RESEARCH PAPER

Acute sarcopenia changes following hospitalization: influence of pre-admission care dependency level

Anton De Spiegeleer1,2,3, Hasan Kahya1, Dolores Sanchez-Rodriguez4,5,6, Karolina Piotrowicz7, Murielle Surquin8, Estery Marco8, Celine Detremerie1, Dhurgham Hussein1, Suzy Hope9,10, Dhayana Dallmeier11,12,13, Genia Decker11,12, Dana Hrnciarikova14, Joanna Czesak7,15, Miguel Toscano-Rico16, Delky Meza-Valderrama8,17, Gülistan Bahat18, Amélie Descamps2, Evelien Wynendaele2, Dirk Elewa13, Hana Vankova19, Francesco Landi20, Florence Benoit4, Jerzy Gasowski7, Nele Van Den Noortgate1

1Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
2Drug Quality and Registration group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
3Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium
4Clinical Research Unit, Brugmann University Hospital, Brussels, Belgium
5WHO Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology, and Health Economics, University of Liège, Liège, Belgium
6Geriatrics Department, Rehabilitation Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
7Department of Internal Medicine and Gerontology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
8Physical Medicine and Rehabilitation Department, Rehabilitation Research Group, Hospital del Mar Medical Research Institute, Universitat Autònoma de Barcelona, Catalunya, Spain
9Department of Healthcare for Older People, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
10University of Exeter Medical School, Exeter, UK
11Agaplesion Bethesda Clinic Ulm, Ulm, Germany
12Geriatric Center Ulm/Alb-Donau, Ulm University, Ulm, Germany
13Department of Epidemiology, Boston University School of Public Health, Boston, USA
14Faculty of Medicine, University Hospital Hradec Králové, Hradec Králové, Czech Republic
15Institute of Clinical Rehabilitation, University School of Physical Education, Kraków, Poland
16Centro Hospitalar Lisboa Central, Hospital de Santa Marta, Lisbon, Portugal
17Physical Medicine and Rehabilitation Department, National Institute of Physical Medicine and Rehabilitation (INMFER), Panama City, Panama
18Division of Geriatrics, Department of Internal Medicine, Istanbul University, Istanbul, Turkey
19Third Faculty of Medicine, Charles University, Prague, Czech Republic
20Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy

Address correspondence to: Nele Van Den Noortgate, Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University C. Heymanslaan 10, 9000 Ghent, Belgium. Tel: 09 332 29 16. Email: nele.vandennoortgate@ugent.be

Abstract

Introduction: Hospitalization is associated with acute changes in sarcopenia status in older people, but the influencing factors are not fully understood. Pre-admission care dependency level as a risk factor has not yet been investigated.

Objective: Evaluate if pre-admission care dependency level is an independent predictor of sarcopenia changes following hospitalization.
Acute sarcopenia changes following hospitalization

Setting and subjects: Data came from the Sarcopenia 9+ EAMA Project, a European prospective multi-centre study. For this study, 227 hospitalised older people were included from four different hospitals in Belgium, Spain and Poland, between 18 February 2019 and 5 September 2020.

Methods: Sarcopenia status at admission and discharge were calculated using a combined score (desirability value) based on muscle mass (calf circumference), strength (grip) and function (walking speed). Ratio of admission to discharge status was the outcome (desirability ratio; 1.00 meaning no difference). Predictor variable was the pre-admission care dependency level, classified into three groups: independent older people living at home, dependent older people living at home and older people living in a care home. Linear regression models were applied, considering potential confounders.

Results: Mean desirability ratio for dependent older people living at home ('middle dependent group') was lower (0.89) compared to independent older people (0.98; regression coefficient −0.09 [95% CI −0.16, −0.02]) and care home patients (1.05; −0.16 [95% CI −0.01, −0.31]). Adjusting for potential confounders or using another statistical approach did not affect the main results.

Conclusion: Dependent older people living at home were at higher risk of deterioration in sarcopenia status following hospitalization. In-depth studies investigating causes and potential interventions of these findings are needed.

Keywords: acute sarcopenia, care home, care dependency, hospitalization, older people

Key Points

- Acute sarcopenia is an important but rarely studied health problem on the acute geriatric ward.
- Identification of the population at risk for sarcopenia deterioration in hospital is needed to enable targeted interventions.
- Dependent older people living at home are at risk of a worsening sarcopenia status following single hospitalization.

Introduction

Sarcopenia is a geriatric disease characterized by a severe decrease in muscle mass, muscle strength and/or physical function with ageing. Although different definitions do exist, the three most commonly used definitions, developed by the European Working Group on Sarcopenia in Older People (EWGSOP), the International Working Group on Sarcopenia (IWGS) and the Asian Working Group for Sarcopenia (AWGS), are based on a combination of these three components [1–3]. Over the last decade, sarcopenia has received increased attention due to increasing prevalence and its major health (and societal) impact [4]. The worldwide prevalence of sarcopenia is currently estimated to be between 10% in community-dwelling older people, and up to 40% in older nursing home residents, the people most dependent on care [5]. The major health impact of sarcopenia is reflected in, amongst other things, an increased risk of falls and fractures (Odds Ratio or OR 2) [6], increased hospitalization risk (hazards ratio or HR 1.6) [7], functional decline (OR 3.0) [8], decreased quality of life (OR 0.75 on short form-36 questionnaire) [9] and increased all-cause mortality (OR 3.6) [8].

While sarcopenia is classically regarded as being a slow pathological process taking place over years, acute events can aggravate this process. Hospitalization has been associated with an acute decline in muscle mass and function in older people [10–12]. This ‘acute sarcopenia’ can recover after hospitalization, but often not completely. One study suggested that older people who are more frail and dependent pre-admission are at higher risk for non-reversible functional decline (Activities of Daily Living or ADL-index) than their more robust and highly functioning counterparts [10]. Friedman et al. conducted a small hospital observational study in older people measuring functional changes (ADL-index) following hospitalization. Interestingly, they found a functional decrease for people residing in assisted living, but not for older people living independently in the community or nursing home residents [13]. However, neither study looked at sarcopenia specifically, the ADL tool used was not very sensitive, and they excluded those who were functionally highly dependent at baseline from their analysis. To our knowledge, there have been no detailed studies performed to date investigating acute sarcopenia change during hospitalization together with the risk factors for potential changes, including the pre-admission level of dependency.

We aimed to assess if care dependency level, linked to the place of residence, before hospitalization is an independent predictor of sarcopenia change following hospitalization. This could potentially provide a clinically useful tool to help us identify those at increased risk for functional decline during hospitalization, and thus enabling early intervention. Moreover, as the number of (severely) dependent older people residing in their own homes continues to increase, this study provides a timely opportunity to expand our knowledge regarding health effects in this subgroup of older people.

Methods

Data

Data were obtained from the Sarcopenia 9+ EAMA Project (between 18 February 2019 and 05 September 2020, from four different university hospitals in Krakow, Barcelona,
Moreover, in order to integrate the different continuous
the sarcopenia components using continuous variables.

admission and within 24 hours of discharge.

to walk. All assessments were performed within 48 hours of
speed was subsequently calculated based on the time taken

dynamometer (Jamar or Saehan) or a vigorimeter (Martin),

from each side, and the maximum value of all readings was
depending on the centre. Two to three readings were taken

in each country. Exclusion criteria were anticipated length of hospital stay <24 hours, inability to perform the hand-grip test (reduced
consciousness or extreme hand anomaly), hip or lower limb
fracture, major amputations of the lower leg, terminally ill
patients admitted for palliative care and unwillingness to take
part in the study. Our study followed the ethical principles
of the Declaration of Helsinki and received approval by
local ethical committees. Each participant and his/her formal
represent in case of diminished cognitive functioning signed
a consent statement form after receiving written/verbal study
information. The Strengthening the Reporting of Observa-
tional Studies in Epidemiology (STROBE) Statement was
followed in this manuscript [15].

Variables

Dependent variable (Y)
The influence of pre-admission care dependency level on
the change in sarcopenia status following hospitalization was
evaluated. Sarcopenia status at admission or discharge was
assessed using a composite index consisting of the three vali-
dated sarcopenia components: muscle mass, muscle strength
and physical function. The change in sarcopenia status was
defined as the ratio of sarcopenia status at hospital dis-
charge to sarcopenia status at hospital admission for each
patient.

Muscle mass was evaluated with calf circumference. Calf
circumference was measured with a non-elastic measuring
tape on the non-dominant leg while sitting in a chair with
feet resting on the floor. Bedridden participants were asked
to bend the knee and rest their feet on the mattress. Mea-
surement was taken on the bare skin at the point of max-
imum convexity [16]. Grip strength was measured using a
dynamometer (Jamar or Saehan) or a vigorimeter (Martin),
depending on the centre. Two to three readings were taken
from each side, and the maximum value of all readings was
used for analysis, following the Southampton protocol. To
evaluate physical function, patients were asked to walk (at
a normal pace) along a straight line 4 m long in distance,
including both the accelerating and decelerating phase. Gait
speed was subsequently calculated based on the time taken
to walk. All assessments were performed within 48 hours of
admission and within 24 hours of discharge.

Instead of using categorical cut-offs, we chose to quantify
the sarcopenia components using continuous variables.
Moreover, in order to integrate the different continuous
variables into one physiologically relevant response, a
multi-criteria decision technique was employed, using
Derringer’s concept of desirability [17, 18]. Every sarcopenia
response (i.e. calf circumference, grip strength and gait
speed) was first linearly transformed into a dimensionless
desirability (d) value, ranging from 0.1 to 0.9, where 0.1
and 0.9 were the lowest and highest obtained value of that
response amongst all patients in the study respectively. If
the patient died whilst in hospital, the responses were set at
0.1, i.e. the least desirable muscle response. This approach
assumes that most older people dying have a very low muscle
mass, strength and function in the terminal phase. If patients
were unable to walk (too weak), the walking speed was set to
0 and translated to a d-value of 0.1 in our model. Also for
grip strength, 0 kg (because of high weakness) translated to
a d-value of 0.1. In contrast, missing values because of any
other reason were not imputed. These three standardized
d-values were combined into a global D-value for each
patient, which was the geometric mean (robust for outliers;
missing values were not imputed). Each component (muscle
mass, muscle strength and physical performance) was
weighted equally. Inherent to this desirability concept, all D-
values lie between 0.1 and 0.9, with 0.1 indicating a relatively
high sarcopenic status (low muscle desirability) and 0.9 a
relatively low sarcopenic status (high muscle desirability).
Each patient included thus had a D-value on admission and
discharge (D_admission and D_discharge respectively). The
main outcome for each patient was the ratio of these two
D-values (D_ratio = D_discharge/D_admission).

Independent variable (X)
We questioned the patient and family to evaluate the
patient’s ‘pre-admission care dependency level’ before the
illness that took him/her to the hospital. This independent
variable was divided into three categories: ‘independent-
home’ (living at home independently), ‘dependant-home’
(living at home, but with needed help from family and/or
external carers) and ‘care home’ (living in a care home). This
‘order’ is often the natural trajectory of older people.

Covariates
For the analyses, the following potential covariates were
taken into account: age, sex, sarcopenia status at hospital
admission (= D-value at admission), length of hospital stay,
level of previous usual physical activity using the Rapid
Assessment of Physical Activity (RAPA) score and Charlson
comorbidity index. The RAPA is a 9-item scale based on
a questionnaire that scores an individual’s level of usual
physical activity from 0 (sedentary) to 4 (active) [19]. Charl-
son comorbidity index (score between 0 and 36) takes into
account age and comorbid conditions, including cardiovas-
cular disease, diabetes mellitus, liver disease and pulmonary
disease [20]. This well-validated composite comorbidity tool
was used instead of all comorbidities individually to avoid
model overfitting.
Analysis

We investigated the association between pre-admission care dependency level and muscle desirability ratio D_ratio (D_discharge/D_admission) using linear regressions. A first set of regressions analysed the difference between dependent and independent older people, both living at home, while a second set of regressions investigated the difference between dependent older people at home vs. care home. To minimize confounding bias, propensity scores using the potential covariates were calculated in a stepwise fashion, followed by use of overlap weighting [21].

To assess the robustness of our findings, we also conducted paired t-tests for D_ratio’s after matching for age, sex, Charlson comorbidity index, length of hospital stay, RAPA score and D value at admission, every dependent-home patient with an independent-home patient, as well as every care home patient with a dependent-home patient, using the nearest neighbour propensity score method. Moreover, to exclude a bias induced by the older people who died during hospitalisation, linear regressions were conducted removing these patients from analysis. All analyses were performed using RStudio 3.5.2 (R Foundation for Statistical Computing, Vienna, Austria). A P-value <0.05 (two-sided) was considered statistically significant.

Results

Table 1 shows patient main characteristics for the whole study population, and for the three subgroups by care dependency level. Totally, 227 patients were identified for which values of both independent and dependent variable were available: 138 (61%) lived independently at home, 71 (31%) lived at home with support from family and/or formal caregivers, and 18 (8%) resided in a care home. The mean Charlson comorbidity index was 7, indicating a study population with a relatively high disease burden [22]. Although this composite comorbidity index was only slightly different between the groups, the frequency of the diagnosis dementia showed larger differences: the percentage of participants with dementia increased from independent-home to care home setting. As could be expected, the mean RAPA-score was lower in the dependent-home and care home groups (0.5 and 0.9, respectively) compared to the independent-home group (1.2). Explorative, we also compared the reasons for acute hospital admission between the three groups. For most acute diagnoses, there was an increasing trend from independent-home to care home setting (Supplementary Table 1). The mean muscle desirability value at hospital admission (D_admission) decreased from independent-home (0.35) to dependent-home (0.33) to care home (0.29) patients. When using EWGSOP2 definitions of sarcopenia (grip strength <27 kg, men; <16 kg, women and calf circumference <31 cm), 18.1% of the study population was diagnosed with sarcopenia at hospital admission—16.2% of independent−home, 19.0% of the dependent-home and 29.4% of the care home patients.

The main outcome, muscle desirability ratio (D_ratio), differed between the three groups. While no difference in mean muscle desirability following hospitalization was observed for patients living independently at home (D_ratio = 0.98), dependent home-living older patients showed a decrease (D_ratio = 0.89) and care home patients an increase (D_ratio = 1.05) in mean muscle desirability (Figure 1). These differences between the three groups were based on differential changes in muscle mass as well as in muscle strength and physical function (Supplementary Table 2).

Linear regression analyses without correcting for potential covariates, confirmed these effects with coefficients of −0.09 (95% CI −0.16; −0.02) for dependent vs. independent home-living older people, and 0.16 (95% CI 0.01; 0.03) for care home vs. dependent home-living older people, respectively. With stepwise adjustment for different covariates using propensity score overlap weighting, the effect sizes remained in the same order of magnitude, although statistical significance was not always reached due to the small sample sizes (Tables 2 and 3). Using another approach, i.e. matching patients using nearest neighbour propensity score method followed by a paired Student’s t-test, the conclusions did not change (Supplementary Tables 3 and 4). To exclude a bias caused by the patients who died during hospitalization, linear regressions were conducted removing these patients from analysis. This did not affect the conclusions (Supplementary Tables 5 and 6). Also adjusting for hospital country or diagnosis dementia did not change conclusions (data not shown).
Table 1. Characteristics of the study cohort. Categorical variables are shown as numbers (% of column N), while continuous variables are means (standard deviation or SD)

<table>
<thead>
<tr>
<th>Sample characteristics</th>
<th>Total (N = 227)</th>
<th>Independent-home (N = 138)</th>
<th>Dependent-home (N = 71)</th>
<th>Care home (N = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean (SD)</td>
<td>83.2 (7.0)</td>
<td>82.4 (6.8)</td>
<td>84.6 (7.1)</td>
<td>83.3 (8.0)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>66 (29.1)</td>
<td>41 (29.7)</td>
<td>21 (29.6)</td>
<td>4 (22.2)</td>
</tr>
<tr>
<td>Charlson index, mean (SD)</td>
<td>7.06 (2.2)</td>
<td>7.03 (2.4)</td>
<td>7.03 (1.8)</td>
<td>7.39 (2.7)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>70 (30.8)</td>
<td>42 (30.4)</td>
<td>21 (29.6)</td>
<td>7 (38.9)</td>
</tr>
<tr>
<td>History of stroke, n (%)</td>
<td>42 (18.5)</td>
<td>26 (18.8)</td>
<td>13 (18.3)</td>
<td>3 (16.7)</td>
</tr>
<tr>
<td>Dementia, n (%)</td>
<td>80 (35.2)</td>
<td>38 (27.5)</td>
<td>30 (42.3)</td>
<td>12 (66.7)</td>
</tr>
<tr>
<td>Hospital stay in days, mean (SD)</td>
<td>16.4 (12.2)</td>
<td>17.0 (12.6)</td>
<td>15.1 (11.9)</td>
<td>16.8 (10.1)</td>
</tr>
<tr>
<td>RAPA-score, mean (SD)</td>
<td>0.96 (1.07)</td>
<td>1.20 (1.14)</td>
<td>0.49 (0.81)</td>
<td>0.89 (0.83)</td>
</tr>
<tr>
<td>D_admission, mean (SD)</td>
<td>0.34 (0.09)</td>
<td>0.35 (0.09)</td>
<td>0.33 (0.10)</td>
<td>0.29 (0.08)</td>
</tr>
<tr>
<td>D_discharge, mean (SD)</td>
<td>0.32 (0.11)</td>
<td>0.34 (0.11)</td>
<td>0.29 (0.12)</td>
<td>0.30 (0.11)</td>
</tr>
<tr>
<td>D_ratio, mean (SD)</td>
<td>0.96 (0.26)</td>
<td>0.98 (0.23)</td>
<td>0.89 (0.27)</td>
<td>1.05 (0.35)</td>
</tr>
</tbody>
</table>

Table 2. Summary of coefficients (Coeff) for muscle desirability ratio (dependent vs. independent home) using propensity score overlap weighted linear regression (n = 209)

<table>
<thead>
<tr>
<th>Adjustments</th>
<th>Coeff (95% CI) dependent vs. independent home</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–0.09 (−0.16; −0.02)</td>
<td>0.013</td>
</tr>
<tr>
<td>Age, sex</td>
<td>−0.08 (−0.15; −0.01)</td>
<td>0.025</td>
</tr>
<tr>
<td>Age, sex, D_admission</td>
<td>−0.08 (−0.15; −0.01)</td>
<td>0.020</td>
</tr>
<tr>
<td>Age, sex, D_admission, hospital duration</td>
<td>−0.09 (−0.16; −0.03)</td>
<td>0.008</td>
</tr>
<tr>
<td>Age, sex, D_admission, hospital duration, Charlson index, RAPA score</td>
<td>−0.06 (−0.15; 0.01)</td>
<td>0.098</td>
</tr>
</tbody>
</table>

Table 3. Summary of coefficients (Coeff) for muscle desirability ratio (care home vs. dependent-home) using propensity score overlap weighted linear regression (n = 89)

<table>
<thead>
<tr>
<th>Adjustments</th>
<th>Coeff (95% CI) care home vs. dependent-home</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0.16 (0.01; 0.31)</td>
<td>0.038</td>
</tr>
<tr>
<td>Age, sex</td>
<td>0.15 (0.02; 0.28)</td>
<td>0.026</td>
</tr>
<tr>
<td>Age, sex, D_admission</td>
<td>0.14 (0.01; 0.27)</td>
<td>0.037</td>
</tr>
<tr>
<td>Age, sex, D_admission, hospital duration</td>
<td>0.15 (0.02; 0.28)</td>
<td>0.027</td>
</tr>
<tr>
<td>Age, sex, D_admission, hospital duration, Charlson index, RAPA score</td>
<td>0.10 (−0.02; 0.23)</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Discussion

In order to improve sarcopenia status, we desire an improvement of muscle mass, strength and function, i.e. all three together, not only one of these components. Most current sarcopenia definitions incorporate these three components in a stepwise system, using only a yes/no categorical variable as response. However, desirability functions assess a patient’s overall response at once, based on multiple outcome measures [23]. Moreover, the desirability approach allows a continuous and hence more sensitive measurement of overall sarcopenia status.

In line with previous hospital studies, we observed a prevalence of sarcopenia at admission using the EWGSOP2 criteria between 15 and 30%, depending on the pre-admission care dependency level [24]. Older people dependent on family and/or carers but still living at home, showed a significant decrease in sarcopenia status during hospitalization compared to those older people living independently at home or in care homes. These findings are in line with the study of Friedman et al., where more than 50% of the older people in assisted living declined in their ADL function during hospitalization, compared to fewer than 50% of the older people living in nursing homes or (independently) at home [13]. Both older people living dependently at home and those living in assisted living can be considered as potential transition populations between living independently and living in a care home.

Although the adjusted differential effect sizes (muscle desirability ratios) between 0.06 and 0.09 seem small, these may have clinical importance, considering that these correspond with a calf circumference decrease of 2.5–3.5 cm, a grip strength decrease of 3–4 kg or a decrease in walking speed of 0.16–0.21 m/s if the other two components would remain constant. Moreover, the observed effects are reached already after only one hospitalization of 16 days on average (mean length of hospital stay). As in these populations, multiple hospitalizations in a relatively short time period
are common, a possible accumulation of sarcopenia decline would not be improbable. Explorative analysis of the individual sarcopenia components in our entire study population, showed an absolute decrease in muscle mass and less or not at all in muscle strength and physical function. The stronger decrease in lower leg muscle mass compared to grip strength in the total study population is in line with previous studies [25]. In contrast, the absolute increase in walking speed is somewhat unexpected; Duan-Porter et al. suggested a decrease in gait speed with hospitalisation [26]. However, their baseline gait speed was measured before hospitalization in a healthy, pre-illness condition. Moreover, the median hospital duration was 7 days instead of 16 days in our study. It is likely that gait speed (as well as grip strength) is initially negatively affected by the acute stressor causing hospital admission, with improvement during the relatively long hospitalization, but not to the pre-illness level. Regardless of this absolute increase in gait speed, the middle group (dependent at home) showed a relative decrease compared to the independent group and care home group. Overall, our results suggest that the older people living dependently at home represent a highly vulnerable subgroup during hospitalization, which might benefit from a more intense approach to counteract functional decline. Interventions could exist among others of nutritional optimization, exercise and/or neuromuscular electrical stimulation [11, 25, 27, 28].

This analysis did not consider the relative influence of other factors influencing directly or indirectly the pre-admission care dependency level, or the precise reason for hospitalization. For example, the reasons for hospital admission and/or disease severity may differ between the subgroups, which may also influence observed changes in sarcopenia. However, we did adjust for Charlson Comorbidity Index and usual physical activity as a surrogate for their clinical condition at baseline. It is also plausible that dependent older people living at home have different nutritional status and/or gut microbial profile compared to those who are independently living or living in care homes—there is considerable evidence that nutritional status as well as the gut microbial composition influences muscle status in older people [29–31]. Also, the medication profile would be an interesting covariate, as chronic drugs such as ACE-inhibitors and statins have shown to affect muscle-related outcomes in older people [32, 33]. It could also be that the medical attention and drug monitoring before or in hospital in the three investigated groups differed.

A limitation from this study is the sample size, resulting in relatively high statistical P-values despite relatively large effect sizes. Data collection for the Sarcopenia 9+ EAMA Project had to be paused due to the Covid-19 pandemic, but several centres are now up and running with data collection again. This will enable us in the future to validate our findings in a larger cohort and include more variables (e.g. reason for admission, drugs, comorbidities and nutritional status and healthcare model influencing hospital admission threshold). Also, the effects of age and sex on the strength of the observed associations will be investigated. Another limitation is the use of calf circumference to evaluate muscle mass. Although calf circumference has been validated and widely used to estimate muscle mass in hospitalized older people, it can be subject to some error due to subcutaneous oedema and/or fat.

In conclusion, dependent older people living at home are at highest risk of a worsening sarcopenia status following single hospitalization. Further confirmation and elucidation of potential contributory factors are needed, but these findings certainly suggest a potential high-risk group, which may benefit from targeted measures.

Declaration of Conflicts of Interest: None.

Declaration of Sources of Funding: None.

References

Received 15 February 2021; editorial decision 30 June 2021