration of action</td>
<td>48–96</td>
<td>2–3</td>
<td>2–4</td>
<td>2–4</td>
<td>2–4</td>
</tr>
<tr>
<td>Elimination</td>
<td>Metabolism</td>
<td>Direct inhibition</td>
<td>80% renal</td>
<td>50% renal</td>
<td>50% renal</td>
</tr>
<tr>
<td>Drug interaction</td>
<td>CYP2C9, CYP2C19, P-glycoprotein inhibitors</td>
<td>CYP3A4, P-glycoprotein inhibitors</td>
<td>22% urine</td>
<td>10% renalexcretion</td>
<td>20% renal</td>
</tr>
<tr>
<td>Mechanism of action</td>
<td>Metabolism</td>
<td>Direct inhibition</td>
<td>80% renal</td>
<td>20% renal</td>
<td>20% renal</td>
</tr>
<tr>
<td>Bioavailability (%)</td>
<td>80–66</td>
<td>65–90</td>
<td>70–80</td>
<td>85–90</td>
<td>90–95</td>
</tr>
<tr>
<td>Plasma half-life (h)</td>
<td>20–48</td>
<td>6–12</td>
<td>8–15</td>
<td>10–14</td>
<td>24</td>
</tr>
<tr>
<td>Duration of action</td>
<td>48–96</td>
<td>2–3</td>
<td>2–4</td>
<td>2–4</td>
<td>2–4</td>
</tr>
<tr>
<td>Elimination</td>
<td>Metabolism</td>
<td>Direct inhibition</td>
<td>80% renal</td>
<td>50% renal</td>
<td>50% renal</td>
</tr>
<tr>
<td>Drug interaction</td>
<td>CYP2C9, CYP2C19, P-glycoprotein inhibitors</td>
<td>CYP3A4, P-glycoprotein inhibitors</td>
<td>22% urine</td>
<td>10% renalexcretion</td>
<td>20% renal</td>
</tr>
</tbody>
</table>
use and is highly variable. Low molecular weight heparins can be used at a fixed dose for prophylaxis and in a weight-adjusted dose for therapeutic anticoagulation. 40

Fondaparinux
Fondaparinux selectively and irreversibly binds to antithrombin III, thus inactivating factor Xa and, in turn, interrupting thrombin formation and thrombus propagation. 40

Direct thrombin inhibitors
Parenteral direct thrombin inhibitors bind directly, selectively, and reversibly to the active site of thrombin. Fibrin formation and propagation of clot formation are inhibited. Currently, desirudin, argatroban, and bivalirudin are licensed direct thrombin inhibitors. They are the main alternative therapeutic agents in heparin-induced thrombocytopenia. 40 41

Oral anticoagulants

Vitamin K antagonists
For more than 80 yr, vitamin K antagonists have been known to have anticoagulant properties and were the most frequently used oral anticoagulant drugs. After the identification of dicumarol warfarin, phenprocoumon and acenocoumarol were synthesized. 42 These drugs, the latter mainly used in Europe, hinder the synthesis of vitamin K-dependent clotting factors; vitamin K reductase is blocked, causing a depletion of reduced vitamin K. This is needed for the γ-carboxylation and activation of vitamin K-dependent clotting factors II, VII, IX, and X. Additionally, they inhibit the carboxylation of the anticoagulant proteins C, S, and Z, causing a transient procoagulant state. 43 44

Although vitamin K antagonists are highly effective agents they do have numerous limitations.

1. Genetic polymorphisms producing variation in patients’ sensitivity.
 ○ Drugs such as warfarin act on the vitamin K epoxide reductase complex 1 (VKORC1). People with the A allele of VKORC1 produce less VKORC1 subunit than those with the more common G allele and require less VKA to produce an anticoagulant effect.
 ○ Warfarin is metabolized in the liver by CYP2C9. People with the CPY2C9*2 and CPY2C9*3 variants metabolize warfarin less effectively than those with wild-type CPY2C9*1 and require a lower dose to warfarin to achieve effective anticoagulation.

2. Non-genetic factors, including age, body weight, dietary vitamin K intake, concomitant diseases, and alcohol consumption, modulate the required dose.

3. Vitamin K antagonist drugs show variable pharmacodynamic properties, with slow onset and slow offset of action.

4. Vitamin K antagonists are subject to interactions with drugs metabolized by CYP2C9, CYP3A4, and CYP1A2.

5. They have a narrow therapeutic window, with the need for constant monitoring.

A >10-fold interpatient variation in the dose necessary to reach the desired anticoagulant effect is observed, leading to a risk of under- or overdosing and causing haemorrhage or thrombembolism. This made the development of alternative drugs attractive. 38 42 45

New oral anticoagulants
In 2004, ximelagatran was licensed by the European Medical Agency, thus becoming the first oral thrombin inhibitor to reach the market. As a result of potential hepatotoxicity, it was withdrawn soon after. 46 Since 2008, further new oral anticoagulants have been introduced. These include the direct thrombin inhibitor, dabigatran, and the direct factor X inhibitors, such as rivaroxaban, apixaban, and edoxaban. Other new oral anticoagulants (NOACs) are currently being tested in clinical trials.

Dabigatran etexilate
Dabigatran etexilate, a low molecular weight prodrug, is a direct thrombin inhibitor. It is converted to its active form, dabigatran, by non-specific esterases in the liver and plasma. It binds directly to the active site of thrombin via ionic interactions. Fibrin-bound thrombin and free thrombin are inactivated competitively and reversibly. Unlike heparins, which cannot inhibit clot-bound factor II, dabigatran can inhibit thrombus expansion triggered by thrombin. The following events in the coagulation cascade are prevented by dabigatran: conversion of fibrinogen into fibrin, positive feedback amplification of coagulation activation, cross-linking of fibrin monomers, platelet activation, and inhibition of fibrinolysis. Co-medication with P-glycoprotein inhibitors, including ketoconazole, amiodarone, verapamil, or quinidine, may increase its plasma concentration. Rifampicin may reduce the plasma concentration because of induction of P-glycoprotein. 47 48

Apixaban
Apixaban is a direct, selective factor Xa inhibitor that inhibits free and prothrombinase complex-bound factor Xa. It is rapidly absorbed in the stomach and small bowel, independently of food intake. Absorption is mediated by P-glycoprotein, and P-glycoprotein inhibitors can increase absorption. Metabolism is mediated by CYP3A4, and concomitant use of CYP3A4 and P-glycoprotein inducers (carbamazepine, phenobarbital, phenytoin, St John’s wort, and rifampicin) cause a decreased concentration of apixaban. 48 49

Rivaroxaban
Rivaroxaban is a direct, highly selective, reversible, competitive inhibitor of free and complex-bound factor Xa. The bioavailability of this lipophilic drug is increased by concomitant food intake, causing more predictable plasma concentrations. Co-treatment with CYP3A4 inhibitors or inducers and P-glycoprotein inhibitors is (relatively) contraindicated, because it may lead to altered plasma concentrations of rivaroxaban. 42 48 50

Edoxaban
Edoxaban is a direct, highly selective and competitive inhibitor of factor Xa. It has a bioavailability of 62%. Co-administration of strong P-glycoprotein inhibitors (e.g. ketoconazole, amiodarone, verapamil, or quinidine) cause an increased effect of edoxaban, necessitating a dose reduction of 50%. Dose adjustment in patients with low body weight (<60 kg) or moderate renal impairment is also necessary. 51

The perioperative setting (Table 4)
Of all patients receiving oral anticoagulant treatment, 10% have to interrupt it for invasive procedures at some point. 52 In current clinical practice, bridging therapy is widely used to cover the temporary withdrawal of oral anticoagulation. Recent data (e.g. BRIDGE Trial, ORBIT-AF) suggest that this approach increases...
the risk of perioperative haemorrhage but with little beneficial effect on thromboembolic complications in patients with atrial fibrillation. Most importantly, two major aspects need to be considered, as follows: (i) the risk of intervention related haemorrhage (as subdivided in Fig. 1); and (ii) the risk of perioperative thromboembolism, classified as low, medium, or high (as in Table 5).

A low-risk procedure in a low-risk patient does not require discontinuation of oral anticoagulation. In patients with lone atrial fibrillation or a CHA2DS2-VASc ≤4 (CHADS2, CHA2DS2 risk score for stroke in atrial fibrillation based on congestive heart failure, hypertension, age >75 yr, diabetes, and stroke or transient ischaemic attack; CHA2DS2-VASc, updated risk score for stroke in atrial fibrillation including CHADS2 risk factors plus vascular disease age 65–75 yr and female sex), bridging is of questionable value because haemorrhagic risks exceed the risk of thromboembolic complications in these patients. High-risk procedures or high-risk patients do need bridging therapy to cover withdrawal of vitamin K antagonists. All intermediate-risk patients (CHADS2-VASc >4) and interventions carrying an intermediate risk of bleeding are likely to require patient-by-patient estimation of the individual bleeding and thromboembolic risk.

In contrast to the perioperative management of vitamin K antagonists, current data do not support preoperative bridging therapy to cover the perioperative withdrawal of NOACs. The advice for interruption of NOACs depends on their plasma half-life and the patient’s co-morbidities, especially renal function. Two half-lives (remaining drug concentration <25%) are considered as an adequate compromise between the reduction of bleeding risk and the prevention of a thromboembolic event. If there is reduced elimination or a high risk of perioperative haemorrhage, the time of discontinuation should be increased. For minor surgical procedures, treatment with NOACs can be continued without interruption. Usual haemostatic measures are undertaken, and an awareness of the risk of bleeding is important. For major surgical procedures that carry a high bleeding risk and interventions near delicate structures or in enclosed spaces (e.g. neurosurgery), NOACs should be discontinued.

If emergency surgery is needed, an evaluation of the indication for treatment with a NOAC, and the daily dose, last intake, and renal function allows a rough estimation of the pharmacological activity at the time of planned surgery. If feasible, a delay for at least 24 h from the last dose is advisable. New oral anticoagulant ingestion less than 2–6 h previously may be treated with activated charcoal. Haemodialysis may be used for dabigatran elimination. The treatment of bleeding is discussed in the next section.

Postoperative resumption depends on the risk of bleeding, the renal function, and the presence of neuroaxial catheters.

Management of bleeding

Bleeding risk is increased in patients aged >75 yr, with concomitant aspirin intake, diabetes mellitus, low body weight (<50 kg), or an elevated plasma concentration of the anticoagulant. Minor bleeding can be treated with basic measures, including compression, sclerotherapy, blood-pressure regulation, and so forth. It usually does not require pharmacological correction of coagulation. Anticoagulation should be interrupted until no further bleeding is detected.

In the event of major bleeding (>20% of patient’s blood volume), potential causes should be identified without delay. General measures should be undertaken, including the avoidance...
and correction of acidosis, hypothermia, and hypocalcaemia. Specific reversal agents for NOACs are not yet available. Research on the development of specific reversal agents is in progress (e.g. idarucizumab for dabigatran, andexanet alfa for factor Xa inhibitors, and PER977 for factor Xa and thrombin inhibitors). Procoagulant agents may be required. Options include prothrombin complex concentrate (25–50 U kg\(^{-1}\)) or activated prothrombin complex concentrate (50–100 U kg\(^{-1}\)); the latter is more efficient but also more likely to cause thromboembolic complications. Recombinant factor VIIa may be used as rescue medication, but carries a high risk of thromboembolism. Adjuncts such as tranexamic acid or desmopressin may be considered, but there are few clinical data regarding their efficacy.

Drug monitoring and laboratory tests (Fig. 2)

One advantage of NOACs over vitamin K antagonists is the avoidance of the necessity of routine laboratory monitoring. The most frequently used coagulation tests (activated partial thromboplastin time and international normalized ratio) are influenced by NOACs, because they directly inhibit factor IIa or Xa, the end points of these assays. The degree of alteration of clotting assays depends on the plasma concentration of the NOAC. Moreover, normal test results indicate a lack of a significant NOAC effect. This is particularly true for the activated partial thromboplastin time test in patients taking dabigatran. Interpretation of drug plasma concentration is difficult because there is no defined range that reflects optimal treatment levels or bleeding risk. In daily clinical practice, routine laboratory testing during NOAC treatment is currently not recommended. A better understanding of their influence on laboratory coagulation tests might allow optimization and individualization of treatment in the future. Laboratory testing is advisable in patients requiring urgent surgery, those with a rapid decline in renal function, or in bleeding patients. Test results should be interpreted in the context of the time of last drug administration. At present, our ability to state that there is no NOAC effect is probably greater than our ability to quantify any NOAC effect.

Concomitant use of antiplatelet agents and new oral anticoagulants

In clinical routine, the number of patients receiving antiplatelet therapy and NOAC therapy is increasing. Data suggest that...
NOACs offer benefit in ischaemic events when used concomitantly with a single antiplatelet regimen. Patients on DAPT (aspirin and clopidogrel) who additionally receive a NOAC show a 3-fold increase in the risk of haemorrhage without further reduction of adverse cardiac events. Potentially, the bleeding risk is higher with more potent antiplatelet agents (ticagrelor and prasugrel), although data to confirm this are lacking. An individualized approach is necessary in patients who might be favourably treated with a combination of DAPT (including prasugrel and ticagrelor) and NOACs, balancing the potential benefit against the increased risk of haemorrhage. A dose reduction may be a potential strategy, but research to confirm this is required. The indication for long-term use of NOACs and DAPT in an individual patient should be re-evaluated regularly.

Conclusion
It is essential for anaesthetists to know the properties of new antiplatelet agents and NOACs because their management in the perioperative period or the bleeding patient is crucial. The perioperative period is associated with significant prothrombotic risk because of the inflammatory response to surgery. This risk must be balanced with the likelihood of haemorrhage in patients treated with antiplatelet or anticoagulant drugs. Both situations carry a significant burden of morbidity and mortality. With the increasing use of a broad range of antiplatelet and anticoagulant drugs, most anaesthetists face these dilemmas on a regular basis.

Guidelines are published and updated regularly to enable appropriate, up-to-date treatment, and the anaesthetist should ensure that they are familiar with relevant local and national guidance.

Sophisticated laboratory assays are unevenly accessible in emergency situations, but standard laboratory tests, such as activated partial thromboplastin time, international normalized ratio, or basic platelet function tests, are not. These allow adaptation and guidance of treatment strategies (Fig. 2). Multidisciplinary discussion to plan the best treatment in high-risk patients undergoing surgery is essential.

Authors’ contributions
The review was conceived by V.K.-O. and M.F.

Declaration of interest
None declared.

References
New antiplatelet drugs and new oral anticoagulants

61. Palareti G. Direct oral anticoagulants and bleeding risk (in comparison to vitamin K antagonists and heparins), and the treatment of bleeding. Semin Hematol 2014; 51: 102–11
68. Ten Cate H. New oral anticoagulants: discussion on monitoring and adherence should start now! Thromb J 2013; 11: 8

Handling editor: Simon Howell