To the Editor

I read with interest the article by Sherman and colleagues reporting on their evaluation of immunohistochemical panels for the diagnosis of hairy cell leukemia (HCL). In their very well-performed study, they underline the necessity to precisely diagnose HCL, particularly in cases in which the bone marrow biopsy specimen is the primary diagnostic material. I am, however, surprised that the authors did not also evaluate an antibody directed against a formalin-resistant epitope of CD11c, which has been available for several years. In an earlier study, Johrens et al pointed out that this antibody can solve several of the differential diagnostic problems encountered in the diagnosis of HCL.

In the hands of Sherman and colleagues, T-bet failed to stain a few cases of HCL, and in the exemplary case, the nuclear stain varied strongly between HCL cells. This is in contrast with experience that HCL cells show almost uniformly strong T-bet expression; the reason for this discrepancy might be the different fixation (B-5 instead vs formalin) and decalcification (formic acid vs EDTA) procedures. Nevertheless, it is intriguing that in their control samples of normal bone marrow and of reactive lymphoid aggregates, Sherman and colleagues did not report on any T-bet positivity. As T-bet is physiologically expressed by a subset of T cells, occasional positive cells are, according to our observations, present in every bone marrow specimen.

Ioannis Anagnostopoulos, MD
Institute for Pathology
Charité, Campus Mitte
Berlin, Germany

References

Evaluation of Volume and Total Nucleated Cell Count as Cord Blood Selection Parameters

To the Editor

Jaime-Pérez et al reported about the identification of a statistically proven and validated threshold of total nucleated cells (TNCs) to bank the cord blood units (CBUs) that have very high chance of containing 2×10^6 or more CD34+ hematopoietic progenitors (HPs). The validated TNC threshold coincided with the value of 8.32×10^8, and its routine application allowed Jaime-Pérez et al to collect CBUs with the desired CD34+ HP content with a sensitivity of about 79%. Thus, these results seem to show a simple but robust approach to select and store HP-rich CBUs through a cheap, routine-based enrollment count, at the same time overcoming the criticisms that may arise from the approaches that take into account the sole TNC number to judge the hematopoietic properties of a collected CBU.

On the other hand, if CD34+ cells become a relevant and proper target to dose a given CBU, they should be predicted or, alternatively, assayed in all CBUs with an acceptable collected volume since, even though the HP dose is mainly...