High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe

ERY C. HUGHES1,*, BEN BUSE1, STUART L. KEARNS1, JON D. BLUNDY1, GEOFF KILGOUR2, HEIDY M. MADER1, RICHARD A. BROOKER1, ROBERT BALZER3, ROMAN E. BOTCHARNIKOV3,4, DANILÒ DI GENOVA1, RENAT R. ALMEY3, AND JENNY M. RIKER1

1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, U.K.
2GNS Science, Wairakei Research Centre, 114 Karetoto Road, RD4, Taupo 3384, New Zealand
3Leibniz Universität Hannover, Institut für Mineralogie, Callinstrasse 3, D-30167, Hannover, Germany
4Institute für Geowissenschaften, Johannes Gutenberg Universität Mainz, J.-J.-Becher-Weg 21, 55128 Mainz, Germany

ABSTRACT

The iron oxidation state in silicate melts is important for understanding their physical properties, although it is most often used to estimate the oxygen fugacity of magmatic systems. Often high spatial resolution analyses are required, yet the available techniques, such as μXANES and μMössbauer, require synchrotron access. The flank method is an electron probe technique with the potential to measure Fe oxidation state at high spatial resolution but requires careful method development to reduce errors related to sample damage, especially for hydrous glasses. The intensity ratios derived from measurements on the flanks of Feα and Feβ X-rays (FeLβ/FeLα) over a time interval (time-dependent ratio flank method) can be extrapolated to their initial values at the onset of analysis. We have developed and calibrated this new method using silicate glasses with a wide range of compositions (43–78 wt% SiO2, 0–10 wt% H2O, and 2–18 wt% FeO, which is all Fe reported as FeO), including 68 glasses with known Fe oxidation state. The Fe oxidation state (Fe2+/Fe total) of hydrous (0–4 wt% H2O) basaltic (43–56 wt% SiO2) and peralkaline (70–76 wt% SiO2) glasses with FeO > 5 wt% can be quantified with a precision of ±0.03 (10 wt% FeO) and 0.5 Fe2+/Fe total and accuracy of ±0.1. We find basaltic and peralkaline glasses each require a different calibration curve and analysis at different spatial resolutions (~20 and ~60 μm diameter regions, respectively). A further 49 synthetic glasses were used to investigate the compositional controls on redox changes during electron beam irradiation, where we found that the direction of redox change is sensitive to glass composition. Anhydrous alkali-poor glasses become reduced during analysis, while hydrous and/or alkali-rich glasses become oxidized by the formation of magnetite nanolites identified using Raman spectroscopy. The rate of reduction is controlled by the initial oxidation state, whereas the rate of oxidation is controlled by SiO2, Fe, and H2O content.

Keywords: Electron probe microanalysis (EPMA), iron (Fe) oxidation state, flank method, electron beam damage, silicate glass, oxidation, reduction, Raman spectroscopy

INTRODUCTION

Oxygen fugacity is an important control on the chemical and physical properties of silicate melts, the stability of magmatic phases, and the multiphase rheology of magmas (e.g., Hamilton et al. 1964; Dingwell and Virgo 1987; Kress and Carmichael 1991; Vicenzi et al. 1994; Bouhifd et al. 2004; Wilke 2005). It also determines the valence state of multivalent elements, such as Fe, Mn, Cr, V, Ce, Eu, and S, and hence the ratio of oxidized to reduced species in the glasses quenched from melts provides a proxy for oxygen fugacity during natural processes and laboratory experiments (e.g., Carmichael 1991; Kress and Carmichael 1991; Herd 2008). Many petrological and volcanological applications, such as analysis of glassy melt inclusions in minerals from volcanic rocks or interstitial glass in natural and experimental vesiculated and/or partially crystalline samples, require measurements at high spatial resolutions.

There are various techniques for quantifying the Fe oxidation state of silicate glasses, with trade-offs between resolution, error, sample preparation requirements, necessity for standards, and instrument accessibility (see McCammon 1999). Wet chemistry is a destructive bulk technique, requiring a minimum of 5 mg of material (e.g., Schuessler et al. 2008), which does not require standards but some expertise. Synchrotron-based absorption techniques, such as μXANES (>2 × 2 μm, e.g., Cottrell et al. 2018) and μMössbauer (>10 × 5 μm, e.g., Potapkin et al. 2012) allow high spatial resolution analysis, but the need for access to synchrotron facilities limits their utility. Also, μXANES can oxidize Fe in hydrous glasses during analysis, producing erroneous Fe oxidation state values (Cottrell et al. 2018). Raman spectroscopy also has a high spatial resolution (1 μm diameter), but has lower sensitivity for basaltic compositions and problems related to background fluorescence (e.g., Di...
Muro et al. 2009; Di Genova et al. 2016). Electron energy loss spectroscopy (EELS) would offer a superior spatial resolution (nanometer), but standards are inhomogeneous at this scale and beam damage is significant (Burgess et al. 2016).

Conversely, the electron probe is widely available and has the potential for routine analysis of Fe oxidation state in geological materials (mainly garnet and amphibole) at high spatial resolution (Hofer et al. 1994; Enders et al. 2000; Hofer and Brey 2007; Creighton et al. 2009, 2010; Malaspina et al. 2010; Lamb et al. 2012; Matjuschkin et al. 2014) and also glasses (Fialin et al. 2001, 2004, 2011). Typically, the electron probe uses the intensity of emitted characteristic X-rays to quantify chemical composition, such as FeKα to quantify Fe concentration (Fig. 1a), however various other factors can affect the intensity of characteristic X-rays. The FeLα and FeLβ lines are sensitive to the Fe oxidation state as their X-ray generation involves outer shell electrons (3d) affected by chemical bonding (Fig. 1a) (Gopon et al. 2013). The energy of X-ray emission and absorption associated with the FeL lines is very similar, which leads to self-absorption. The FeLα and FeLβ peaks coincide with the L1 and L2 absorption edges, respectively, and hence are distorted by them, resulting in asymmetric peak shapes and peak shifts due to the differing amounts of absorption on each side of the absorption edges (Smith and O’Nions 1971). The wavelength of the energy of the absorption edges shifts due to changes in the coordination and oxidation state of Fe (de Groot 2001; Hofer and Brey 2007). The L1 absorption edge shifts more than the L2 absorption edge, resulting in greater changes to the FeLα peak than the FeLβ (Hofer and Brey 2007). Thus, for a given chemical system (e.g., garnet, olivine, silicate glass), the FeLα and FeLβ peak positions and intensities vary depending on Fe concentration, oxidation state, and coordination (Fig. 1b; Hofer and Brey 2007).

There are two EPMA methods that exploit variations in FeLα and FeLβ to quantify Fe oxidation state (Fig. 1b). The peak shift method uses the linear relationship between the wavelength of the FeLα peak with Fe oxidation state at a given FeO (Hofer et al. 1994; Fialin et al. 2004) (Fig. 1b). To measure the FeLα peak position, wavescans across the FeLα peak are collected and a peak-fitting algorithm is applied to locate its wavelength. This method has been applied to silicate glasses with a statistical error on Fe2+/FeT of ±0.05, although the error on individual analyses was greater (Fialin et al. 2004). Alternatively, the flank method uses changes in the wavelength and intensity of both the FeLα and FeLβ peaks by measuring the intensity ratio of positions on the low-wavelength flank of FeLα (FeLαf) and high-wavelength flank of FeLβ (FeLβf), termed FeLβf/FeLαf (Hofer et al. 1994; Hofer 2002; Hofer and Brey 2007) (Fig. 1b). These flank positions coincide with the L3 and L2 absorption edges and, as the Fe2+ content changes, the L3 absorption edge shifts. The sensitivity of the flank method results from the opposite sense of intensity change at each of the flank positions, as FeLαf is on the high-absorption side of the L3 absorption edge, whereas FeLβf is on the low-absorption side of the L2 absorption edge, which utilizes changes in both peak position and intensities (Hofer et al. 1994). Optimum flank positions can be found by collecting absorption spectra or using the maximum and minimum in the difference spectrum between samples with different Fe concentration and oxidation states (Fig. 1b, Hofer and Brey 2007). The FeLβf/FeLαf intensity ratio depends primarily on total ferrous iron (Fe2+), with a secondary dependence on total Fe (FeT), hence

$$\text{Fe}^{2+} = A + B \cdot \frac{(\text{FeLβf}/\text{FeLαf})}{(\text{FeLβf}/\text{FeLαf})} + C \cdot \text{FeT} + D \cdot \text{FeT} \cdot (\text{FeLβf}/\text{FeLαf}) \ (1)$$

where A, B, C, and D are fitting coefficients (Hofer and Brey 2007). The flank method has greater sensitivity than the peak

Figure 1. (a) Energy level diagram of the electron transitions that generate characteristic Fe X-rays, and (b) wavelength spectra of the FeLα and FeLβ peaks for a reduced, high FeO (solid, AR19) and oxidized, low FeO (dashed, AR14) silicate glass (Tables 1 and 2) plotted using the left-hand axes, and the difference spectrum (dotted, calculated once the wavescans are normalized to their maximum FeLα peak intensity) plotted using the right-hand axes. The red box indicates the wavelengths measured for the peak shift method (FeLα wavescan). The blue vertical lines indicate optimum wavelength positions measured for the flank method, which correspond to the maximum and minimum of the difference spectrum.
shift method and does not require wavescans because measurements are made at two specific, pre-defined wavelengths (Hofer et al. 1994; Zhang et al. 2018). This method has been applied to some mineral groups (e.g., garnet, spinel) with an error on Fe$^{2+}$/Fe$^3+$ of ±0.02 (Hofer and Brey 2007) and silicate glasses to within ±0.1 (Zhang et al. 2018).

The FeL lines have low intensity and therefore high beam currents and/or long count times are required to record them. Silicate glasses are typically unstable under these conditions, leading to changes in Fe oxidation state during analysis (Fialin et al. 2004, 2011; Fialin and Wagner 2012; Zhang et al. 2018). Similar problems have also been observed for Fe in amphiboles (Wagner et al. 2008; Lamb et al. 2012) and S in silicate glasses and anhydrite (Wallace and Carmichael 1994; Rowe et al. 2007; Klimm et al. 2012). Fialin and Wagner (2012) observed two competing mechanisms of redox change during electron beam irradiation of alkali-bearing silicate glasses leading to either oxidation or reduction. As glasses are insulators, electrons are trapped within the subsurface during electron beam irradiation, causing a region of negative charge to build up at depth in the sample, even with a conductive coat (e.g., Cazaux 1996). Alkali ions (predominantly Na$^+$ but also K$^+$) migrate toward the region of negative charge (e.g., Humphreys et al. 2006) leaving behind interstitial O$^-$ that migrates and either outgasses or combines with two FeO precipitating Fe$_2$O$_3$, thus causing oxidation (e.g., Lineweaver 1963). This is different from oxidation processes driven by changes in oxygen fugacity. For basaltic glasses, Fe$^{2+}$ is stabilized by the migration of Na$^+$ and K$^+$ toward them preventing Fe$_2$O$_3$ precipitation (Cooper et al. 1996). Concurrently, during electron beam irradiation electrons move away from the negatively charged region from O to Fe$^{3+}$ sites resulting in net reduction (Nishida 1995).

To minimize beam damage and prevent redox changes a sample can be moved during analysis, which reduces the electron dose per unit area (Metrich and Clocchiatti 1996; Rowe et al. 2007; Fialin et al. 2011; Zhang et al. 2018). Unfortunately, this requires large regions of glass for analysis making it unfeasible for analyzing small areas, such as melt inclusions and interstitial glasses. Therefore, we adapt the flank method for high spatial resolution analysis of silicate glasses due to its greater sensitivity and the ability to measure at single spectrometer positions (Hofer et al. 1994). This is important because it is easier to measure time-dependent changes at specific wavelengths rather than using wavescans, as required for the peak shift method. We measured FeL$/β$/FeL$α$ over time, based on the time-dependent intensity (TDI) technique first developed for alkali migration during EPMA of glasses by Nielsen and Sigurdsson (1981). FeL$/β$/FeL$α$ is extrapolated to time zero to correct for changes over time, which we refer to as the Time-Dependent Ratio (TDR) correction, comparable to TDI corrections for alkalis. Due to the small sample size of silicate glasses analyzed by Fialin and Wagner (2012) and Zhang et al. (2018), the controls on Fe redox processes during electron beam irradiation have not been explored and, crucially, few hydrous glasses have been analyzed. Therefore, we also investigate the compositional and analytical controls on Fe redox changes.

SAMPLES

Silicate glasses of known (68 samples) and unknown (47 samples) Fe oxidation state from various studies were mounted in epoxy and carbon coated (~15 nm thickness). The sample set covers a wide compositional range (anhydrous normalized SiO$_2$ 43–78 wt%, total alkalis (Na$_2$O+K$_2$O) 1–12 wt%, and H$_2$O 0–10 wt%; Fig. 2a and Table 1), which are used to investigate the effect of composition on Fe oxidation state changes during analysis. Silicate glasses of known Fe oxidation state (independently measured using wet chemistry, Mössbauer or μXANES), spanning 0.1–1.0 Fe$^{2+}$/Fe$_T$ and 2–18 wt% FeO$_T$ (Fig. 2b), are used to calibrate the technique.

There are 16 suites of experimental silicate glasses that have different average glass compositions with variable Fe oxidation state and/or H$_2$O. The normalized (volatile-free) average glass compositions, which are either taken from the literature or measured using EPMA (see Supplementary Material for details and individual sample compositions) are given in Table 1. AR

FIGURE 2. (a) Total alkalis (Na$_2$O + K$_2$O) against silica (where SiO$_2$, Na$_2$O, and K$_2$O are normalized to the volatile-free total), and (b) Fe$^{2+}$/Fe$_T$ against FeO$_T$ for samples with known Fe oxidation state. Symbol shape indicates glass composition (Table 1), color indicates H$_2$O content, and a black outline indicates known Fe oxidation state; those without an outline have unknown Fe oxidation state. TAS classification abbreviations: PB = picrobasalt, B = basalt, BA = basaltic andesite, A = andesite, D = dacite, TB = trachybasalt, BTA = basaltic trachyandesite, TA = trachyandesite, T = trachyte, R = rhyolite, Ba = basanite, P = phonotephrite, TP = tephriphonolite, and Ph = phonolite.
samples are anhydrous, low-silica glasses with a range of glass compositions: KLA-1-6-22 (Fuchs et al., 2014), SC1 (Botcharnikov et al. 2008), 140ox (Almeev et al. 2007), LS, PF22 (Wengorsch et al. 2012), and BezBA (Almeev et al. 2013). These glass compositions were re-synthesized at various oxygen fugacities and analyzed using wet chemistry by Zhang et al. (2018), where they have been analyzed by the flank method using a moving stage approach. Hydrous, low-silica glasses are GRN (Stamper et al. 2014; ETNA (this study), MAS.1.A, MAS.1.B, and St8.1.B (Lesne et al. 2011); and AMS (Di Genova et al. 2014). GRN samples may have suffered oxidation during μXANES (Cottrell et al. 2018), therefore their reported Fe oxidation state values are not considered further and the samples are only used to explore the effects of composition on redox changes during EPMA. The high-silica glasses range from peralkaline (FSP in Di Genova et al. 2016, and PSG in Di Genova et al. 2013) to calcalkaline (Y in Di Genova et al. 2017a, and PSB in Riker et al. 2015), with both anhydrous (FSP and Y) and hydrous (PSG and PSB) glasses.

Additional anhydrous, low-silica glasses analyzed are AII and LW (Cottrell et al. 2009), Smithsonian microbeam basaltic glass standards VG2 and VAG99 (Jaroschewicz et al. 1980) and PU (Ulmer 1989; Blundy et al. 2018). Compositions are given in the Supplementary Material.

Methods

Fel wavescans.

Wavescans of the Fel peaks on glasses with varying FeO and Fe oxidation state (Table 2) were analyzed to examine the controls on peak position and intensity. Data were collected on the JEOL JXA 8530F Hyperprobe at the School of Earth Sciences, University of Bristol, U.K., using a 50 nA beam current, 10 μm beam diameter, and 15 or 30 kV accelerating voltage. Three spectrometers, with two TAP and one TAPH crystals, were moved 0.071 mm per step for 100 steps with 0.5 s dwell time over the Fel peaks while the stage moved at 1 μm/s to minimize beam damage. To improve signal to noise ratio, multiple wavescans (40–80, depending on the accelerating voltage and glass FeO2) were collected, and the spectra from the three spectrometers were combined to produce a single wavescan per sample.

Time-dependent ratio FeLβ/FeLa measurements.

Selecting flank positions. To identify the optimum flank positions for FeLβ/FeLa, the method of Hofer and Brey (2007) (described in the Introduction, Fig. 1b) was used. Two spectra, representing the range of FeO2 and Fe oxidation state (AR14 and AR19, Fig. 3a), were normalized to the maximum intensity of their FeLa peak from which the difference spectrum was calculated (AR14–AR19, Fig. 3c). Optimum flank positions correspond to the maximum (low-wavelength flank of FeLa, FeLa) and minimum (high-wavelength flank of FeLβ, FeLβ) of the difference spectrum. To avoid collecting wavescans on these glasses every session, the flank positions were measured relative to the FeKα peak measured on MgF2 for each TAP/TAPH crystal. This reduced the time required to find the flank positions during future analytical sessions and minimized the area damaged by electron beam irradiation.

Electron probe setup. Each spectrometer measured a single wavelength and the spectrometer setup (referred to by crystal) was two TAP crystals to measure FeLa, TAPH for FeLβ, LLIF for FeKa, and PETH for FeKα. At the wavelengths of interest, the TAP crystal offers twice the peak intensity of the TAP crystals, and the FeLβ has roughly half the intensity of the FeLa peak, therefore we chose the above combination of spectrometers to maximize count rates. The full-width half-maximum wavelength resolution for FeKα in MgF2 is 0.0813, 0.0835, and 0.1034 Å (0.8792, 1.1235, and 0.9079 mm spectrometer units) for the two TAP and TAPH crystals, respectively (Botcharnikov and Kearsley 2018). Differential pulse height analysis (PHA) mode was used to remove interferences such as the ninth-order FeKα and PHA scans were collected every session on each spectrometer on FeKα.
in MgF$_2$. Na is typically the most mobile element measured during electron beam irradiation and therefore commonly used to monitor beam damage. However, in the absence of an additional TAP crystal, we measured K (also highly mobile) instead on a PETH crystal. For each analytical session, FeKα was peaked-up on BCR-2 (USGS basaltic glass standard), KKa on sanidine, and the peak position of FeKα was measured on MgF$_2$ to calculate the wavelengths of the flank positions on each TAP/TAPH crystal. Spectrometers were static during analysis as backgrounds are not required for flank analyses (Hofer et al. 1994). As no other elements (or backgrounds) were measured, no matrix correction could be performed to quantify Fe or K, thus only their relative intensity over time is used.

Analytical conditions were a 15 kV accelerating voltage, 50 nA beam current, and 4–15 μm beam diameter, which allows the analysis of small volumes of glass. Intensity measurements were collected over 5 s for a total duration of ~150 s on the same spot of glass. Ten repeat analyses on fresh glass per sample were collected, resulting in a total analysis area of ~20–60 μm diameter. Data were processed and, if the sample was too inhomogeneous, the sample was not processed further. The analyses were then averaged at each time interval for FeLα intensity, FeLβ, FeKα, and KKa. Using these averages at each time interval, FeLβ was divided by the sum of FeLα, from the two spectrometers to calculate FeLβ/FeLα. Errors on FeKα, KKa, FeLβ/FeLα, and time are the standard deviation of the repeat measurements. An exponential equation of the following form was fitted to each sample:

\[\text{FeLβ/FeLα} = \text{FeLβ/FeLα}_{\text{initial}} \times e^{-t/\tau} \]

Notes: Oxides (in wt%) are measured using EPMA (all Fe reported as FeO, FeO$_2$ except H$_2$O, which is measured by SIMS or O indicates assumed due to experimental conditions. Fe$^{2+}$/Fe$^{3+}$ is measured by "wet chemistry" or "µXANES. Errors of 10% corresponding to the last significant figure are shown in parentheses.

FIGURE 3. Wavescans of FeL for silicate glasses (see Table 2 for compositions). Analytical conditions were: 50 nA beam current and 10 μm beam diameter, while the stage moved at 1 μm/s. Spectrometer position (L) is shown along the top and equivalent wavelength along the bottom. (a) Different FeO$_2$ and Fe oxidation states at 15 kV accelerating voltage, (b) different accelerating voltages, (c) different accelerating voltages with the intensity normalized to the maximum FeLα intensity, and (d) difference spectra (AR14–AR19) at different accelerating voltages, calculated from the normalized spectra, with optimum flank positions shown (vertical lines). The FeLβ/FeLα ratio is 0.55 for AR14 and 0.92 for AR19 at 15 kV.
where \(I \) is the \(\text{Fe}\beta/\text{Fe\alpha} \) intensity ratio and \(t \) is time, subscripts refer to the values at \(t = 0 \) and \(\infty \), and \(I_0 \) is the rate of change of \(I \) with time at \(t = 0 \). When the minimization failed to converge, \(I_\infty \) was fixed to the last measured value for the sample. The error in both these cases is the standard error on the fit coefficients.

In those cases where \(\text{Fe}\beta/\text{Fe\alpha} \) was constant with time, convergence is not possible, therefore the average of \(\text{Fe}\beta/\text{Fe\alpha} \) with time was used, where the error was the standard deviation of these data. Analyses with large errors (>±0.1 for \(I_0 \) and >±0.01 for \(I_\infty \), likely due to inhomogeneity, extremely rapid redox changes or analytical problems, are discarded. An R code for data processing is included in the Supplementary Material.

Raman spectroscopy

Raman spectroscopy was used to detect the presence of nanolites before and after electron beam irradiation as nanolites alter the Raman spectra of silicate glasses. Magnetite nanolites produce a peak at ~670 cm\(^{-1}\), which also decreases the intensity of the surrounding silicate peaks (Di Genova et al. 2017a, 2017b). Carbon coats were removed prior to analysis. Raman spectra were collected using the Thermo-Scientific DXRxi Raman Imaging Microscope at the School of Earth Sciences, University of Bristol, U.K., with a green (520 nm) laser, 50× (long distance) or 100× objective, and 3–5 mW power to avoid sample oxidation. An extended grating was used to also collect data on \(\text{H}_2\text{O} \) content. All samples, except the ETNA08, MAS.1.A5, FSP1, FSP9, PSG6, and PSB63 were additionally analyzed following electron beam irradiation.

RESULTS

Electron probe microanalysis

Wavelength and intensity changes of \(\text{Fe}\alpha \) lines in silicate glasses. For the same \(\text{Fe}^{2+} \) oxidation state, peak intensity increases and peak positions shift to higher wavelengths with increasing \(\text{FeO}_2 \) (Fig. 3a). For the same \(\text{FeO}_2 \) oxidized samples have greater peak intensities and lower wavelength peak positions than reduced samples (Fig. 3a). At higher accelerating voltages (30 vs. 15 kV) the intensity of \(\text{Fe}\alpha \) and \(\text{Fe}\beta \) decrease, but there is no appreciable shift in peak positions (Fig. 3b). Therefore, there is no appreciable change in optimum flank positions, although the difference between the flank intensities decreases (Fig. 3c).

Time-dependent intensity changes during electron beam irradiation. During electron beam irradiation, the intensity of \(\text{K}\alpha \) remains stable (anhydrous glasses) or decreases (hydrous glasses) over time (Fig. 4), whereas for \(\text{Fe}\alpha \) the intensity remains stable (anhydrous glasses) or increases (hydrous glasses).

FIGURE 4. Intensity of \(\text{K}\alpha \) with time. Analytical conditions (accelerating voltage, beam current, and beam diameter) shown along the top and sample description on the left-hand side. Symbols and colors as Figure 2a except that open/closed symbol indicates initial \(\text{Fe}^{2+}/\text{Fe}^{3+} \) oxidation state: open symbols are oxidized (\(\text{Fe}^{2+}/\text{Fe}^{3+} < 0.2 \)); closed symbols are reduced (\(\text{Fe}^{2+}/\text{Fe}^{3+} > 0.7 \)).
The ratio of Fe\textsubscript{L\beta}/Fe\textsubscript{L\alpha} increases (anhydrous low-silica), remains stable (anhydrous low-silica and hydrous high-silica), or decreases (hydrous low-silica) over time (Fig. 6). In those cases where intensity changes are observed, the rate typically increases with decreasing beam diameter, decreasing accelerating voltage, and increasing beam current. Data were collected during different sessions, therefore differences in the absolute intensity at different conditions are not meaningful.

Raman spectroscopy

Before electron beam irradiation. The majority of glasses analyzed are nanolite-free prior to electron beam irradiation (Figs. 7a and 7b). Exceptions are AR37 (composition LS) and ETNA(2) (samples ETNA 3, 6, 7, 8, 14, 16, and 30), with a peak at ~670 cm\(^{-1}\) indicating magnetite nanolites. Magnetite nanolites were detected in AMS4 and Y-L using Raman spectroscopy by Di Genova et al. (2017a, 2017b).

After electron beam irradiation. Most glasses analyzed following electron beam irradiation (MAS.1.A4, FSP1, FSP9, and PSG6) exhibit new magnetite nanolites (peak at ~670 cm\(^{-1}\)) implying oxidation (Fig. 7c). Additionally, ETNA08, MAS.1.A4, and PSG6 have a new peak at ~1350 cm\(^{-1}\), which corresponds to hematite (RUFF Raman spectra database, http://rruff.info/, Lafuente et al. 2015), implying the formation of hematite nanolites following electron beam irradiation (Fig. 7c). PSB63 shows no evidence for the presence of Fe-bearing nanolites following electron beam irradiation. The H\textsubscript{2}O peak (~3600 cm\(^{-1}\)) shows a decrease in height after electron beam irradiation for hydrous samples (ETNA08, MAS.1.A4, PSG6, and PSB63), implying a loss of water.

CONTROLS ON FE REDOX CHANGES IN SILICATE GLASSES DURING ELECTRON BEAM IRRADIATION

The ratio of Fe\textsubscript{L\beta}/Fe\textsubscript{L\alpha} over time increased, remained stable, or decreased (Fig. 6), which could be due to various causes as Fe\textsubscript{L\beta}/Fe\textsubscript{L\alpha} depends on Fe concentration, oxidation state, and coordination. Fe\textsubscript{K\alpha} increases over time (Fig. 5), implying an increase in Fe\textsubscript{T}. This is due to the process of “grow-in” (Morgan and London 2005), where the concentration of immobile elements (e.g., Si, Al, and Fe) increases due to the migration of alkalis (e.g., Na+ and K+, Fig. 4) and H+ (Fig. 7c) toward the buildup of negative charge at depth (e.g., Humphreys et al. 2006) and possible density changes. The increase in Fe\textsubscript{T} implied by the increase in Fe\textsubscript{K\alpha} for hydrous silicate glasses (MAS.1.B4 and PSB63, Fig. 5) is small (~0.13 wt% FeO\textsubscript{T}). This is calculated to

FIGURE 5. Intensity of Fe\textsubscript{K\alpha} with time. Analytical conditions (accelerating voltage, beam current, and beam diameter) shown along the top and sample description on the left-hand side. Symbols and colors as Figure 4.
cause a negligible change on Fe$_{L\beta}$/Fe$_{L\alpha}$ (~0.004, within measurement error), and therefore changes due to Fe concentration are not considered further.

Additional carbon contamination can be deposited on the sample during electron beam irradiation (Bastin and Heijligers 1988). This can change X-ray intensities over time due to the reduction of the electron landing energy caused by energy loss within and X-ray absorption by the contaminant (Reed 1975). The former is negligible at the high voltages used here, whereas the latter should not affect Fe$_{L\beta}$/Fe$_{L\alpha}$ as the mass absorption coefficients of Fe$_{L\alpha}$ and Fe$_{L\beta}$ by C are very similar (5762.34 and 5485.53 cm2/g, respectively, from the FFAST database). To change Fe$_{L\beta}$/Fe$_{L\alpha}$ by 1% relative (within measurement error) would require >100 nm of C contamination (calculated using CalcZAF) during the 150 s analysis. This is far more than has been measured in previous studies (e.g., 8 ± 2 nm over 180 s; Buse et al. 2016), therefore the effect of contamination can be considered negligible.

These considerations imply that any changes observed in Fe$_{L\beta}$/Fe$_{L\alpha}$ are due primarily to changes in Fe oxidation state over time. Increasing Fe$_{L\beta}$/Fe$_{L\alpha}$ is caused by increasing Fe$^{2+}$/FeT and hence Fe reduction (Fe$^{3+}$ → Fe$^{2+}$). Conversely, decreasing Fe$_{L\beta}$/Fe$_{L\alpha}$ is caused by decreasing Fe$^{2+}$/FeT and hence Fe oxidation (Fe$^{2+}$ → Fe$^{3+}$). Finally, no change in Fe$_{L\beta}$/Fe$_{L\alpha}$ with time implies stable Fe$^{2+}$/FeT during analysis. The presence of predominantly magnetite nanolites after electron beam irradiation implies that oxidation proceeds via precipitation of FeO·Fe$_2$O$_3$, not just Fe$_2$O$_3$, as has been previously suggested (Fialin and Wagner 2012).

Direction of redox change: Total mobile cations

To investigate the compositional controls on the rate and mechanism of redox changes during electron beam irradiation, we define the parameter Total Mobile Cations (TMC), which is the molar sum of (H$_2$O + Na$_2$O + K$_2$O) per gram of glass (units: mol/g). This provides a maximum estimate of the moles of available oxygen if all the H$^+$, Na$^+$, and K$^-$ migrated due to the buildup of negative charge (Humphreys et al. 2006). TMC is typically dominated by H$_2$O due to the low atomic mass of H compared to Na and K. Figure 8 shows the rate of change of Fe$_{L\beta}$/Fe$_{L\alpha}$ with time at time zero (I_0') against TMC. Glasses with TMC <0.1 mol/g remain stable or reduce over time (I_0' ≥ 0 s$^{-1}$), correspond-

![Figure 6](https://pubs.geoscienceworld.org/msa/ammin/article-pdf/103/9/1473/4322737/am-2018-6546ccby.pdf)
Figure 7. Raman spectra (one spectrum is shown for each sample) for (a) anhydrous low-silica and (b) hydrous glasses, where spectra are grouped, colored, and offset vertically by average glass composition (labeled under the group of spectra), and intensity is in arbitrary units, and (c) selected glasses before and after electron beam irradiation at a 15 kV accelerating voltage, 50 nA beam current, and beam diameter indicated by line style. Black, dashed vertical lines indicate the wavenumber of magnetite, and arrows indicate the wavenumber of hematite.

Figure 8. The rate of change of \(\frac{Fe_{L\beta}/Fe_{L\alpha}}{Fe_{L\beta}/Fe_{L\alpha}} \) with time at time zero \((t'_{0}) \) against Total Mobile Cations (TMC, molar sum of \(H_{2}O + Na_{2}O + K_{2}O \) per gram of glass), where symbol shape indicates average glass composition (Table 1) and color indicates \(H_{2}O \). Analytical conditions were: 15 kV accelerating voltage, 50 nA beam current, and (a) 10 and (b) 4 \(\mu m \) beam diameter.
The rate of oxidation increases with increasing H₂O content. In fact, when considering the mobile cation responsible for oxidation of Fe during electron beam irradiation (e.g., Morgan and London 2005), the rate of change of Fe²⁺/FeT with time at time zero (I₀) against Total Mobile Cations (TMC) for hydrous low-silica glasses (Fig. 10), appear stable (I₀ ≈ 0 s⁻¹). It is possible that they oxidized very quickly and the change is not observable. Analyses using a 10 μm beam size are also stable (Fig. 8a), but there is evidence for the formation of hematite nanolites during electron beam irradiation (Fig. 7c). This either means the oxidation is extremely rapid, due to the very high H₂O contents, or not occurring due to the presence of magnetite nanolites before irradiation where the Fe may be stable, but further study is required to understand this process fully.

Effect of analytical conditions

For all X-rays measured (KKα, FeKα, and FeLβ/FeLa), the rate of change of intensity increases with decreasing beam diameter, decreasing accelerating voltage, and increasing beam current (Figs. 4, 5, 6, and 8), as is commonly observed during electron beam irradiation (e.g., Morgan and London 2005). The analytical conditions control the electron density implanted into the sample and, therefore, the magnitude of sub-surface charging. Increasing the beam current increases the electron dosage to the sample. The interaction volume is reduced by decreasing the beam diameter indicating the formation of magnetite nanolites (Fig. 7c). This implies extremely rapid oxidation at 4 μm, which is consistent with the rate of alkali migration, and probably H, being faster during electron beam irradiation of high-silica compared to low-silica glasses (e.g., Fig. 4; Hayward 2011). This may be due to the more polymerized structure of high-silica glasses (Mysen et al. 1982).

Fe content. PSB glasses do not oxidize (I₀ ≈ 0 s⁻¹, Fig. 8), and there are no Fe-bearing nanolites observable in the Raman spectra prior to or following electron beam irradiation (Fig. 7c), despite TMC > 0.4 mol/g due to their high alkali and water contents. These glasses contain little Fe (FeO ≤ 3.2 wt%), which could hinder oxidation as FeO groups may need to lie close together to produce Fe₂O₃.

Presence of nanolites. Surprisingly, low-silica (47–58 wt% SiO₂) glasses with TMC > 0.35 mol/g, which corresponds to H₂O > 4 wt% (Fig. 10), appear stable (I₀ ≈ 0 s⁻¹). It is possible that they oxidized very quickly and the change is not observable. Analyses using a 10 μm beam size are also stable (Fig. 8a), but there is evidence for the formation of hematite nanolites during electron beam irradiation (Fig. 7c). This either means the oxidation is extremely rapid, due to the very high H₂O contents, or not occurring due to the presence of magnetite nanolites before irradiation where the Fe may be stable, but further study is required to understand this process fully.

Rate of oxidation

H₂O content. Figure 10 shows the rate of change of FeLβ/FeLa over time at time zero (I₀) against TMC for suites of low-silica glasses (43–56 wt% SiO₂) that have variable H₂O concentrations, but constant glass composition. Broadly, I₀ becomes more negative with increasing TMC. For a fixed glass composition the increase in TMC is due to increasing H₂O content, therefore the rate of oxidation increases with increasing H₂O. The diffusivity of H₂O in basaltic glasses depends on the total H₂O content (Okumura and Nakashima 2006), thus the rate of oxidation increases with increasing H₂O diffusivity. These results show that the migration of H⁺, in addition to Na⁺ and K⁺ as previously suggested by Fialin and Wagner (2012), leads to oxidation of Fe during electron beam irradiation. In fact, when considering the mobile cation responsible for Fe oxidation, H⁺ plays a more important role than might be expected from its oxide wt% concentrations alone due to the low atomic mass of H.

SiO₂ content. High-silica (61–78 wt% SiO₂) glasses remain broadly stable during electron beam irradiation (Fig. 8), despite the Raman spectra of electron beam irradiated areas using a 4 μm beam diameter indicating the formation of magnetite nanolites (Fig. 7c). This implies extremely rapid oxidation at 4 μm, which is consistent with the rate of alkali migration, and probably H, being faster during electron beam irradiation of high-silica compared to low-silica glasses (e.g., Fig. 4; Hayward 2011). This may be due to the more polymerized structure of high-silica glasses (Mysen et al. 1982).
both the accelerating voltage and beam diameter, which limits the depth these electrons penetrate and the irradiated area, respectively. Overall, the rate of intensity change increases with increasing implanted electron density (i.e., decreased interaction volume and/or increased electron dosage).

QUANTIFYING FE OXIDATION STATE: TIME-DEPENDENT RATIO FLANK METHOD

Calibration and errors

Hofer and Brey (2007) found that the ratio of $\text{FeL}\beta/\text{FeLa}_i$ correlated linearly with Fe^{2+} for garnets, with a small secondary dependence on Fe_T. Consequently, their coefficients (m and c) of $\text{Fe}^{2+} = m(\text{FeL}\beta/\text{FeLa}_i) + c$ were dependent on Fe_T. Our data showed no improvement to the correlation between $\text{FeL}\beta/\text{FeLa}_i$ and Fe^{2+} by allowing the coefficients to depend on Fe_T, therefore m and c are fitted without Fe_T dependence using a weighted least-squares regression (weighted using error on estimated Fe^{2+}). Adj. R^2 is the adjusted R^2. R.S.E. is the residual standard error on estimated Fe^{2+}. Fits are for low-silica and peralkaline glasses.

TABLE 5. Example of results for weighted linear regression for Fe^{2+}

<table>
<thead>
<tr>
<th>No.</th>
<th>Beam diameter (µm)</th>
<th>n</th>
<th>m</th>
<th>c</th>
<th>Adj. R^2</th>
<th>R.S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>38</td>
<td>26.87 ± 1.70</td>
<td>-16.08 ± 1.37</td>
<td>0.88</td>
<td>0.51</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>10</td>
<td>28.17 ± 1.91</td>
<td>-15.55 ± 1.47</td>
<td>0.96</td>
<td>0.17</td>
</tr>
<tr>
<td>5*</td>
<td>15</td>
<td>12</td>
<td>30.68 ± 8.50</td>
<td>-15.62 ± 5.29</td>
<td>0.80</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Notes: Data were collected in sessions 1 and 5 using analytical conditions of a 15 kV accelerating voltage and 50 nA beam current. n is the number of measurements included in the fit. m and c are the slope and intercept, respectively, for $\text{Fe}^{2+} = m(\text{FeL}\beta/\text{FeLa}_i) + c$. Adj. R^2 is the adjusted R^2. R.S.E. is the residual standard error on estimated Fe^{2+}. Fits are for low-silica and peralkaline glasses.

A new calibration curve should be produced for each session. It appears that low-silica and peralkaline glasses require different calibration curves (Fig. 11b), therefore these two sample groups were fitted separately. Using these different calibration curves, $\text{Fe}^{2+}/\text{Fe}_T$ is replicated well for both compositions (Figs. 12a and 12b). Fe coordination also affects the FeL lines but the coordination of silicate glasses is very similar (Cottrell et al. 2009). Instead, it may be that absorption within the glass of the FeL lines is different between these two broad compositional groups due to their different compositions, although this was not observed for garnets (Hofer and Brey 2007). Compositional differences within the low-silica glasses may also explain the scatter observed in the calibration curves, but it is not possible to explore this fully using the current data set. It may be that errors on $\text{Fe}^{2+}/\text{Fe}_T$ can be reduced by using compositionally matched glass standards. In practice such standards are unlikely to be available, therefore we recommend using standards with broadly similar compositions (i.e., low-silica or peralkaline) when using this technique.

A calibration curve could not be created for high-silica glasses PSB and Y as they cover a narrow range of Fe^{2+} (<2 wt% Fe^{2+}). Their $\text{Fe}^{2+}/\text{Fe}_T$ ratio is poorly replicated by the low-silica calibration curve (Fig. 12c) to which they lie more closely than the peralkaline calibration curve (Fig. 11b). This is likely due to their low Fe content ($\text{FeO}_T < 3.3$ wt%, except Y-L with 6.2 wt%), therefore this technique is unsuitable for low-Fe glasses (i.e., $\text{FeO}_T < 5$ wt%).

The $\text{Fe}^{2+}/\text{Fe}_T$ precision, using a residual standard error of 0.5 wt% on Fe^{2+} and 1% relative error on FeO_T, depends on the Fe concentration and oxidation state

$$\text{Fe}^{2+}/\text{Fe}_T = 0.01 \sqrt{[(0.5/\text{Fe}^{2+})^2 + (0.01)^2]}$$

(3)
e.g., ±0.03 for 10 wt% FeO$_T$ and 0.5 Fe$^{2+}$/Fe$_T$. The average accuracy for low-silica (43–56 wt% SiO$_2$) and peralkaline (70–76...
Recommended analytical conditions

Analytical conditions can be optimized according to the nature of any given sample as different conditions (beam diameter and current, total count time of a single analysis, and number of analyses averaged) can be used on the standards and unknowns, so long as the accelerating voltage and flank positions remain the same. Hofer and Brey (2007) showed that for garnets the optimum accelerating voltage is 15 kV; at lower and higher accelerating voltages the sensitivity of the flank method is reduced. For glasses, the sensitivity of the flank method also decreased at higher accelerating voltages (Figs. 3b and 3c). An accelerating voltage of 15 kV allows the composition of the sample to be analyzed, via conventional EPMA, without further calibration or beam focusing.

The error on the corrected Fe\(L{\alpha}/Fe\alpha\) is a function of counting statistics, the fit of an exponential function to the change in Fe\(L{\alpha}/Fe\alpha\) time, and the number of analyses averaged. Counting statistics can be improved by using a higher beam current, but this can cause the rate of change to occur too quickly to be observed. Decreasing the beam diameter will also increase the rate of change, as seen here for high-silica glasses, but improves spatial resolution. Therefore, it is important to know the approximate composition of the target glass (e.g., by EDS analysis) to understand how quickly the change in Fe oxidation is likely to occur. If redox changes occur too quickly, the time-corrected Fe\(L{\alpha}/Fe\alpha\) will be wrong leading to erroneous Fe\(^{2+}/Fe^{3+}\) values. Our data at a 15 kV accelerating voltage, 50 nA beam current, 4 μm beam diameter, and averaging 10 analyses produced a relative error on the corrected Fe\(L{\alpha}/Fe\alpha\) of ~3%, and gave the flexibility to analyze various glass morphologies for hydrous low-silica glasses. A larger beam size (10–15 μm diameter) is needed to analyze high-silica samples containing sufficient iron (i.e., peralkaline) due to the rapid rate of oxidation, which unfortunately sacrifices spatial resolution. This technique may not be appropriate if samples contain fine-scale heterogeneities (e.g., nanolites), as the Fe coordination in these phases may differ to that in the glass.

Further applications

The TDR flank method presented here could be applied to other beam-sensitive samples. Electron probe induced dehydrogenation has been observed for kaersutitic amphibole, resulting in the underestimation of Fe\(^{2+}/Fe^{3+}\) due to oxidation (Wagner et al. 2008). Wagner et al. (2008) showed the severity of damage correlated with analytical conditions and H\(_2\)O content of the amphibole, in much the same way as shown here for silicate glasses. Therefore, applying the TDR flank method to amphiboles may provide robust Fe oxidation state estimates without sacrificing spatial resolution.

Oxidation and reduction of S have been observed during analysis of silicate glasses and anhydrite when using the Skα peak shift to measure S oxidation state (Wallace and Carmichael 1994; Rowe et al. 2007; Wilke et al. 2011). Sulfur oxidation in silicate glasses appeared to follow an exponential trend and, as observed here, the estimate of redox state at time zero was found to agree with XANES measurements of the same sample (Wilke et al. 2011). Sulfur redox changes are controlled by similar factors to Fe such as initial S oxidation state (Rowe et al. 2007) and H\(_2\)O content (Wilke et al. 2008). If a flank-type method was developed for S (Wilke et al. 2011), time-dependent measurements could also be applied, negating the need to move samples during analysis (Metrich and Clocchiatti 1996; Rowe et al. 2007), and thereby improving spatial resolution.

Figure 12. EPMA against independently constrained Fe\(^{2+}/Fe^{3+}\) collected during all sessions for (a) low-silica (43–56 wt% SiO\(_2\)), (b) peralkaline (FSP+PSG), and (c) high-silica (69–78 wt% SiO\(_2\)) glasses, where symbol shape indicates average glass composition (Table 1) and color indicates H\(_2\)O. Analytical conditions were 15 kV accelerating voltage, 50 nA beam current, and 4–15 μm beam diameter.

wt% SiO\(_2\) glasses with 5–18 wt% FeO\(_x\), and 0–4 wt% H\(_2\)O, when the appropriate analytical conditions and calibration curves are used, is ±0.1 (Figs. 12a and 12b).

Table 1. Glasses used for calibration and as standards.

<table>
<thead>
<tr>
<th>Glass Type</th>
<th>Fe(^{2+}/Fe^{3+}) Values</th>
<th>SEM (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-silica</td>
<td>0.5–1.0</td>
<td>0.2–0.4</td>
</tr>
<tr>
<td>Peralkaline</td>
<td>0.8–1.5</td>
<td>0.4–0.6</td>
</tr>
<tr>
<td>High-silica</td>
<td>1.0–1.5</td>
<td>0.4–0.6</td>
</tr>
</tbody>
</table>

Recommended analytical conditions

Analytical conditions can be optimized according to the nature of any given sample as different conditions (beam diameter and current, total count time of a single analysis, and number of analyses averaged) can be used on the standards and unknowns, so long as the accelerating voltage and flank positions remain the same. Hofer and Brey (2007) showed that for garnets the optimum accelerating voltage is 15 kV; at lower and higher accelerating voltages the sensitivity of the flank method is reduced. For glasses, the sensitivity of the flank method also decreased at higher accelerating voltages (Figs. 3b and 3c). An accelerating voltage of 15 kV allows the composition of the sample to be analyzed, via conventional EPMA, without further calibration or beam focusing.

The error on the corrected Fe\(L{\alpha}/Fe\alpha\) is a function of counting statistics, the fit of an exponential function to the change in Fe\(L{\alpha}/Fe\alpha\) time, and the number of analyses averaged. Counting statistics can be improved by using a higher beam current, but this can cause the rate of change to occur too quickly to be observed. Decreasing the beam diameter will also increase the rate of change, as seen here for high-silica glasses, but improves spatial resolution. Therefore, it is important to know the approximate composition of the target glass (e.g., by EDS analysis) to understand how quickly the change in Fe oxidation is likely to occur. If redox changes occur too quickly, the time-corrected Fe\(L{\alpha}/Fe\alpha\) will be wrong leading to erroneous Fe\(^{2+}/Fe^{3+}\) values. Our data at a 15 kV accelerating voltage, 50 nA beam current, 4 μm beam diameter, and averaging 10 analyses produced a relative error on the corrected Fe\(L{\alpha}/Fe\alpha\) of ~3%, and gave the flexibility to analyze various glass morphologies for hydrous low-silica glasses. A larger beam size (10–15 μm diameter) is needed to analyze high-silica samples containing sufficient iron (i.e., peralkaline) due to the rapid rate of oxidation, which unfortunately sacrifices spatial resolution. This technique may not be appropriate if samples contain fine-scale heterogeneities (e.g., nanolites), as the Fe coordination in these phases may differ to that in the glass.

Further applications

The TDR flank method presented here could be applied to other beam-sensitive samples. Electron probe induced dehydrogenation has been observed for kaersutitic amphibole, resulting in the underestimation of Fe\(^{2+}/Fe^{3+}\) due to oxidation (Wagner et al. 2008). Wagner et al. (2008) showed the severity of damage correlated with analytical conditions and H\(_2\)O content of the amphibole, in much the same way as shown here for silicate glasses. Therefore, applying the TDR flank method to amphiboles may provide robust Fe oxidation state estimates without sacrificing spatial resolution.

Oxidation and reduction of S have been observed during analysis of silicate glasses and anhydrite when using the Skα peak shift to measure S oxidation state (Wallace and Carmichael 1994; Rowe et al. 2007; Wilke et al. 2011). Sulfur oxidation in silicate glasses appeared to follow an exponential trend and, as observed here, the estimate of redox state at time zero was found to agree with XANES measurements of the same sample (Wilke et al. 2011). Sulfur redox changes are controlled by similar factors to Fe such as initial S oxidation state (Rowe et al. 2007) and H\(_2\)O content (Wilke et al. 2008). If a flank-type method was developed for S (Wilke et al. 2011), time-dependent measurements could also be applied, negating the need to move samples during analysis (Metrich and Clocchiatti 1996; Rowe et al. 2007), and thereby improving spatial resolution.
HUGHES ET AL.: HIGH-RESOLUTION EPMA OF FE OXIDATION STATE IN SILICA GLASSES

1485

Manuscript handled by Ian Swainson

Endnote:

1Deposit item AM-18-96546, Supplemental Material. Deposit items are free to all readers and found on the MSA web site, via the specific issue’s Table of Contents (go to http://www.minsocam.org/MSA/AmMin/TOC/2018/Sep2018_data.html).