Letters to the Editor 291

Table 1

<table>
<thead>
<tr>
<th>Dietary intake</th>
<th>Total</th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BUA</td>
<td>BUA</td>
<td>BUA</td>
<td>BUA</td>
<td>BUA</td>
<td>BUA</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Mg+K} \beta) score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full model</td>
<td>89.6</td>
<td>0.20</td>
<td>89.0</td>
<td>—</td>
<td>89.7</td>
<td>0.74</td>
</tr>
<tr>
<td>No dietary Ca</td>
<td>89.6</td>
<td>0.55</td>
<td>88.7</td>
<td>—</td>
<td>89.6</td>
<td>0.91</td>
</tr>
<tr>
<td>Ca:Mg ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio model</td>
<td>89.6</td>
<td>0.61</td>
<td>87.8</td>
<td>—</td>
<td>88.7</td>
<td>0.89</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Mg+K} \beta) score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full model</td>
<td>72.1</td>
<td>0.78</td>
<td>70.8</td>
<td>—</td>
<td>72.0</td>
<td>1.15</td>
</tr>
<tr>
<td>No dietary Ca</td>
<td>72.1</td>
<td>0.65</td>
<td>71.1</td>
<td>—</td>
<td>72.1</td>
<td>1.02</td>
</tr>
<tr>
<td>Ca:Mg ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio model</td>
<td>72.1</td>
<td>—0.16</td>
<td>72.1</td>
<td>—</td>
<td>72.3</td>
<td>0.16</td>
</tr>
</tbody>
</table>

1 BUA and \(\beta\) coefficients are expressed as values in dB/MHz. Ca:Mg ratio quintiles (mean ± SD): men—mean, 2.89 ± 0.79; Q1, 1.91 ± 0.27; Q2, 2.46 ± 0.11; Q3, 2.81 ± 0.10; Q4, 3.21 ± 0.14; Q5, 4.05 ± 0.60; women—mean, 2.88 ± 0.79; Q1, 1.92 ± 0.25; Q2, 2.42 ± 0.11; Q3, 3.19 ± 0.14; Q4, 4.04 ± 0.70. \(\text{*P}<0.05\) compared with quintile 1. BUA, broadband ultrasound attenuation; EPIC, European Prospective Investigation into Cancer and Nutrition; HRT, hormone replacement therapy; Q, quintile.

1 Includes age, BMI, smoking status, physical activity, family history of osteoporosis, menopausal and HRT status in women, corticosteroid use, calcium intake and supplement use, vitamin D supplement use, and total energy intake.

2 Includes the same variables as the full model excluding dietary calcium intake.

3 Includes age, BMI, smoking status, physical activity, family history of osteoporosis, menopausal and HRT status in women, corticosteroid use, calcium and vitamin D supplement use, dietary potassium intake, and total energy intake.

Ca compared with \(P = 0.03\) with Ca), although the significant difference between BUA in quintile 5 vs. quintile 1 was retained \((P = 0.03\) without Ca compared with \(P = 0.02\) with Ca).

Analysis of BUA across quintiles of the Ca:Mg ratio (adjusted for covariates as in the footnotes to Table 1) showed no significant trends or differences between quintiles (see Table 1). Similarly, Prentice-weighted Cox regression showed no significant associations between sex-specific quintiles of dietary Ca:Mg ratio intake and the incidence of hip, spine, or wrist fractures, either separately or combined, for either sex. HRs compared with quintile 1 were as follows: Men—quintile 2, 0.76 (95% CI: 0.49, 1.19); quintile 3, 1.14 (95% CI: 0.76, 1.70); quintile 4, 0.76 (95% CI: 0.49, 1.18); quintile 5, 0.74 (95% CI: 0.48, 1.15); \(P\) trend = 0.21. Women—quintile 2, 0.96 (95% CI: 0.70, 1.33); quintile 3, 1.05 (95% CI: 0.76, 1.43); quintile 4, 0.98 (95% CI: 0.71, 1.34); quintile 5, 1.21 (95% CI: 0.88, 1.66); \(P\) trend = 0.25.

In conclusion, these additional analyses have demonstrated that dietary calcium intake does not have a significant impact on the association between dietary magnesium and potassium intake and BUA of the heel bone and osteoporotic fracture risk in this cohort. Furthermore, the ratio of dietary calcium to magnesium was not an independent predictor of bone density status or osteoporotic fracture risk in our study.

None of the authors had a conflict of interest related to the content of this letter.

Richard PG Hayhoe
Marleen AH Lentjes
Robert N Luben
Kay-Tee Khaw
Ailsa A Welch

From the Department of Population Health and Primary Care, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom (RPGH; AAW, e-mail: a.welch@uea.ac.uk); and the Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom (MAHL, RNL, K-TK).

REFERENCES

Misleading conclusions on health effects of cheese and meat–enriched diets in study sponsored by dairy industry

Dear Editor:

In their recent article, Thorning et al. (1) conclude that high-saturated fat diets that are based on cheese and meat are less atherogenic than are low-fat high-carbohydrate diets. The conclusion was based on a controlled dietary study that was fully financed by dairy companies and institutions. The experimental diets were apparently designed so that the possibly desired conclusion could be drawn. There are a few essential study details that have to be considered in the interpretation of the reported findings: 1) The cheese and meat diets had extremely high

content of dietary fiber, almost double that of average Western diets, which indicated that there was a very peculiar selection of plant foods. 2) The cheese and meat diets were enriched with foods rich in polyunsaturated fats such as nuts, canola oil, and sunflower oil, which are known to lower LDL cholesterol. 3) The low-fat diet was enriched with coconut milk and fat, both of which are rich in palmitic acid, which is a highly LDL-raising fatty acid. 4) The low-fat diet had a <3% higher content of dietary fiber than the cheese and meat diets despite having a 25% higher carbohydrate content. These details show that the carbohydrate foods that replaced fat in the low-fat diet had extremely poor dietary fiber contents (i.e., must have been primarily simple carbohydrates).

Numerous previous studies have shown how the replacement of foods that are rich in saturated fats with foods that are rich in complex carbohydrates including dietary fiber leads to clear reductions in LDL cholesterol (and in HDL cholesterol; it is not new that fat intake and HDL-cholesterol concentrations are positively associated). This effect was elegantly reviewed many years ago in the Journal (2). The superiority of low–saturated fat, high–dietary fiber diets over high–saturated fats such as nuts, canola oil, and sunflower oil, which are known to lower LDL cholesterol and coronary heart disease has been shown in a large variety of studies that fulfilled the Hill criteria of causation. The Finnish experience is a striking example from real life (3). The study by Thorning et al. (1) does not challenge the current dietary recommendations of limiting saturated fat intake.

The author reported no conflicts of interest related to the study.

Peter Marckmann
From the Department of Internal Medicine, Roskilde Hospital, Roskilde, Denmark
(e-mail: peter.marckmann@dadlnet.dk).

REFERENCES

Reply to P Marckmann

Dear Editor:

Thank you for allowing us to respond to Marckmann and for his interest in our study (1) and its funding. First, we do not consider the dietary fiber content extremely high. The mean fiber intake of 35.8–37.0 g/d for the 3 diets was just above the recommended 25–35 g/d according the Nordic Nutrition Recommendations. As seen in our Supplemental Table 2, no peculiar foods were chosen. The Danish-type fiber-rich rye bread that is frequently eaten by Danes was omitted to ensure the generalizability of the results to non-Danes. Also, most importantly, all 3 diets were matched for the fiber content so that it would not confound the results.

Second, the cheese and meat diets included foods with polyunsaturated and monounsaturated fats to balance the SFA:MUFA:PUFA ratio of the 3 diets so that any differences in the outcome could not be attributed to this ratio. A similar SFA:MUFA:PUFA ratio was chosen because the focus of our study was the saturated fatty acids in cheese and meat when present in their food matrices without the interference of differences in unsaturated fatty acids in the foods. Third, we presented our focus in both the Methods/Diets section when we stated, “Hence, focus was on the 2 primary sources of saturated fat within their food matrices and not on providing a direct comparison between meat and cheese as whole foods,” and in the Discussion section when we stated: “The matching of macronutrients, the SFA: MUFA:PUFA ratio, and dietary fiber, sugar, and sodium contents in CHEESE and MEAT diets made it possible to compare food-specific SFAs and micronutrients in cheese and meat.”

Fourth, we presented the type of carbohydrates used as a replacement for fat in the carbohydrate diet under the Diets paragraph. Because the fiber content of the 3 diets was balanced, the types of carbohydrates in the carbohydrate diet could not be made up of fiber-rich, whole-grain types. We agree that the replacement of saturated fat exclusively with low–glycemic index (GI), high-fiber carbohydrates reduces LDL cholesterol and HDL cholesterol and may lower risk of cardiovascular disease (CVD) (2). However, this replacement is not comparable to the objectives and design of the current study. Also, it is unlikely that saturated fat will exclusively be replaced by low-GI carbohydrates in a free-living population with the aim of reducing their intakes of saturated fat. More likely, the replacement would be a mixture of different types of carbohydrates, and there appears to be no improvement in risk of CVD when saturated fat is replaced with medium- or high-GI carbohydrates (2). In addition, meta-analyses of observational studies have shown that there is no association between intakes of saturated fat and CVD risk (3–5). Very likely, effects other than on the LDL-cholesterol concentration have to be considered such as the particle sizes and functionality, the effects on HDL cholesterol, and other mediators of the CVD progression. Furthermore, an intervention study showed that other components in the food matrices in which the saturated fat is present markedly influenced the effects of saturated fat on LDL cholesterol and on CVD risk (6). Therefore, the effects of whole foods rather than nutrients should be investigated (7).

The study was sponsored by dairy companies, but as was clearly stated in the article, the sponsors were invited only to comment on the study design, and we made the decisions about the design. The sponsors had no influence on the execution of the study, analysis and interpretation of the data, or the final manuscript.

AA is a member of the International Carbohydrate Quality Consortium scientific network and of the Executive Committee of Global Energy Balance Network. He is member of advisory boards for the Global Dairy Platform, United States; McCain Foods Ltd., United States; McDonald’s, United States; Laczaolde Ribena Suntry Ltd, United Kingdom; and Weight Watchers, United States. AA acted as expert witness for Landbrukarnas Riksforbund Mjölk in a case before the courts in Stockholm, Sweden, 7 October 2015. He is principal investigator of current or recent research projects supported by grants from Arla Foods AMBA, Denmark; The Danish Dairy Research Foundation, Denmark; Global Dairy Platform, United States; and the Danish Agriculture and Food Foundation, Denmark. TKT, FR, TT, and AR reported no conflicts of interest related to the study.

Tanja K Thorning
Farinaz Raziani
Arne Astrup
Tine Tholstrup
Anne Raben
From the Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
(TKT, e-mail: tkt@nexs.ku.dk).