Perioperative management of the bleeding patient

K. Ghadimi1, J. H. Levy1, and I. J. Welsby1,*

1Divisions of Cardiothoracic Anesthesiology & Critical Care Medicine, Duke University Medical Center, Durham, NC, USA

*Corresponding author. E-mail: ian.welsby@duke.edu

Abstract

Perioperative bleeding remains a major complication during and after surgery, resulting in increased morbidity and mortality. The principal causes of non-vascular sources of haemostatic perioperative bleeding are a preexisting undetected bleeding disorder, the nature of the operation itself, or acquired coagulation abnormalities secondary to haemorrhage, haemodilution, or haemostatic factor consumption. In the bleeding patient, standard therapeutic approaches include allogeneic blood product administration, concomitant pharmacologic agents, and increasing application of purified and recombinant haemostatic factors. Multiple haemostatic changes occur perioperatively after trauma and complex surgical procedures including cardiac surgery and liver transplantation. Novel strategies for both prophylaxis and therapy of perioperative bleeding include tranexamic acid, desmopressin, fibrinogen and prothrombin complex concentrates. Point-of-care patient testing using thromboelastography, rotational thromboelastometry, and platelet function assays has allowed for more detailed assessment of specific targeted therapy for haemostasis. Strategic multimodal management is needed to improve management, reduce allogeneic blood product administration, and minimize associated risks related to transfusion.

Key words: coagulopathy; direct oral anticoagulants (DOACs); hemostasis & thrombosis; point-of-care testing; thromboembolism; transfusion algorithm

Multiple factors contribute to the complex causes of bleeding in surgical patients that include blood loss, haemodilution, acquired platelet dysfunction, coagulation factor consumption in extracorporeal circuits, activation of fibrinolytic, fibrinogenolytic and inflammatory pathways, and hypothermia. Acquired haemostatic defects often present in surgical patients as a result of prescribed oral anticoagulants (warfarin, dabigatran, rivaroxaban, apixaban, edoxaban) and platelet inhibitors (P2Y12 receptor inhibitors-clopidogrel, prasugrel, or ticagrelor). Thus, bleeding after surgery includes both preexisting and/or acquired defects in haemostasis. Congenital bleeding disorders are less common and, hopefully already addressed if a patient presents for surgery. From a preoperative evaluation standpoint, the ISTH bleeding questionnaire is as effective as multiple, laboratory tests for identifying perioperative bleeding risk. Surgical bleeding is usually characterized by a site of bleeding and confined exclusively to the operative site. Meticulous surgical technique, patience, and good patient selection all contribute significantly to minimizing surgical bleeding in the high-risk patient. The spectrum of available topical haemostatic agents and devices are beyond the scope of this review. The focus of this review is microvascular or coagulopathic bleeding as a consequence of abnormal haemostatic mechanisms. While typically manifested as generalizing bleeding within the operative site, this can extend to percutaneous cannulation sites, nasogastric tubes, and urinary catheters.

Management of perioperative bleeding consists of identifying patients at risk, understanding the impact of the operation on haemostasis, institution of allogeneic blood and factor concentrate based therapies, utilizing point-of-care laboratory
Fibrinolysis

Activation of the fibrinolytic system is an important mechanism of vascular homeostasis (Figure 1). Mechanistically, plasmin generation is the enzymatic serine protease responsible for fibrinolysis and is formed after the action of t-PA on plasminogen. Plasmin cleaves key coagulation proteins such as fibrin and fibrinogen, but also causes proteolysis of other critical proteins, including fibronectin and von Willebrand factor. In the urogenital tract, hyperfibrinolysis occurs as a result of liberation of the urokinase plasminogen activator system. After cardiopulmonary bypass and/or tissue injury that occurs with surgery or trauma, fibrinolysis is activated and represents an important cause of coagulopathy. In trauma, orthopaedic surgery, and cardiac surgery, multiple studies support the role of antifibrinolytic agent administration in order to decrease bleeding and the need for allogeneic transfusions. These agents can also be used as an adjunct to treating congenital bleeding disorders.

Since CRASH-2 was published in 2010, meta-analyses recommend antifibrinolytic use (mostly tranexamic acid) in abdominal bleeding and trauma, while on-going major studies are being conducted for gastrointestinal bleeding (HALT-IT trial) and postpartum haemorrhage (WOMAN trial). The use of tranexamic acid (TXA) is increasing and additional data are forthcoming. Despite initial concerns about aprotinin, this agent is now being reintroduced in many European markets.

While we will not discuss postpartum haemorrhage in detail, three major considerations are emerging for managing bleeding parturients: routine use uterotonics, aggressive fibrinogen replacement, and prevention of excessive fibrinolysis, as recently reviewed.

Antifibrinolytic agents: lysine analogues

The two antifibrinolytic agents administered clinically include epsilon aminocaproic acid (EACA) and TXA. While both medications competitively inhibit plasminogen conversion to the active protease plasmin, only TXA has been shown to inhibit higher plasma concentrations of plasmin. Although most of the data for the antifibrinolytic lysine analogues are with TXA, EACA continues to be extensively utilized in the USA.

Although multiple studies (primarily meta-analyses of randomized-controlled trials) have shown that lysine analogues decrease bleeding in cardiac surgical patients, there are limited prospective safety data regarding the use of antifibrinolytic agents. Most dosing studies include total EACA doses of 20 to 30 g per patient, or total TXA doses from 2 to 25 g, mainly from 2 to 8 g.

An increase in the incidence of seizures after cardiac surgery from 1.3% to 3.8% has been temporally associated with higher-dose TXA use. The mean age of patients in this report was ~70 yr, and open chamber surgery, with possible air entrainment, was a risk factor. Mechanistically, TXA enhances neuronal excitation by antagonizing inhibitory gamma-aminobutyric acid (GABA) and glycine neurotransmission at the receptor level, an established cause of seizures. This side-effect was not noted in prospective trials, which were notably underpowered for this outcome. Seizure activity has not been described in patients receiving EACA. For other indications such as orthopaedic trauma and obstetric indications, the data are mostly for patients receiving a total of 2 g of TXA, where seizures have rarely been reported.

Editor’s key points

- Perioperative bleeding can involve acquired coagulation abnormalities secondary to haemorrhage, haemodilution, or haemostatic factor consumption.
- Novel approaches for prophylaxis and therapy of perioperative bleeding include use of tranexamic acid, desmopressin, fibrinogen and prothrombin complex concentrate.
- Point-of-care testing of haemostatic function using thromboelastography, thromboelastometry, and platelet function assays allows specific targeted therapy of coagulopathy.

General considerations: hypothermia and fibrinolysis

Temperature regulation and the coagulopathy of hypothermia

In controlled circumstances, such as during cardiopulmonary bypass or hypothermic circulatory arrest, hypothermia is used as a neuroprotective mechanism. Inadvertent hypothermia seen with severe trauma, or poorly maintained intraoperative temperature regulation can be associated with worse outcomes. For example, isolated hypothermia of 32.2 °C is associated with a 23% mortality rate, while trauma-induced hypothermia below 32 °C is associated with 100% mortality. The coagulopathy of hypoxic patients includes dysregulation of coagulation enzyme processes, platelet function, activation of fibrinolysis, and endothelial injury. Bleeding observed at reduced temperatures (33 – 37 °C) often occurs because of defects in platelet adhesion, while at temperatures below 33 °C, both reduced platelet function and coagulation enzyme activity contribute. Active warming should be applied perioperatively if exposed surface area allows. Additionally, hypothermia and acidosis frequently occur together requiring correction of metabolic abnormalities.

Testing, and understanding the limitations of monitoring techniques. Clinically important bleeding can paradoxically evolve into pathologic thrombosis, with the transition of perioperative coagulopathy to hypercoagulability related to the acute phase response. This can be exacerbated by overzealous replacement of deficient procoagulant factors, inattention to deficient anticoagulant factors, and reluctance to initiate needed anticoagulant agents for venous thromboembolic prophylaxis after a recent bleed. Navigating this complex, rapidly changing haemostatic balance exemplifies the value of the perioperative physician with detailed knowledge of haemostasis, anticoagulation, and transfusion medicine. In this review, we address specific and general considerations for various pathophysiological states or circumstances and haemostatic agents and provide algorithmic approaches to bleeding management, in order to place the administration of agents in clinical context.

The following section represents general considerations of haemostasis related to hypothermia and fibrinolysis, which can occur in all patient populations undergoing invasive procedures and require review before approaching the coagulation defects particular to specific patient populations.
Coagulation abnormalities in different patient populations

Trauma

The coagulopathy of trauma is a complex pathophysiologic state that results in diffuse, microvascular bleeding. Approximately 40% of trauma-related mortality is associated with profound coagulopathy. Management of major bleeding requires repair of the underlying cause after surgery or trauma, volume resuscitation with blood products, and diagnosis and management of the ongoing coagulation defects. Initial retrospective analyses from military trauma reported repletion of intravascular volume using predetermined ratios of fresh frozen plasma (FFP), platelet concentrate (PC), and red blood cells (RBCs) at 1:1:1 reduced mortality in patients with major bleeding. To prospectively evaluate this strategy, Holcomb and colleagues reported that with severe trauma and major bleeding, early administration of FFP, PC, and RBCs in a 1:1:1 ratio compared with a 1:1:2 ratio, did not significantly decrease mortality at 24 h or 30 days. They also reported more patients in the 1:1:1 group achieved haemostasis and with less mortality from exsanguination at 24 h (9.2% vs 14.6%;
P = 0.03). Although use of FFP and PC in the 1:1:1 group was higher, transfusion related complications including multiorgan failure were similar. While evidence supports the 1:1:1 approach, it is not conclusive, and the optimal ratio of FFP:PC:RBCs is still not clear. Extension of this principle into massive transfusion protocols, as illustrated in Figure 2, but high-volume transfusions are associated with complications. Without massive bleeding criteria, defined as <10 Units of packed RBCs within 12 h of admission, FFP transfusion is associated with acute lung injury (ALI). FFP is associated with a dose-dependent relationship with both transfusion associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI). While 1:1 transfusion might be appropriate for out-of-hospital resuscitation, such complications support refining these protocols when gross exsanguination has been surgically or manually controlled. Use of viscoelastic coagulation tests (e.g. ROTEM© and TEG©) offers guided coagulopathy treatment that also includes antifibrinolytic agents, cryoprecipitate and factor concentrates. In our transfusion algorithm for adult noncardiac surgery (Figure 2), initial steps include utilization of laboratory data in parallel with packed RBCs. Discussion of specific components within this algorithm is described in separate sections in this review. Briefly, although haemoglobin targets vary depending upon patient injuries and comorbidities, a value of 8 g dL⁻¹ is targeted. Platelet concentrate, cryoprecipitate (generally for hypofibrinogenaemia but occasionally administered in patients with known von Willebrand factor or Factor XIII deficiency), and FFP are also administered. Once 4 units of packed RBCs have been transfused, attention is turned to the red box insert within the algorithm, and balanced resuscitation is performed according to blood and blood products given (i.e., Round 1, 2, 3, etc.). Of note, PC and fibrinogen are administered early in this algorithm based on laboratory data, as they are crucial to haemostasis. Fibrinogen remains the first component to reach critically low values during haemorrhage. If refractory bleeding is noted in our algorithm, consideration is given to administration of factor concentrates. Viscoelastic testing has been recently advocated in severely-injured trauma patients, in order to help guide antifibrinolytic therapy in the setting of systemic, post injury hyperfibrinolysis, physiologic/normal fibrinolysis, or hypofibrinolysis/fibrinolytic shutdown. The European Task Force for Advanced Bleeding in Trauma has provided a guideline document in order to manoeuvre through the expansive possibilities related to coagulopathic management in the trauma patient.
Chronic liver disease and orthotopic liver transplantation

Haemostatic changes seen with end-stage liver disease are complex, resulting from reduced concentrations of pro- and anti-coagulant proteins, plasm-in-related qualitative platelet dysfunction from defective thromboxane A2 synthesis, storage pool deficiency, platelet glycoprotein Ib abnormalities, and platelet sequestration. Platelet function defects, however, are attenuated by the exaggerated concentrations of von Willebrand Factor (vWF), resulting from deficiency of the hepatically synthesized protease ADAMTS 13. Relative plasminogen activator inhibitor (PAI-1 and 2) deficiency reduces t-PA clearance increasing fibrinolytic potential. Reduced thrombin activatable fibrinolysis inhibitor (TAFI) and alpha-2 antiplasmin further exacerbate this.

During surgery, with perfusion of the donor liver, hyperfibrinolysis can occur as a result of extensive release of t-PA into the circulation. As a result, these patients can benefit from treatment with antifibrinolytic agents, while taking care to avoid hypercoagulation. As previously discussed, viscoelastic testing has been utilized in severely-injured trauma patients in order to help guide antifibrinolytic therapy. With that said, the rationale for utilizing viscoelastic testing might not be the best approach guide to antifibrinolytic use in hepatic failure patients undergoing orthotopic liver transplantation. The balance between bleeding and clotting varies, with the potential for hepatic artery or portal vein thrombosis upon reperfusion and postoperatively coexisting with severe coagulopathic bleeding, especially in the dissection phase of liver transplantation.

Cirrhosis impairs synthesis of all procoagulant factors (except factor VIII produced by endothelium) and often co-exists with vitamin K deficiency, as reflected by prolongation of the prothrombin time (PT), which is highly sensitive to concentrations of factor VII. Although PT and activated partial thromboplastin time (aPTT) are widely used as a monitor in cirrhotic patients, they do not reflect the overall status of pro- and anti-coagulant deficiency or excessive fibrinolysis. More current efforts to identify relevant biomarkers, focus on proinflammatory cytokines such as monocyte chemoattractant protein-1, correlate well with bleeding after surgery, liver biopsy or other potentially haemorrhagic procedures in patients with cirrhosis. Neither PT or aPTT correlate with bleeding after surgery, liver biopsy or other potentially haemorrhagic procedures in patients with cirrhosis.

Cardiopulmonary bypass and cardiac surgery

Coagulation abnormalities encountered during cardiac surgery are multifactorial and include preoperative antiplatelet agents, heparin reversal with protamine, acquired platelet dysfunction after cardiopulmonary bypass (CPB), haemodilution, and loss of clotting factors and platelets. Although off-pump cardiac surgery avoids the effects of CPB discussed below, other causes of coagulopathy still apply. CPB induces a complex pathophysiological state, with pathophysiologic changes that are potentially similar to sepsis and a systemic inflammatory response. In a more severe form, coagulopathy after prolonged CPB can produce a consumptive coagulopathy, leading to clinically significant bleeding and/or thrombosis with factor consumption. Excessive thrombin generation and activation of tissue factor causes endothelial dysfunction (predisposing to microvascular thrombosis), with concomitant coagulopathy developing as a result of consumption of both pro- and anti-coagulant proteins (especially fibrinogen and antithrombin), deposition and loss of platelets, and potent activation of fibrinolysis. Laboratory findings pathognomonic for diffuse intravascular coagulation (DIC), characterized by decreased platelet counts, low fibrinogen, increased PT, aPTT, and D-dimer concentrations, also commonly occur in patients after CPB. One important difference is that D-dimer concentrations might not be elevated after cardiac surgery because of routine administration of antifibrinolytics. Acquired ATIII deficiency can occur in cardiac surgical patients as a result of multiple causes that include preoperative antiplatelet agents, heparin administration, haemodilution, and consumption. Low concentrations of ATIII that range from 20% to 50% commonly occur in cardiac surgical patients associated with CPB.

Our group has developed a transfusion algorithm for cardiac surgery (Figure 3), adopted from similar concepts related to trauma-induced coagulopathy (Figure 2), while incorporating the concepts highlighted above. In our algorithmic approach, laboratory data, including viscoelastic testing with ROTEM® (assays for determination of extrinsic pathway coagulation deficiencies – EXTEM®, and determination of fibrinogen-platelet interaction - FIBTEM®), platelet count, and fibrinogen values, are obtained once rewarming is initiated on CPB. If hypofibrinogenaemia is noted and the EXTEM® Clotting Time is > 80s, consideration is given to administration of four units of FFP during CPB, followed by administration of cryoprecipitate upon separation from CPB. Other management modalities are illustrated, and clinically important bleeding is determined along the way, in order to determine further laboratory investigation and focus administration of deficient coagulation components.
Pharmacological haemostatic agents

A review of allogeneic blood products and dosing is beyond the scope of this article. Outside of the massive trauma setting, their use is guided by laboratory testing. In average adults, one unit of RBCs increases haemoglobin concentrations by \(1g \text{ dL}^{-1}\), one adult dose of platelets increases platelet count by \(25-35 \times 10^9 \text{ l}^{-1}\), and a typical dose of 10-20 ml kg\(^{-1}\) plasma raises factor levels by \(\sim 10\%\). Cryoprecipitate is discussed separately below.

Desmopressin

Desmopressin (DDAVP) is the V2 analog of arginine vasopressin that releases vWF multimers from endothelial stores.\(^{99}\) vWF is a critical protein that facilitates platelet adherence, by acting as a protein bridge between platelet glycoprotein Ib receptors and damaged vascular subendothelium. DDAVP decreases bleeding times in mild haemophilia A or von Willebrand disease, but beyond these indications, and despite widespread perioperative use, efficacy is limited.\(^{100}\) DDAVP is administered intravenously at doses of \(0.3 \text{ mcg kg}^{-1}\) and should be infused over 15-30 min to avoid changes in bp or cardiac chronotropy.\(^{101}\) Despite 18 trials of desmopressin in 1295 patients undergoing cardiac surgery, only minimal reduction of perioperative blood loss (\(\sim 115 \text{ ml}\)) was reported.\(^{102,103}\) The benefit of administering DDAVP in these patients is unclear, especially with concomitant use of vWF.

Coagulation factor concentrates

Although allogeneic blood products are the basis of coagulopathy management, they require cross matching, and have well

Fig 3 Transfusion Algorithm for intraoperative bleeding during cardiac surgery. In this laboratory, viscoelastic testing (ROTEM) paradigm, samples are sent upon body temperature rewarming during CPB. Our algorithm directs the correction of hypofibrinogenemia (using the Klaus Fibrinogen assay or FibTEM A10 values and thrombocytopenia. Patients whom have undergone hypothermic circulatory arrest and the ensuing platelet dysfunction of hypothermia, receive platelet concentrate transfusion depending on platelet value during on-CPB rewarming values, when temperatures are \(>33\) °C. Notably, because of established institutional practices, a first set of haemostasis blood samples are sent to the laboratory on CPB, and in order to account for heparin effect, HEPTEM is sent in addition to EXTEM. Thus, if HEPTEM is \(>240\) s, then it is presumed the added prolonged clotting time is as a result of additional factor deficiencies and requires FFP administration. A HEPTEM CT \(<240\) s indicates manufacture-established values after heparin antagonism. This value aids the practitioner in deciding on FFP administration while on CPB, in order to avoid delayed initiation of coagulation management after separation from CPB. Consideration is also made to post-CBP PCC administration, as PCC usage on CPB might be less useful owing to the larger volume of distribution and potential deposition of PCC factors onto CPB filters. With opportunities for clinical observation and laboratory values for deciding further clinical intervention, various deficiencies are managed through such blood, plasma, and factor concentrate administration. Antifibrinolytic therapy is standard practice for clots with known perioperative values; however, following separation from CPB, we recommend a similar assessment locally within each hospital to help with best practice.

Diagram:

```
<table>
<thead>
<tr>
<th>Start: ROTEM #1, platelet count, fibrinogen at rewarming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen 200 mg/dL or CT EXTEM &gt; 80 s+ CT HEPTEM &gt; 240 s</td>
</tr>
<tr>
<td>INR &gt; 1.3 aPTT or PT &gt; 1.3 x CT EXTEM &gt; 80 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Haemoglobin ≤ 7 or 8 g dL(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>if 1-2 U RBC suggest Hb 8-9 g dL(^{-1}) DISCUSS!!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLT ≤ 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 U PLTs</td>
</tr>
<tr>
<td>2 U PLTs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIB ≤ 200 mg/dL FibTEM A10 ≤ 13 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mcg/kg DDAVP (not if cryo given)</td>
</tr>
<tr>
<td>1 U PLTs</td>
</tr>
<tr>
<td>1 U PLTs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIB ≤ 150 mg/dL FibTEM A10 ≤ 10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 U cryo</td>
</tr>
<tr>
<td>10 U cryo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLT ≤ 50 or DHCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 U PLTs</td>
</tr>
<tr>
<td>2 U PLTs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INR &gt; 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPTT or PT &gt; 1.3 x CT EXTEM &gt; 80 s</td>
</tr>
<tr>
<td>rFVIIa 1 mg-repeat x 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discuss 4 U FFP on CPB, cryo, PCCs and/or 10 mg Vit K i.v</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Retest and request assistance</th>
</tr>
</thead>
</table>
```

documented transfusion reactions and other risks, require blood bank management, and can be limited by availability and need for transport from the blood bank. Factor concentrates, including fibrinogen concentrates and PCCs, are evolving as a way to replace or reduce allogeneic blood product administration.104–106 Several factor concentrate based algorithms have been described favourably.107,108

Fibrinogen
Fibrinogen is a critical haemostatic factor for the development of effective local clot in surgical patients, and for managing perioperative bleeding in cardiac surgical patients.106,109–111 Normal fibrinogen concentrations are 200-400 mg dl$^{-1}$ in the non-parturient, but can be >400 mg dl$^{-1}$ during the third trimester of pregnancy. While the target fibrinogen concentration in a bleeding patient is not known, bleeding increases for each 100 mg dl$^{-1}$ decrease in fibrinogen concentration in parturients,112 and fibrinogen concentrations decrease in proportion to increased blood loss after cardiac surgery.113,114 Many society guidelines suggest a transfusion trigger of 100 mg dl$^{-1}$ of fibrinogen, based on the threshold of 80-100 mg dl$^{-1}$ that begins to affect the PT or aPTT, despite the absence of in vivo clinical evidence for this recommendation. European guidelines have recommended targeting low normal concentrations (~ 200 mg dl$^{-1}$) since at least 2010.102,115 To achieve this, 3-4 g fibrinogen concentrate or 15-20 single donor units of cryoprecipitate have been recommended in the bleeding patient, ideally targeted by laboratory data.

While the exact fibrinogen content of each unit of cryoprecipitate is unknown, in a 70 kg adult, a 5-unit bag of cryoprecipitate increases fibrinogen by approximately 25-35 mg dl$^{-1}$.116 This approximate incremental increase might be reduced in the event of ongoing haemorrhage. In mainland Europe, fibrinogen concentrates are used for fibrinogen repletion as cryoprecipitate is not readily available. Fibrinogen concentrates lack other components of cryoprecipitate such as vWF and factors VIII and XIII.116 In a prospective study, patients randomized to fibrinogen concentrate as a first line therapy had a significantly lower rate of any allogeneic blood product transfusions, including packed RBCs and FFP.117 Conversely, fibrinogen concentrate was not effective after aortic reconstruction surgery, possibly attesting to the multifactorial nature of this coagulopathy and a complexity that confounds a single agent panacea.118

Prothrombin complex concentrates. Prothrombin complex concentrates (PCCs) are purified coagulation factors that include procoagulant factors II, VII, IX and X and anticoagulant proteins C, S and Z in variable concentrations; minimal antithrombin and restores downstream thrombin generation (Figure 1). Of note factor VIIa was developed from activated PCCs.5

Recombinant activated factor VIIa. Recombinant FVIIa (rFVIIa, Novoseven®, Novo Nordisk, Denmark) is approved in most countries for treating bleeding episodes in patients with haemophilia A or B with inhibitors, congenital Factor VII deficiency, and Glanzmann’s thrombasthenia who are refractory to platelet transfusions, with or without antibodies to platelets; and for treating bleeding for perioperative management in adults with acquired haemophilia. In these examples, rFVIIa is effectively used as a bypassing agent at doses of 90-120 mcg kg$^{-1}$ and infusions. Conversely, off-label dosing is unknown, with lower doses (~20 mcg kg$^{-1}$) increasingly favored,123,124 and rFVIIa is still included in guidelines for refractory bleeding.125,126,127,128 It is important to have other coagulation substrates present for optimal efficacy of generated FXa; predictors of rFVIIa- treatment failure include evidence of coagulation substrate deficiency, haemodilution, or consumption, leading to altered laboratory measurements (INR >2.0, platelet count $<80 \times 10^9$ L$^{-1}$, fibrinogen <100 mg dl$^{-1}$).128 High thromboembolism rate (>20%),129 a complication rate of 44%,128 and a mortality of 32%128 are also described in retrospective evaluations of registries for refractory bleeding patients. Prospective trials report a lower incidence of thrombosis, but high rFVIIa doses increase the risk of arterial, but not venous, thromboembolic events, especially among the elderly.130 Recent large reviews of nonsurgical, noncardiac and cardiac surgical patients, demonstrated effectiveness.131 A modest increase in thromboembolic risk was seen with both therapeutic (RR 1.21; 95% CI 0.93 – 1.58) and prophylactic use (RR 1.32; 95% CI 0.84 – 2.06).132

The overenthusiastic initial adoption of rFVIIa was subsequently tempered by thromboembolism complications.130,132,133 We can apply this knowledge to PCC use in refractory bleeding by addressing substrate repletion and minimizing dosage (10-15 IU kg$^{-1}$; Figures 2 and 3). Failure to address platelet, fibrinogen, Factors II, VIII, IX or X deficiencies in patients with severe haemorrhage can limit the effectiveness of rFVIIa or PCC to restore thrombin generation and fibrin clot formation.5

Protamine
Protamine, isolated from salmon sperm, is a highly basic nuclear histone, that binds DNA to provide structural integrity. Its molecular weight is ~5000 Da with ~70% arginine residues that result in its highly basic nature. Protamine binds to the acidic heparin molecule via a simple acid-base interaction,134 but only partially antagonizes low-molecular-weight heparin (LMWH) activity. Excess protamine should be avoided when antagonizing heparin as it can contribute to coagulopathy135 by inhibiting factor V activation and platelet activity.136 To better match the pharmacokinetic profile of heparin slowly released from poorly perfused tissues, such as adipose tissue after CPB (heparin rebound), a protamine infusion of 25-50 mg h$^{-1}$ can significantly reduce blood loss after cardiac surgery.137 Heparin concentrations during rebound usually range from 0.1 to 0.3 IU mL$^{-1}$, which is at the low end of the therapeutic range. The activated clotting time (ACT) is poorly sensitive as a measure of heparin at such low concentrations.

Direct oral anticoagulants
Direct oral anticoagulants (DOACs) represent a class of orally administered factor inhibitors approved for anticoagulation in patients with venous thromboembolic disease and stroke prevention in patients with nonvalvular atrial fibrillation. As the prevalence of patients taking DOACs continues to increase, so
does the importance of understanding how to best antagonize the anticoagulant effect of these agents. Although the reader is directed elsewhere for review of approaches to management of bleeding in these patients,136 general efforts using FPCs or aPCCs remain unproved with unknown dosing regimens. Additionally, specific antidotes are currently available or under development, as follows.

Specific antidotes for direct oral anticoagulants

Recently, idarucizumab (PraxbindTM, Boehringer Ingelheim, Germany) was approved for antagonism of dabigatran, a direct thrombin inhibitor (DTI) within the class of the direct oral anticoagulants (DOACs). Concentrations of unbound dabigatran remained low at 24 h in 79% of the patients, and for most operative normal haemostasis was restored. One thrombotic event occurred within 72 h after idarucizumab administration in a patient in whom anticoagulants had not been reinitiated.139

Factor Xa inhibitors are another subclass of DOACs without an approved antagonism agent. Andexanet alfa (Portola Pharmaceuticals, South San Francisco, California, USA) is a modified, recombinant derivative of Factor Xa with the serine on the FXa-active site mutated to alanine, inactivating the serine protease activity and thus removing its ability to cleave prothrombin to thrombin.140,141 The membrane-binding domain of plasma-derived Factor X has also been deleted, precluding inclusion of andexanet into the prothrombinase complex. This “decoy molecule” sequesters FXa inhibitors, rapidly reducing free plasma concentration and neutralization anticoagulant effect. Andexanet alfa binds to antithrombin complexed with LMWH, fondaparinux, rivaroxaban, apixaban and edoxaban. The short half-life of andexanet alfa relative to FXa inhibitors can be insufficient to correct coagulopathy, particularly in the setting of renal dysfunction or older age.142 Although interim reports from a clinical trial are encouraging,143 Other antagonism agents in development include PER977.144 But antagonism of anticoagulation incurs a thrombosis risk that will have to be balanced with bleeding and will likely need to be addressed once haemostasis is achieved.141 Despite the potential for these specific antagonism agents, a multimodal approach to coagulation management is needed during management of bleeding related to DOACs, which might necessitate coagulation factor concentrate administration.

Antiplatelet agents: aspirin and thienopyridine derivatives

Aspirin is used extensively for the secondary prevention of atherothrombotic disease that includes occlusive coronary artery and peripheral arterial disease, and cerebrovascular thromboembolism.145 Although aspirin has the potential to increase blood loss after major surgery, this probably does not result in increased needs for transfusions and should always be considered for risk vs benefit effects.146 As such aspirin should not be discontinued preoperatively except before neurosurgery procedures. Antagonism of aspirin is rarely necessary 48 h after the last dose and can be achieved by DDAVP147 or platelet transfusion.

Clopidogrel (Plavix), prasugrel (Efient, Effient), ticagrelor (Brilinta), and cangrelor (Kengreal) belong to the class of thienopyridine derivatives that act by blocking the adenosine diphosphate (ADP) P2Y12 receptor on platelets. Dual antiplatelet therapy with aspirin and clopidogrel is a current standard of care after percutaneous coronary intervention (PCI), however this combination is associated with an increased bleeding risk.148 Prasugrel and ticagrelor have stronger antplatelet effect than clopidogrel because of more effective metabolism and less dependence on cytochrome P450 enzymes subject to genetic polymorphisms.149

The decision whether or not the interrupt or even antagonize antithrombotic therapy with dual platelet inhibition requires careful thrombotic risk and haemostatic benefit evaluation, especially in patients with recent drug-eluting stent rather than bare-metal stent implantation. Administration of platelet concentrates (~2 units) can correct the haemostatic defect after antiplatelet drugs have been stopped for 12–24 h (free drug can inhibit transfused platelets).150,151 Ideally, aspirin is restarted 6 h and P2Y12 receptor blockade is restarted 12–48 h after surgery. When continued P2Y12 receptor blockade is desirable, cangrelor infusion can serve as a bridge to surgery.152 In the actively bleeding patient, testing for platelet dysfunction has been thought to be unreliable as most tests require a relatively normal platelet count and most of the platelet function testing might not work well after the dilutional changes and activation after CPB.153 However, a recent prospective observational study, illustrated that preoperative ADP-induced platelet aggregability predicted the risk for severe bleeding in cardiac surgical patients treated with preoperative ticagrelor.154

Transfusion algorithms and bleeding

Transfusion algorithms represent one of the most important strategies to reduce excess transfusion, and all components of coagulation management outlined in our review have been included in the algorithms presented. Developing a specific therapeutic plan through use of transfusion algorithms has been shown to consistently reduce allogeneic blood administration.107 It is important to realize that any laboratory testing that discourages empirical blood product administration, is important as part of a multimodal approach to blood conservation and reduction of allogeneic blood product use, while realizing that laboratory values can lag behind the clinical scenario, if blood loss remains rapid.37,154 Transfusion algorithms generally recommend administration of plasma when bleeding is accompanied by PT or aPTT > 1.5 times normal, platelet transfusions for thrombocytopenia with a platelet count <50,000–100,000, or cryoprecipitate or fibrinogen concentrate when fibrinogen concentrations are <200 mg dl−1 (2 g l−1).155 The critical role of fibrinogen continues to evolve with most data suggesting the importance of normalizing fibrinogen in bleeding patients. With critical bleeds, and turn over time in standard laboratory testing, point-of-care testing, including rotational thromboelastometry (ROTEM®), thromboelastography (TEG®) and/or platelet function testing, are important.155 In the actively bleeding patient, testing for platelet dysfunction is unreliable, as most tests need a relatively normal platelet count.12 With these capabilities and limitations in mind, we have developed transfusion algorithms for both noncardiac (Figure 2) and cardiac (Figure 3) surgical patients in order to guide perioperative management of coagulopathy.

Conclusions

The potential for haemorrhage in trauma and surgical patients represents an ongoing concern for management. Anticoagulation monitoring using point-of-care testing, optimal use of transfusion therapies, adjunct administration of antifibrinolics and purified and recombinant concentrates, provide
clinicians with the ability to administer vital coagulation therapies to treat haemorrhage. Other key considerations include management of hypofibrinogenemia, thrombocytopenia and platelet disorders, topical haemostasis, excluding surgical sources of bleeding, and temperature regulation. The integration of the optimal use of pharmacologic agents, allogeneic transfusion, and factor concentrates into a comprehensive perioperative coagulation treatment algorithm for bleeding, is an important therapeutic approach for the management of bleeding in surgical patients.

Authors’ contributions
Study conduct: K.G., J.J.W.
Data analysis: K.G., J.H.L., I.J.W.
Writing paper: K.G., J.H.L., I.J.W.
Revising paper: all authors

Declaration of interest
K.G. is a co-investigator in a prospective, open-label study of Andexanet-Alpha in patients receiving Factor Xa inhibitors with acute major bleeding, sponsored by Portola Pharmaceuticals. J.H.L. serves on steering committees for Boehringer-Ingelheim, CSL Behring, Grifols, and Janssen; consultant to Instrumentation Laboratories and Pfizer.

I.J.W. is the Principal Investigator in a prospective, open-label study of Andexanet Alpha in patients receiving Factor Xa inhibitors with acute major bleeding, sponsored by Portola Pharmaceuticals and has recently received grant support from CSL Behring and Terumo BCT.

Funding
NIH R01HL121232-01 (I.J.W.), Departmental funding (K.G., J.H.L.)

References
45. Mitra B, Mori A, Cameron PA, Fitzgerald M, Paul E, Street A. Fresh frozen plasma (FFP) use during massive blood transfusion in trauma resuscitation. Injury 2010; 41: 35–9
57. Moore EE, Moore HB, Gonzalez E, Savaia A, Banerjee A, Silliman CC. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient. Transfusion 2016; 56 Suppl 2: S10–4
64. Peck-Radosavljevic M. Thrombocytopenia in liver disease. Can J Gastroenterol 2000; 14 Suppl D: 60D–6D
73. Segal JB, Dzik WH. Transfusion Medicine/Hemostasis Clinical Trials N. Paucity of studies to support that abnormal thrombin generation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion 2005; 45: 1413–25

104. Levy JH, Welsby I, Goodnough LT. Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. *Transfusion* 2014; 54: 1389–405; quiz 8

137. Teoh KH, Young E, Blackall MH, Roberts RS, Hirsh J. Can extra protamine eliminate heparin rebound following cardiopulmonary bypass surgery?: *J Thorac Cardiovasc Surg* 2004; 128: 211–9

Handling editor: Hugh Hemmings