Interventions to achieve long-term weight loss in obese older people.
A systematic review and meta-analysis

MILES D. WITHAM1, ALISON AVENELL2

1Section of Ageing and Health, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
2Health Services Research Unit, University of Aberdeen, Aberdeen, UK

Address correspondence to: M. Witham. Tel: (+44) 1382 632436; Fax: (+44) 1382 660675. Email: m.witham@dundee.ac.uk

Abstract

Purpose: the prevalence of obesity is rapidly increasing in older adults. Information is required about what interventions are effective in reducing obesity and influencing health outcomes in this age group.

Design: systematic review and meta-analysis.

Data sources: thirteen databases were searched, earliest date 1966 to December 2008, including Medline, CINAHL, PsycINFO, the Cochrane database and EMBASE.

Study selection: we included studies with participants’ mean age ≥ 60 years and mean body mass index ≥ 30 kg/m2, with outcomes at a minimum of 1 year. Data were independently extracted by two reviewers and differences resolved by consensus.

Data extraction: nine eligible trials were included. Study interventions targeted diet, physical activity and mixed approaches. Populations included patients with coronary artery disease, diabetes mellitus and osteoarthritis.

Results: meta-analysis (seven studies) demonstrated a modest but significant weight loss of 3.0 kg [95% confidence interval (CI) 5.1–0.9] at 1 year. Total cholesterol (four studies) did not show a significant change: −0.36 mmol/l (95% CI −0.75 to 0.04). There was no significant change in high-density lipoprotein, low-density lipoprotein or triglycerides. In one study, recurrence of hypertension or cardiovascular events was significantly reduced (hazard ratio 0.65, 95% CI 0.50–0.85). Six-minute walk test did not significantly change in one study. Health-related quality of life significantly improved in one study but did not improve in a second study.

Conclusions: although modest weight reductions were observed, there is a lack of high-quality evidence to support the efficacy of weight loss programmes in older people.

Keywords: obesity, older, weight loss, meta-analysis, elderly, systematic review

Introduction

Obesity is recognised as a major health problem amongst children, younger adults and middle-aged adults in the developed world and increasingly in rapidly industrialising countries [1]. The prevalence of obesity [body mass index (BMI) ≥ 30 kg/m2] in the US is currently between 30 and 35% in both middle-aged adults (40–59 years) and in older adults (>60 years) [2]. Obesity in older adults is also rapidly increasing in other industrialised countries; England has seen a rapid increase in the number of older adults with obesity—rising from 16% of women and 15% of men aged ≥ 75 in 1994 [3] to 27 and 18%, respectively, in 2006. In younger people, obesity is well known to be associated with adverse cardiovascular outcomes, osteoarthritis, type 2 diabetes mellitus and reduced exercise capacity [4]. All of these problems are prevalent in older people and contribute to the high burden of disease and functional impairment.

Compared to younger people, there appears to have been very little research aimed at reducing obesity in older adults. There is evidence that modest degrees of overweight (BMI 25–29.9 kg/m2) are not associated with increased mortality in older people [5]; indeed, the optimum BMI for older adults is higher than for younger people. However, a recent meta-analysis of cohort studies found an association between BMI ≥ 30 kg/m2 and mortality in older people (relative risk (RR) 1.10, 95% CI 1.06–1.13) [5]. Similar findings are evident when using more detailed anthropometric measures to circumvent the inaccuracies of BMI measurement in older people; older males with increased waist circumference showed increased mortality after adjustment for mid-arm muscle circumference [6]. The effects of obes-
It may be reversible even in older people; a large cohort study suggested that perceived intentional weight loss confers a significant reduction in all-cause mortality in males aged 56–75 years [7]. Losing weight is difficult, and interventions that work in younger adults cannot be assumed to successfully translate into an older population, where low muscle mass and consequent physical frailty, osteoporosis, comorbid disease and cultural differences may increase risk and prevent benefits seen in younger people from translating into health gains in older people. It is likely that sustained weight loss is required to produce meaningful changes in health outcomes, particularly for cardiovascular disease. We, therefore, systematically reviewed the evidence for interventions designed to produce sustained weight loss in obese older adults to inform current practice.

Methods

We conducted a systematic review using a prespecified protocol, devised according to the guidelines of the Cochrane Collaboration. We included randomised controlled trials in which weight loss was a primary aim of the intervention, for which follow-up data at a minimum of 1 year were available, in which the mean age of groups was ≥60 years and the mean baseline BMI was ≥30 kg/m². We included trials with placebo or no intervention for the control group and trials comparing active intervention groups. No language restrictions were used. We excluded studies in which weight loss was a coincidental change produced by another type of intervention.

Data sources and search strategy

We searched 13 electronic databases, earliest date 1966 until 2001 [8], five electronic databases from 2001 to December 2008 (Medline, CINAHL, PsycINFO, the Cochrane database and EMBASE), and handsearched four obesity and geriatrics journals. Full details of the search strategies have been previously published [6]. We used weight loss, weight maintenance and obesity-related terms customised to each database.

Outcomes

We sought the following outcomes: weight, BMI, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, fasting glucose, glycosylated haemoglobin (HbA1c) and blood pressure. We also sought information on deaths, hospitalizations, morbidity, quality of life, measures of physical function and exercise capacity, and dropouts. We collected data on age, sex, social class, smoking status, dwelling place, disease state and source of trial funding.

Data extraction and quality assessment

Data were independently abstracted by two researchers, and discrepancies were resolved by consensus. Clarification of data was obtained by correspondence with trialists. Va-
<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>N</th>
<th>Comorbidity</th>
<th>Sex</th>
<th>Mean age (years)</th>
<th>BMI (kg/m²)</th>
<th>Intervention</th>
<th>Goal for weight loss or calorie restriction?</th>
<th>Extractable outcomes</th>
<th>Follow-up (months)</th>
<th>% dropout at 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow</td>
<td>USA; single secondary care centre (office-based)</td>
<td>206</td>
<td>Diabetes mellitus</td>
<td>62% female</td>
<td>63.1</td>
<td>30.5</td>
<td>Ctrl: 3- and 12-month clinic appointment. Int: counselling to remove barriers to dietary change; goal setting and problem solving at start to lower fat. Telephone follow-up and repeat goal setting, follow-up 3 monthly</td>
<td>No BMI, cholesterol HbA1c</td>
<td></td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>TONE</td>
<td>USA; four academic secondary care centres plus community</td>
<td>294</td>
<td>Hypertension, obesity</td>
<td>55% female</td>
<td>66</td>
<td>31.3</td>
<td>Ctrl: talks unrelated to diet or sodium restriction Int: aim 5–10% reduction in weight, social action theory, plus advice to increase physical activity. 4 months weekly intensive group and individual sessions; 3 months fortnightly group meetings; then monthly group meetings</td>
<td>Yes Weight</td>
<td></td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Mengham</td>
<td>UK; single primary care centre</td>
<td>75</td>
<td>Diabetes mellitus</td>
<td>55% female</td>
<td>63.5</td>
<td>31.7</td>
<td>Ctrl: 15-min dietetic appointment every 6 months Int: aim 10% reduction in BMI; fortnightly dietetic and group work sessions for 3 months</td>
<td>Yes Weight, cholesterol</td>
<td></td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Toobert</td>
<td>USA; community</td>
<td>28</td>
<td>Postmenopausal, coronary heart disease</td>
<td>100% female</td>
<td>63</td>
<td>32</td>
<td>Ctrl: usual care Int: week-long retreat; cooking classes, yoga, stress management, aerobic exercise, group support meetings. Twice weekly meetings for 15 months, then less frequent. Prescribed exercise 1 h three times/week. Vegetarian diet and <10% fat</td>
<td>No BMI, BP, cholesterol</td>
<td></td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>ADAPT</td>
<td>USA; single academic centre and community</td>
<td>316</td>
<td>Osteoarthritis</td>
<td>72% female</td>
<td>69</td>
<td>34.5</td>
<td>Ctrl: discussion groups Diet: 500 kcal/day reduction in intake, low fat, based on group dynamics and social cognitive theory initially weekly for 16 weeks then 2 weekly, maintenance months 7–18. Exercise: supervised 1 hr 3 days a week for 4 months, then could be at home</td>
<td>Yes Weight, BMI, 6-min walk, quality of life</td>
<td></td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>N</th>
<th>Comorbidity</th>
<th>Sex</th>
<th>Mean age (years)</th>
<th>BMI (kg/m²)</th>
<th>Intervention</th>
<th>Goal for weight loss or calorie restriction?</th>
<th>Extractable outcomes</th>
<th>Follow-up (months)</th>
<th>% dropout at 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER 2004 [11]</td>
<td>USA; two primary care centres</td>
<td>187</td>
<td>Diabetes mellitus</td>
<td>79% female</td>
<td>Ctrl: 62.4</td>
<td>Ctrl: 35.2</td>
<td>Int: 59.7</td>
<td>Int: 37.6</td>
<td>Ctr: one session with nutritionist—aim 10% weight loss</td>
<td>Int: group and individual behavioural intervention with aim 10% weight loss, 25% calories from fat, 150 min/week activity. Weekly for 4 months, fortnightly for 2 months, monthly for 6 months. Advised to exercise 150 min/week</td>
<td>No</td>
</tr>
<tr>
<td>PATH 2005 [17, 18]</td>
<td>USA; single secondary care centre plus community</td>
<td>173</td>
<td>Postmenopausal</td>
<td>100% female</td>
<td>Ctrl: 60.6</td>
<td>Ctrl: 30.5</td>
<td>Int: 60.7</td>
<td>Int: 30.4</td>
<td>Ctr: weekly stretching sessions</td>
<td>Int: 3×/week supervised aerobic exercise, aiming for 70% VO₂ max for 3 months. Transition to home exercise 4×/week plus weekly supervised exercise. No dietary advice detailed</td>
<td>No</td>
</tr>
<tr>
<td>DPP 2006 [19]</td>
<td>USA; multiple secondary care centres</td>
<td>648</td>
<td>Impaired glucose tolerance</td>
<td>51% female</td>
<td>Combined: 66.4</td>
<td>Ctrl: 30.8</td>
<td>Int: 30.5</td>
<td>Ctr: annual 30-min talk about lifestyle adjustment</td>
<td>Int: aim 7% weight loss. Low-fat, low-calorie diet. 1 to 1 weekly lessons for 16 weeks, followed by monthly group sessions. Goal of moderate intensity physical activity for 150 min/week (unsupervised)</td>
<td>Yes</td>
<td>Weight, diabetes incidence</td>
</tr>
<tr>
<td>Villareal 2008 [12]</td>
<td>USA; single secondary care centre</td>
<td>27</td>
<td>Frail, >65 years</td>
<td>66% female</td>
<td>Ctrl: 71.1</td>
<td>Ctrl: 39.0</td>
<td>Int: 69.4</td>
<td>Int: 38.5</td>
<td>Ctr: usual care. Instructed to avoid exercise or weight loss programmes</td>
<td>Int: weekly group nutrition and behaviour sessions for 1 year. Goal 10% weight loss by 6 months; 500–750 kcal deficit per day, <30% fat. Weight maintenance after 6 months. 3×/wk supervised group exercise for 1 year, 75–90% VO₂ max endurance exercise, plus 65–80% 1 rep maximum resistance exercise</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Values for standard deviations of change in weight, blood pressure and lipids were imputed if not available from trial reports, based on previously published algorithms [8]. Where BMI was recorded but not weight, we imputed weight based on height data from the National Health and Nutrition Examination Survey (NHANES) III dataset [9]. Study quality was independently assessed by two reviewers and disagreements resolved by consensus. Allocation concealment, description of dropouts, availability of intention-to-treat analysis, blinding and baseline comparability of groups were assessed.

Data synthesis and analysis

Meta-analysis was undertaken where results could be quantitatively combined using RevMan 4.2 software (Cochrane Collaboration). I² tests for heterogeneity across analyses were performed, and possible sources of heterogeneity were explored. Random effects models were used for all analyses.

Results

Selection of trials

Reports of 649 potentially eligible studies were retrieved for further scrutiny (Figure 1). The vast majority were ineligible for inclusion. Reasons included: mean age of groups < 60 years; weight reduction not a primary aim of the study; design other than randomised controlled trial; mean baseline BMI < 30 kg/m²; and follow-up < 12 months.

Figure 2. Meta-analysis of change in weight at 12 months.

Figure 3. Meta-analysis of change in total cholesterol at 12 months.
Description of the interventions
Table 1 gives details of the nine studies included in the review. With one exception [10], the included trials were all carried out in the USA; most studies targeted patients with a specific disease entity (diabetes mellitus, coronary artery disease, osteoarthritis). Studies were a mixture of single-centre and multicentre trials, with some interventions conducted in community or primary care settings and some in secondary care settings. All studies examined patients who were living in the community rather than in institutional settings. Only two of the studies had a mean baseline BMI of >35 kg/m² [11, 12]. One trial [11] targeted black and white adults with diabetes living in medically underserved rural communities.

All the trials provided dietary advice, with the exception of the Positive Action for Todays Health (PATH) trial, which provided physical activity advice [17, 18]. In two trials, it was not clear whether this was low-fat dietary advice [10, 14]. Two trials did not report giving physical activity advice [10, 15], and three trials provided facilities for undertaking physical activity [12, 13, 17, 18].

Study quality
The quality of study design and reporting was variable. All studies reported random allocation and some studies specified intention-to-treat analysis in their protocols, but insufficient detail was given in most published reports to decide whether there was adequate allocation concealment. Only 2/9 studies clearly performed intention-to-treat analyses; insufficient detail was given in 3/9. Most studies gave numbers of withdrawals, but only four gave reasons for withdrawal or dropout. Baseline treatment and control groups were well balanced in all nine studies. Although it is usually not possible to blind patients to the intervention employed in weight loss studies, only one study clearly reported that the team in charge of patients’ usual care was blinded to the intervention, or that those measuring outcomes were blinded to treatment group.

Meta-analysis results
Weight
The overall weighted mean difference change in weight comparing intervention and control groups at 12 months was −3.0 kg (95% CI −5.1 to −0.9, P = 0.005); results are displayed in Figure 2. Significant statistical heterogeneity was evident (I² = 89%; P < 0.001). Post hoc grouping of the trials according to the type of intervention appears to suggest that trials that provided physical activity advice with dietary advice appeared to provide greater weight loss. Omission of the two studies for which weight change was extrapolated from BMI change [15, 16] gave a change in weight of −3.3 kg (95% CI −5.8 to −0.8, P = 0.009).

Post hoc subgroup analysis was also performed, grouping studies into those with a defined weight loss or caloric restriction and those without such a goal. Studies with a clearly defined weight loss goal [10–12, 14] showed a change in weight of −4.0 kg (95% CI −7.3 to −0.7), compared with −1.3 kg (95% CI −2.9 to 0.3, P < 0.001 for difference) in those without a defined goal [15–17].

Data from the Arthritis, Diet and Physical Activity Trial (ADAPT) study were not incorporated into the meta-analysis, as data were collected at 18 months from randomization. This study showed a 12.8-kg fall in mean weight in the intervention group, compared with a 2.3-kg fall in the control group (difference −10.5 kg, 95% CI −16.4 to −4.6). Toolbert [16] reported weight change at 24 months, with a reduction of 2.8 kg (95% CI −7.8 to 2.2) compared with the control group; somewhat smaller than the 5.4-kg difference seen at 12 months. TONE [14] reported weight outcomes at 18, 24 and 30 months, showing a reduction compared with the control group of −4.6 kg (95% CI −5.6 to −3.6) at 18 months, −4.5 kg (95% CI −5.6 to −3.4) at 24 months and −4.9 kg (−6.5 to −3.4) at 30 months. Results from the Diabetes Prevention Program (DPP) study [19] were also not incorporated into the meta-analysis as the analysis was performed over 3.2 years rather than at a discrete timepoint; the weight loss intervention group lost a mean of 6.4 kg over the study, compared to a 0.2-kg reduction in the placebo arm (P < 0.001).

Lipids
Data on change in total cholesterol at 12 months were available from four studies [10, 15, 16, 18]; the overall weighted mean difference comparing intervention and control groups at 1 year was −0.36 mmol/l (95% CI −0.75 to 0.04, P = 0.08). Results are shown in Figure 3. Again, significant heterogeneity was detected (I² = 77%, P = 0.004). Omitting one study [16] with an anomalous change in cholesterol in the control group at 12 months (data checked with author) gave an overall difference in change of −0.18 mmol/l (95% CI −0.44 to 0.08, P = 0.17) with lower heterogeneity (I² = 52%, P = 0.13). This study also provided follow-up data at 24 months; total cholesterol had risen by 0.31 mmol/l (95% CI −0.54 to 1.16) relative to the control group at this timepoint.

Data on weighted mean difference changes in LDL and HDL cholesterol and triglycerides at 12 months were available from two studies [16, 18]. The difference in change in LDL cholesterol between intervention and control groups was −0.04 mmol/l (95% CI −0.25 to 0.18, P = 0.74, I² = 0%), the difference in HDL cholesterol was 0.04 mmol/l (95% CI −0.04 to 0.12, P = 0.37, I² = 0%) and for triglycerides was 0.44 mmol/l (95% CI −0.55 to 1.43, P = 0.39, I² = 83%).

Blood pressure
Blood pressure data were available from the Trial of Nonpharmacologic Intervention in the Elderly (TONE) [14] study and one other smaller study [16]. In TONE, blood pressure medication withdrawal started 90 days after commencing the intervention. At this point, the weight loss group showed a
reduction of 4.0/1.1 mmHg in blood pressure, whereas the usual care group showed a reduction of 0.8/0.8 mmHg (reported P < 0.001 for difference in systolic blood pressure, BP, change) and antihypertensives could be successfully stopped in 87% of the usual care group compared with 93% of the weight loss group. Data for blood pressure ≥1 year after randomization were not presented, but follow-up in TONE for recurrence of hypertension or cardiovascular events continued for a median period of 29 months [14]. In the other study [16], there were no significant differences in either systolic or diastolic BP between intervention and control groups at 12 or 24 months.

Exercise capacity

One study (ADAPT) [13] reported changes in 6-min walk distance at 18 months in patients with osteoarthritis. Distance walked in the control group fell by 4.7 m and increased by 9.7 m in the intervention group, a statistically and clinically non-significant difference [20]. In postmenopausal women [17], an exercise-based programme increased maximal oxygen uptake by 11.7% in the intervention group compared with 0.7% in the control group at 12 months (reported P < 0.001).

Glycaemic control

One study contained data on change in HbA1c at 12 months in patients with diabetes [15]. There was no difference in change between groups (mean HbA1c fell from 7.9 to 7.8% in both groups, reported P = 0.42). The incidence of new onset diabetes in the DPP study [19] was considerably lower in the intervention group than in the control group (adjusted hazard ratio 0.50, 95% CI 0.29–0.89).

Mortality, morbidity and hospitalization

Mortality and hospitalizations were not reported for any studies except TONE [14]. In the TONE study, the reported hazard ratio for the primary end point (recurrence of hypertension or cardiovascular events) was 0.65 (95% CI 0.50–0.85) for those randomised to weight loss alone compared with controls. One trial [16] reported a significant improvement in chest pain frequency, but not duration or severity in the intervention group over 2 years.

Quality of life

Two studies reported effects on the SF-36 quality of life measure. In one study [21], overall health-related quality of life improved by 3.6 points in the intervention group but worsened by 0.8 points in the control group at 12 months (reported P = 0.02). In the other [22], physical health scores improved by 0.8 points in the control group and 3.0 points in the diet group; corresponding values for mental health scores were 0.8 and 1.2 points, respectively. None of these latter changes was reported as reaching statistical significance.

Economic outcomes

One trial of dietary advice estimated costs at US$137/participant [15].

Discussion

Key findings

Our systematic review shows a modest but significant reduction in weight with weight loss interventions in older, obese people. No clinically significant improvement was seen in cholesterol levels, and data were insufficient to draw conclusions regarding the effect of weight loss interventions on other cardiovascular risk factors, exercise capacity or quality of life. Results for weight loss and change in cholesterol showed significant heterogeneity, which may have related to whether physical activity was included in the intervention. Studies with explicit goals for weight reduction or calorie restriction produced greater weight loss than those without explicit goals.

Two previous systematic reviews have been published examining weight reduction interventions in older people. In one, short-term interventions of 6–12 months were also included [23], but studies showing a reduction in weight of <2 kg were excluded, potentially biasing the results. This review concluded that clinically important benefits may be achievable in patients with diabetes, osteoarthritis and coronary artery disease. The second review [24] had similar inclusion criteria to the current review, but included fewer studies and did not attempt to meta-analyse the results. A similar spread of weight reductions was noted compared with the current review.

Strengths and weaknesses

Although we believe that our search strategy has included all eligible papers, it is possible that unpublished studies exist that have not been included. Handsearching of recent abstracts, however, did not reveal any further studies. The participants enrolled in the included studies did not appear to have a high burden of comorbid disease in comparison to many older people; baseline data regarding physical and psychosocial function were, however, lacking. Inadequate reporting and heterogeneous outcome times and measures hampered our ability to combine data into meta-analysis; the results should, therefore, be treated with caution. Although anthropometric measures of adiposity may provide a more sensitive measure of response to interventions, these data were not available for most of the included studies.

Study findings in context

A variety of weight reduction approaches have been shown to be effective in younger patients, with a mean reduction of 5 kg in weight at 12 months for low-fat diets [8]. In younger patients, epidemiological modelling suggests that intentional weight loss is associated with up to a 20% reduction in all-
cause mortality in women [8]; this result was not seen in men with intentional weight loss. Concern exists that obesity may be protective against death in some diseases that are very common in older people, including coronary artery disease and heart failure—the so-called ‘obesity paradox’ [25]. Our analysis is unable to shed further light on this issue; only the TONE study reported deaths and cardiovascular events, and numbers were too small to draw conclusions on death rates from this single study. Furthermore, it is probably unreasonable to expect to detect changes in markers of cardiovascular disease, exercise capacity and quality of life without first achieving a significant, sustained reduction in weight.

The paucity of trials conducted in older people is striking; indeed, even those studies that we included had a mean age between 60 and 69 years. There is, therefore, virtually no evidence to guide practice in people older than this. Equally striking is the paucity of outcome data that address issues directly relevant to older people—exercise capacity, physical function and quality of life. Such data are essential if the overall impact of interventions on health status is to be determined, as opposed to a narrow effect on risk factors for disease. No studies of pharmacological interventions for weight loss in older people were found for inclusion in this review; results from the large Sibutramine Cardiovascular Outcomes (SCOUT) trial of sibutramine in high cardiovascular risk people should provide additional data in this area, although very few patients aged >75 years were randomised [26].

Future directions

Trials of weight loss interventions in older people are badly needed. Such trials should incorporate approaches to behavioural modification grounded in psychological theory and tailored to older people, and need to take account of multiple comorbidities in older people. Trials will need to include much older people than previously, and should actively seek to include patients with extensive comorbidities. Baseline details need to include information on cognition, deprivation, physical function, social support and comorbid disease. Although weight, cardiovascular risk factors and clinical outcomes such as cardiovascular events should be measured, patient-centred outcomes will also be needed [27]. Such an approach is necessary to ensure not only that the evidence base is relevant to typical older people with obesity but that it can be seen to be relevant—by patients, healthcare providers and policymakers.

Key points

- Obesity levels are rising in the over 60s.
- Weight loss interventions in older people have not been well studied.
- Weight loss programmes have a modest effect in those aged ≥60 years.
- There is a dearth of high-quality evidence for obesity interventions in this age group.
- Further trial evidence about the effects of intentional weight loss is needed, particularly for older old people, examining effects on markers of vascular risk, quality of life, physical function, cardiovascular events and death.

Acknowledgements

With thanks to Dr Deborah Toobert and Dr Dennis Villareal for providing additional data.

Conflicts of interest

None to declare.

References

Received 13 July 2009; accepted in revised form 22 September 2009