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ABSTRACT

Applied meteorology is an important and rapidly growing �eld. This chapter concludes the three-chapter
series of this monograph describing how meteorological information can be used to serve society�s needs
while at the same time advancing our understanding of the basics of the science. This chapter continues along
the lines of Part II of this series by discussing ways that meteorological and climate information can help to
improve the output of the agriculture and food-security sector. It also discusses how agriculture alters climate
and its long-term implications. It �nally pulls together several of the applications discussed by treating the
food�energy�water nexus. The remaining topics of this chapter are those that are advancing rapidly with more
opportunities for observation and needs for prediction. The study of space weather is advancing our un-
derstanding of how the barrage of particles from other planetary bodies in the solar system impacts Earth�s
atmosphere. Our ability to predict wildland �res by coupling atmospheric and �re-behavior models is be-
ginning to impact decision-support systems for �re�ghters. Last, we examine how arti�cial intelligence is
changing the way we predict, emulate, and optimize our meteorological variables and its potential to amplify
our capabilities. Many of these advances are directly due to the rapid increase in observational data and
computer power. The applications reviewed in this series of chapters are not comprehensive, but they will
whet the reader�s appetite for learning more about how meteorology can make a concrete impact on the
world�s population by enhancing access to resources, preserving the environment, and feeding back into a
better understanding how the pieces of the environmental system interact.

1. Introduction

The ancient Greek philosopher Empedocles con-
jectured that the world was composed of four primary
elements�air, �re, water, and earth. He surmised that
these elements were not destructible and unchangeable,
but rather could be superimposed to change structure.
This pre-Socratic theory, originated around 460 BC,
persisted for over 2000 years. Although we now have a

deeper understanding of the nature of the world and
cosmos, one can imagine how ancient humankind de-
veloped this earth�air��re�water philosophy based on
the observational ability that they had at the time.

This third part of the AMS 100th Anniversary Mono-
graph Series focusing on applied meteorology treats some
of the topics that may have led to such philosophy. Per-
haps it became obvious that the �ery sun provided energy
for Earth and its atmosphere. The earth produced food
via agriculture but depended highly on movements of air
to bring weather that could produce rain and provide theCorresponding author: Dr. Sue Ellen Haupt, haupt@ucar.edu
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basis for transforming seeds and earth to food. Wildland
�res could change all of that. Of course our understanding
of these issues has greatly evolved, and this chapter treats
how that understanding has progressed over the past 100
years. We now understand that the sun not only provides
Earth�s energy, but also produces space weather that
impacts Earth and its atmosphere.

The rapid increase of available environmental data has
enabled rapid advances in our understanding of processes.
Similarly, advances in computational power have made
possible, and require, new techniques such as arti�cial-
intelligence (AI) methods, higher-resolution computational
gridded models, and the coupling of complex processes.
Examples include coupling the atmosphere and �re pro-
cesses for wildland �re modeling, atmosphere and ocean
processes for hurricanes simulation, and many other
foundational climatic processes or solar and atmosphere
processes to predict the impact of space weather. As hu-
manity strives to manage the complex Earth processes, it
becomes more important to apply these detailed meteo-
rological modeling capabilities. This coupled modeling
approach is essential to providing accurate simulations and
forecasts for the applications in this chapter: agriculture,
wildland �re modeling, and space weather, as well as for a
plethora of other applications.

Section 2 of this chapter is related to agriculture, food
security, and how meteorological and hydrological
knowledge is used to enhance production in an effort to
help feed the world�s population. In turn, as humans
change land use for agriculture, the environment is im-
pacted, and we must understand these changes to avoid
unintended consequences. This section also continues the
theme of Part II of this series (Haupt et al. 2019b), which
dealt with topics related to growing populations. Section
2 culminates with a discussion of the food�energy�water
nexus and its susceptibility to a changing climate.

Section 3 discusses our current understanding (and
limits to understanding) of space weather. It suggests that
studying the sun�s atmosphere could be accomplished using
similar methods to what has led to better understanding
Earth�s atmosphere. Continuing on the �ery theme, section
4 deals with wildland �re and how modeling this important
and deadly phenomenon can impact how we deal with it.
But because the �re itself generates weather, fully coupled
models are required to capture this important phenomenon.

Section 5 of this chapter is a bit different in that it
discusses the use of AI in the environmental sciences.
Although it is less about how applications of meteo-
rology have changed and served an important human
topic, it looks forward into how programming machines
to think like humans, or even unlike humans, can en-
hance how we make forecasts, or emulate processes in
our models, or optimize some aspect of our models or

work�ow, or recognize patterns in our world. It also al-
lows us to interact with our burgeoning data in new ways,
uncovering new insights through clustering and nonlinear
analysis. This section looks to the future, but it also re-
verts to the past when science relied more on �nding
patterns in nature. Concluding thoughts and consider-
ation of some prospects for the future appear in section 6.

This chapter is the �nal one of a three-part series on
applied meteorology. In the �rst chapter, we considered
some of the most basic and �rst-addressed application
areas: weather modi�cation, aviation applications, and
security applications. Knowledge of meteorology enabled
each of these applications, and the study required to
progress the applications enriches our understanding of
the meteorological processes involved. In the second chap-
ter, we dealt with using meteorology to �nd solutions to
problems generated by a growing population�urbanization,
air pollution, energy, and surface transportation. We saw
not only that meteorology provides useful information for
these applications, but also that each of these issues itself
impacts the environment in ways that must be understood
and carefully managed. Here in the third part of this series
we continue along the lines of understanding the science
behind the applied systems in how we consider space sci-
ence; dealing with the problems, such as in wildland �re
management and agriculture applications; and applying
new techniques such as AI to those problems. As the last
in a series of chapters on applied meteorology, we must
acknowledge the lack of completeness. There are many
additional topics that are not covered in this series, because
of lack of space and time as well as the fact that some are
touched on in other chapters of this monograph. For in-
stance, little attention is paid to hydrological, climatolog-
ical, or social science applications because they are treated
in other chapters of this monograph.

2. Applications in agriculture and food security

a. Introduction

Food is a basic human need. To feed increasing pop-
ulations, global agricultural output has more than tri-
pled in volume in the last 50 years and real prices have
fallen (Fuglie and Wang 2012). In the United States,
even starting from already high levels of productivity,
farm production more than doubled between 1948 and
2011 (Wang and Ball 2014). By 2050 population growth,
mainly in the developing world, will necessitate an in-
crease in food production of 59%�98% (Valin et al.
2014). With limited land available for planting more
crops, technological advances are necessary to improve
practices and ef�ciencies across the entire food system.
Providing meteorology information is critical to con-
tinuing to optimize productivity.
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Information on constantly changing weather condi-
tions, such as probability of precipitation, temperature
information, and so on are essential basic information
for models of crop production. For instance, crop models
such as the Parallel version of the Decision Support
System for Agrotechnology Transfer (pDSSAT; Elliott
et al. 2015) use daily weather data (maximum and mini-
mum temperatures, rainfall, solar radiation, winds, and
humidity) and farm management information to examine
the status of agricultural systems, provide a framework to
monitor crop progress, identify problem areas and op-
portunities, and contribute to a multifaceted monitoring
system with machine-based learning incorporating re-
mote sensing and crop model outputs. Meteorological
systems can feed these crop models with weather and
climate information including traditional surface-based
observations as well as satellite-based Earth observa-
tions. In addition, models of weather and climate can
provide useful information for prediction. In turn, the
land use modi�cations that are part of agriculture can
alter the weather and climate, which should be included
in our models. These aspects are treated here, as well as
the nexus between food, energy, and water.

b. Use of satellite data for agriculture

Remote sensing technologies are poised to play a
larger role in food security, through such practices as
better crop water monitoring (Bastiaanssen and Steduto
2017). Satellite observation systems have the unique
capability to inform critical forecasts and decision-
support tools for the agriculture sector. Currently many
farmers lack access to timely agricultural forecasts and
decision-making tools that could help them make critical
choices throughout the growing season, including what to
plant, when to plant, and when to irrigate, as well as
warning of impending catastrophic weather events and
providing yield forecasts to aid in price negotiations with
intermediaries.

At the end of 2016, 374 Earth observing satellites were
operational (Pixalytics 2017). The main instruments
useful for agriculture and food security are classi�ed
either as multispectral or microwave; however, planned
hyperspectral sensors have the potential to revolution-
ize remote sensing contributions to food security as
many spectral indices focus on narrow bands (e.g.,
Harris Geospatial Solutions 2017).

An important application of remote sensing data is
for monitoring crop conditions, biophysical variables,
and crop yield (e.g., Chen et al. 2016; Gitelson 2016;
Hat�eld et al. 2008). Spectral indices, such as normal-
ized difference vegetation index (NDVI), are well-
known and long-standing successful examples of using
remote sensing for crop health identi�cation (e.g., Tucker

1979). The growth in spectral radiances has greatly in-
creased the suite of potential geophysical inversion ca-
pabilities, and numerous crop health conditions can now
be monitored. For example, alterations to NDVI and other
spectral indices show strong relationships with the fraction
of absorbed photosynthetically active radiation (Viña and
Gitelson 2005), which is a critical index for inclusion in
production ef�ciency models (Roujean and Breon 1995).
Remote sensing techniques are also showing considerable
value in identifying crop pests and diseases (e.g., Mahlein
2016), including powdery mildew (Yuan et al. 2016) and
white �y (Nigam et al. 2016), among others. Solar-induced
�uorescence (SIF; Yang et al. 2015) indicates photosyn-
thetic activity with space-based monitoring capabilities
(Guan et al. 2015), and gross primary productivity (GPP;
Running et al. 2000) can indicate biomass and carbon al-
lotment for use in crop modeling. Soil moisture products
from NASA�s Soil Moisture Active Passive (SMAP) and
the European Space Agency�s Soil Moisture and Ocean
salinity instruments could provide much improved global
estimates.

Remote sensing information for agricultural lands
enables improvements to model initializations at the
beginning of the season and helps to constrain a model�s
properties (e.g., biomass, leaf area, soil moisture, and
photosynthetic rate) to avoid the effects of drift over the
course of a season. Figure 24-1 is an example of full-
resolution satellite data (NDVI in the �gure), with the
option to select other relevant weather data.

c. Modeling for agriculture applications

Coupled atmosphere�hydrosphere�crop models are
increasingly being used to support agricultural decisions.
The Weather Research and Forecasting (WRF) nu-
merical weather prediction model has been augmented
for interaction with crop models. These WRF-Crop mod-
eling capabilities can be integrated with remote sensing
data, land-data assimilation systems, and prediction sys-
tems to provide short-term and seasonal monitoring and
prediction of crop yield, crop-speci�c water and irrigation
demand, soil temperature evolution, and impacts of
weather�hydrology�crop interactions on crop growth. Such
information can be utilized as input to various decision-
support systems to include irrigation management, crop
planting dates, and fertilization that would highly impact
income of farmers and food security.

The High Resolution Land Data Assimilation System
(HRLDAS; Chen et al. 2007) performs model-based
data assimilation with remote sensing-derived soil mois-
ture and other land surface parameters to generate
soil and crop phenology conditions at �eld scales.
The HRLDAS was used to produce real-time soil mois-
ture and temperature in a NASA-funded agricultural
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pest-management decision-support system (Myers et al.
2008) and the forecast products were accessed by farmers
in the central plains and Great Plains.

A wide range of weather and water prediction can be
optimized to drive the HRLDAS at �eld scales. For each
forecast location, the HRLDAS requires inputs of air
temperature and moisture, wind speed, pressure, longwave
and shortwave radiation, and precipitation, which will
come from observations (e.g., radar-based precipitation
estimates) and/or models. The HRLDAS merges a data
assimilation system and a land surface process model. The
underlying land model within HRLDAS is the community
Noah-MP land surface model (LSM). It includes multiple
options for many key land�atmosphere interaction pro-
cesses affecting hydrology and vegetation to achieve ac-
curate surface energy and water transfer processes (Niu
et al. 2011; Yang et al. 2011). Noah-MP considers surface
water in�ltration, runoff, and groundwater transfer and
storage, and is able to predict vegetation growth by
combining a photosynthesis and a carbon allocation model
that distinguishes between C3 (e.g., soybeans) and C4 (e.g.,
corn) plants (Niyogi et al. 2009, Collatz et al. 1991). Noah-
MP now incorporates crop-growth models (Noah-MP-
Crop) in order to provide crop-species-speci�c soil and
crop yield conditions and several irrigation modules are
under development within the Noah-MP community (Liu
et al. 2016).

Noah-MP-Crop was evaluated against data obtained
from the AmeriFlux sites at Bondville, Illinois, and
Mead, Nebraska, as displayed in Fig. 24-2. The Bondville
site is a nonirrigated corn/soybean rotation site and

the Mead site is an irrigated corn/soybean rotation site.
The results indicate that this model was able to re-
produce observed surface heat �uxes (Fig. 24-2b) and
seasonal evolution of crop phenology (LAI; Fig. 24-2a)
and crop yield estimates (Fig. 24-2c). The Noah-MP-
Crop model is now being expanded to include dynamic
crop root depth and density and irrigation modeling
capabilities to enhance the representation of crop�soil
moisture interactions.

The HRLDAS with crop modeling capability is also able
to integrate high-resolution data, providing more speci�c
information about the crop types and management and
their in�uence on crop growth and surface conditions. The
30-m national CropScape crop-type database has been
implemented in HRLDAS. NASA�s SMAP mission pro-
vides the surface-layer soil moisture estimates (top 5cm) at
the spatial resolution of 36km with an unprecedented ac-
curacy of 60.04cm3 cm23 even in areas with relatively high
vegetation content (Entekhabi et al. 2010).

Knowledge of both current and future conditions of
water and weather at �eld scales is critical for a wide
spectrum of agricultural decision-support systems. Both
near-term and seasonal weather prediction are daunting
challenges, because current weather conditions and
forecasts from the NOAA National Weather Service
with spatial resolutions ranging from 3 km for short-
term forecasts by the High-Resolution Rapid Refresh
(HRRR) to 56 km for seasonal forecasts by the Climate
Forecast System (CFS) are too coarse spatially and
have signi�cant uncertainties for agricultural manage-
ment Nevertheless, the new-generation NOAA National

FIG. 24-1. Example of NDVI values from the Advanced Himawari Imager as displayed in the Helios Environmental platform.
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Water Model (operational since August 2016) generates
a 1-km forecast of stream�ow and soil moisture up to
30 days, a signi�cant step toward providing useable water
information for agricultural sectors.

d. Modeling the impact of agriculture in Earth system
models

Crop growth modi�es the seasonal evolution of land
surface characteristics such as albedo and emissivity,
available water for evaporation, plant phenology (e.g.,
vegetation coverage and LAI), and the land�atmospheric
exchange of heat, moisture, and greenhouse gases
(GHG). These in turn affect surface heat and moisture
�uxes, air temperature and humidity, precipitation, soil
moisture and runoff, and heatwaves as evidenced in ob-
servations (e.g., Eddy et al. 1975; Barnston and Schickedanz
1984, Changnon 2001; Changnon et al. 2003; Haugland and
Crawford 2005; Mahmood et al. 2008; DeAngelis et al. 2010;
Alter et al. 2015a, 2018; Chen et al. 2018). Therefore, it is
imperative to represent the agriculture in Earth system
models (ESMs). A recent review of the community efforts
in developing agriculture modeling frameworks was pro-
vided by McDermid et al. (2017).

The essential function of agriculture modeling in ESMs
is to provide time�space variations of characteristics as-
sociated with crop growth and management that affect
energy, water, and GHG �uxes within the atmosphere,
biosphere, hydrosphere, and ecosphere to represent bio-
geophysical and biogeochemical interactions between
land-use changes and climate systems. One approach to
modeling agriculture in ESMs, mainly for the sake of
simpli�cations and computational ef�ciency, is to pre-
scribe the agriculture-induced changes in land surface
characteristics such as albedo, soil resistance, LAI, vege-
tation cover, rooting depth, and soil moisture storage (e.g.,
Cook et al. 2009; Georgescu et al. 2011; Davin et al. 2014).

Recent efforts by, for example, Lokupitiya et al.
(2009), Levis et al. (2012), and Liu et al. (2016) have
focused on representing the dynamic crop growth and
companion biogeophysical and biogeochemical pro-
cesses in ESMs. They often involve coupling the Ball�
Berry-type photosynthesis model (Ball et al. 1987;
Collatz et al. 1991) and soil hydrology models with
speci�c crop-growth (corn, wheat, rice, etc.) models, and
developing crop-speci�c parameters required by these
crop-growth models. The evaluation of those cou-
pled soil�crop�climate models is often realized with
data collected at �eld scales or from the Agricultural
Model Intercomparison and Improvement Project (AgMIP;
Rosenzweig et al. 2014). However, applying those models
to meet the demand in capturing both large-scale agri-
culture patterns and regional differentiations in agriculture
management methods such as crop rotation, irrigation,
conservation tillage, and fertilization still remains a daunt-
ing challenge in today�s ESMs.

Nevertheless, agriculture management models in-
cluding irrigation and human water management with
varying degrees of complexities are being incorporated
in ESMs (e.g., Leng et al. 2013; Drewniak et al. 2013;
Leng et al. 2017) to enhance interactions among various
Earth system modeling components (e.g., groundwater
storage). Although those new agriculture modeling ca-
pabilities, as integrated modeling tools for investigating
relevant science and sustainability issues, help advance
the understanding of the nexus among food, energy, and
water systems, the development of crop and agriculture
management models in ESMs is still in its infancy. For
instance, substantial uncertainties exist in the mod-
eled temperature effects of irrigation on regional cli-
mate in ESMs (Kueppers et al. 2007; Sacks et al. 2009).
Future priorities should focus on representing com-
plex interactions between agricultural management

FIG. 24-2. Noah-MP-Crop model validation using Bondville 2001 data: (a) leaf area index, (b) average sensible heat �ux in May, and
(c) grain mass (crop yield). Here, MP-CROP is the crop-enhanced Noah-MP, MP-DVEG is default Noah-MP dynamic vegetation, and
MP-TBLAI uses prescribed LAI in Noah-MP. The corn growth stages in (c) are emergence (S1), initial vegetative (S2), normal vegetative
(S3), initial reproductive (S4), normal reproductive to maturity (S5), and after maturity (S6). The �gure is modi�ed from Liu et al. (2016).
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and water-system components at various spatial and
temporal scales.

e. Impact of irrigation on climate

Many areas of the world have seen a recent increase in
agricultural intensity. Agricultural land cover accounts
for roughly 40% of the global land cover (Ramankutty
et al. 2008), and irrigation accounts for 70% of human
consumptive uses of the world�s freshwater resources
(Boucher et al. 2004; Velpuri et al. 2009). It accounts for
approximately 60% of consumptive use of freshwater in
the United States (Minchenkov 2009; Braneon 2014).
Alter et al. (2018) recently showed that intensive agri-
culture over the latter part of the twentieth century was
associated with signi�cant increases in corn and soybean
production in the Midwestern United States. At the same
time, summers had more rainfall and colder conditions,
suggesting a relationship between agricultural practices and
regional climate. Applied climatology and agriculture have
been connected for many decades. A range of agricultural
practices such as farming, irrigation, livestock production,
and land cover change impact hydroclimatic processes and
biogeochemical cycles (Shepherd and Knox 2016).

In the past few decades, increases in irrigated agri-
culture have risen as opposed to rain-fed agriculture
(Fig. 24-3). The average value of production for irrigated
farmland is estimated to be more than 3 times that for
dryland (rain fed) farmland (Schaible and Aillery 2012),
which is one reason for the upward trends in irrigation.
This form of land cover change has the ability to modify
regional climate, with recent studies suggesting that forc-
ing from irrigation is a stronger climate change forcing
than greenhouse gases for some regions (Alter et al. 2018).

The increased amount of water available at the surface
via irrigation has the ability to modify the surface energy
budget (Harding and Snyder 2012). This modi�cation is
primarily due to partitioning the incoming solar radiation
toward latent heating in favor of sensible heating. For a
12-yr average, irrigation decreases summer surface air
temperature by less than 18C and increases surface hu-
midity by 0.52g kg21 (Fig. 24-4; Chen et al. 2018), but the
irrigation cooling effect is more pronounced and longer
lasting for maize than for soybean. These differing tem-
perature effects of irrigation are associated with signi�-
cant reduction in the surface-sensible heat �ux for maize,
although the effect over soybean is negligible (Fig. 24-4).
Both maize and soybean have increased latent heat �uxes
after irrigation events.

As a �rst response to the increased sensible heating,
surface temperatures are modi�ed. Changes to temper-
atures in irrigated regions include decreased maximum
temperatures, increased minimum temperatures, and in-
creases in dewpoint temperatures due to the increased

low-level moisture (Geerts 2002; Adegoke et al. 2003;
Boucher et al. 2004; Kueppers et al. 2007; Lobell and
Bon�ls 2008; Cook et al. 2015). Recent literature suggests
that irrigation has in�uenced temperature extremes and
altered precipitation in irrigated areas. The literature also
suggests that precipitation is often enhanced downwind
of irrigated regions (Barnston and Schickedanz 1984;
DeAngelis et al. 2010; Sen Roy et al. 2011; Harding and
Snyder 2012; Alter et al. 2015b; Pei et al. 2016; Williams
2016). It is postulated that irrigation enhances pre-
cipitation downwind due to increased advection of
evapotranspiration and changes in convective available
potential energy (CAPE) (DeAngelis et al. 2010). The
current literature is conclusive that irrigation signi�cantly
modi�es the land surface, and it affects surface energy
budgets, the water cycle, and climate (Cook et al. 2015).
With this revelation, future work needs to focus on having
an accurate representation of the impacts of irrigation in
next-generation climate models for historical and future
attribution studies (Alter et al. 2018).

f. Food�energy�water nexus

Beyond irrigation practices, there is an increased focus
on agricultural activities related to the food�energy�water
(FEW) nexus. A World Economic Forum report on global
risk clearly articulates the complex and interdependent
relationships among food supply, water availability, and
energy production (World Economic Forum 2011). The
same report projects signi�cant increases in food demand
(50%), water demand (30%), and energy demand (40%)
by 2030. Shepherd et al. (2016) argue that much of the
demand is driven by population changes and urbanization,
which suggests that FEW interactions, agriculture, and
urbanization will challenge scholars for years to come.

The FEW nexus is a conceptualization of the many ways
in which these sectors are interconnected. Inputs of both
energy and water are used in the production, processing,
distribution, and consumption of food. In addition, energy
production depends on the availability of water, while the
provision and use of water require energy. These networks
of interdependencies and feedbacks can be quite compli-
cated. They also differ regionally as a function of differ-
ences in climate, economic activity, population, and land
use. Weather and climate variability affect many of the
activities along the suite of interconnected value chains
that comprise the FEW nexus. Better anticipation of those
impacts is likely to facilitate more ef�cient coordination of
activities while enhancing the pro�tability of enterprises
within these sectors.

An understanding of the nature of the FEW nexus, its
regional heterogeneity, and its ongoing evolution in re-
sponse to changing technologies, markets, and policies
will be needed to best meet the applied meteorology
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needs of these interconnected sectors. The world�s energy
sector is entering a period of rapid transformation, especially
in the structure of the electric power industry in which dis-
tributed generation by wind, solar and other renewables will
account for a growing share of total electricity output [DOE
2015; IEA 2014; also see Part II of this applied meteorology
series within the monograph (Haupt et al. 2019b)].

In addition to a rapidly evolving electric power sector,
changes also are ongoing in other components of the
nation�s food, energy, and water systems. Globalization
is playing an increasing role in food markets (Brown
et al. 2017); although requiring additional energy costs

for transportation, it helps to alleviate the impacts of
droughts and �oods on food security. At the same time,
globalization increases the vulnerability of small-scale
farmers to competition from distant producers and ex-
poses poor consumers to food-price volatility unrelated
to local conditions. Other changes will be driven by the
fact that global climate change is already underway and
is projected to have signi�cant impacts on agricultural
systems and water resources over the foreseeable future
(IPCC 2014).

Most frameworks focused on FEW have ignored
hydroclimate implications and interactions in favor of

FIG. 24-3. Center-pivot irrigation in southwestern Georgia [from Williams et al. (2017), pro-
vided through the courtesy of M. Williams].
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FIG. 24-4. The x axis represents days from an irrigation application with amount .7.5 mm day21. The y axis
represents the differences in (top) daily air temperature, (top middle) air humidity, (bottom middle) sensible heat
�ux, and (bottom) latent heat �ux between irrigated and nonirrigated sites with identical maize�soybean rotation.
Samples (represented by black symbols) were taken from all irrigation events from 2001 to 2012, and the red
asterisks represent their averaged values for a given day after irrigation. The �gure is adapted from Chen et al.
(2018), copyright under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).
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land use, greenhouse gas emissions, resource manage-
ment, and other factors (Villamayor-Tomas et al. 2015)
even though hydroclimatic factors are implicitly integral
to each node of the FEW nexus. Organizations like the
World Bank maintain databases of key indicators for
countries related to climate, energy, and agriculture.
They often included metrics like carbon dioxide emis-
sions, cereal yield, improved water source, and percent
of urban population with access. Shepherd et al. (2016),
for example, have explored various precipitation-per-
person metrics (Fig. 24-5). Speci�c objectives of de-
veloping such metrics are to expose agricultural areas
under cultivation per capita based on water availability,
nourishment needs, and energy constraints, and an as-
sessment of agriculture system vulnerability to hydro-
climatic variability and extremes.

Regional differences in weather and climate vulnera-
bilities are especially striking when considering the food
sector�s connections to energy and water. Irrigation plays a
signi�cant role is supporting agricultural output in the arid
and semiarid western region of the United States, where it
dwarfs all other water uses. Irrigation also is important in
other major centers of crop production, especially in parts
of the southeastern and south-central states of the United
States where supplemental irrigation allows more reliable
and pro�table operations than would be possible with re-
liance on rainfall alone (Fig. 24-6).

In California, which leads the United States in terms
of the value of agricultural output and in irrigation water

use, the USGS reports that irrigators withdrew 25.8 mil-
lion acre-feet (1 acre-foot 5 1233.48 m3) of water in 2010
(prior to several recent years of extreme drought condi-
tions), while all of public supply and self-supplied in-
dustrial withdrawals amounted to approximately 7.5
million acre-feet. The irrigation share in total water
withdrawals is higher in several other western states: 89%
in Colorado, 81% in Idaho, and 94% in Montana
(Maupin et al. 2014). The region�s heavy reliance on
mountain snowpacks to regulate seasonal water avail-
ability creates vulnerabilities to drought periods as well as
to climate change. As conditions warm, earlier runoff and
related reductions in late summer stream�ows are likely
to be especially disruptive for irrigated agriculture in
those states.

With regard to other aspects of the FEW nexus in the
United States, there are additional striking differences be-
tween the western and eastern portions of the country in the
ways that water is used by electric power producers and in
the overall sectoral composition of water use (Fig. 24-7). In
contrast to the eastern states where once-through cooling
for thermoelectric power plants dominates water diver-
sions, water scarcity has forced western electric utilities to
adopt technologies that do not require large volumes of
water such as cooling ponds, recirculating systems, and even
dry cooling towers (Averyt et al. 2011; Cooley et al. 2011;
Fisher and Ackerman 2011; Kenney and Wilkinson 2011).
In addition, much of the West�s hydropower generation
occurs at run-of-the-river facilities, or at dams with limited

FIG. 24-5. Mean precipitation (t yr21) per person from April 2014 to March 2017 in 0.18 3 0.18 boxes (provided
through the courtesy of J. M. Shepherd and C. Liu).
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storage capacity, and thus is also sensitive to droughts and
future changes in seasonal �ow patterns (Gleick 2015).

Climate impacts on the electric energy sector occur
on the supply side, for example through the effects of

warmer water on thermoelectric plant cooling and
changes in hydropower, wind, and solar production. On
the demand side, impacts may include increased energy
use for water provision and treatment. As a case study,

FIG. 24-6. (top) Irrigated harvested cropland as percent of all harvested cropland, and
(bottom) acres (1 acre 5 0.4 ha) of irrigated land (1 dot 5 10 000 acres). (Source: U.S. Census
of Agriculture 2012; http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Atlas_
Maps/Farms/.)

24.10 M E T E O R O L O G I C A L M O N O G R A P H S VOLUME 59

D
ow

nloaded from
 http://journals.am

etsoc.org/m
ono/article-pdf/doi/10.1175/AM

SM
O

N
O

G
R

APH
S-D

-18-0012.1/4941044/am
sm

onographs-d-18-0012_1.pdf by guest on 29 Septem
ber 2020

http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Atlas_Maps/Farms/.)
http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Atlas_Maps/Farms/.)


in 2014, drought conditions led California�s irrigators who
were facing reduced surface water supplies to increase their
groundwater pumping by approximately 5.1 million acre-
feet, incurring an additional $454 million in energy costs for
pumping (Howitt et al. 2014). That surge in energy use by
the agricultural sector came at a time of reduced in-state
hydropower generation and a consequent $1.4 billion in-
crease in ratepayer electrical costs over the course of three
consecutive dry years (Gleick 2015). That drought experi-
ence demonstrates that the coupling between the cost
of electricity and overall electricity use is complicated
and revolves around different ways in which electricity is
used for water supply. Despite the increased groundwater
pumping and probable increased demand for air condi-
tioning during that record-hot summer, statewide retail
sales of electricity in 2014 were slightly lower than during
the previous year (EIA 2015). Possible explanations for the
drop include reduced pumping for long-distance convey-
ance of water from the Sacramento�San Joaquin Delta to
the southern part of the state as a consequence of drought-
related environmental restrictions on that pumping. In ad-
dition, conservation incentives and increased generation by
distributed solar systems may have played a role.

The long-term consequences of California�s recurring
severe droughts will include greater pumping lifts as
increased reliance on groundwater sources contributes
to declining aquifer levels. The substitution of ground-
water for unavailable surface water supplies has done
much to avert economic hardship and long-term damage

to orchards and other perennial crops, but until passage
of the state�s 2014 Sustainable Groundwater Manage-
ment Act (AB 1739, SB 1168, and SB 1319), this activity
was uncoordinated and largely unconstrained.

As climate change progresses, a new generation of
applications is emerging that move beyond physical
connections between agriculture and climate. Chen et al.
(2016) developed an empirical framework for estimating
agricultural yields based on weather. Burke and Emerick
(2016) investigated adaptation practices in U.S. agricul-
tural activities with the goal of understanding future risks
to outcomes. Altieri and Nichols (2017) explore how
traditional agroecological strategies (biodiversi�cation,
soil management, and water harvesting) might be used in
management and design of agroecosystems. The goal is to
improve both resiliency to risk and increase productivity.
Such approaches epitomize how applied climatology is
evolving to address twenty-�rst-century challenges.

Given the complicated nature of the interlinkages
among the FEW sectors, and their sensitivity to climate
variability, it is important to develop a clear under-
standing of nature and dynamics of the FEW nexus.
Multidisciplinary and multistakeholder collaboration
will be needed to foster that understanding.

3. Applications in space weather

We live in the atmosphere of our star, the sun. ��Space
weather�� is the term used to describe the relentless

FIG. 24-7. Total water withdrawals showing category of use by state from west to east for 2010 [from Maupin et al. (2014)].
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barrage of particles that bathe Earth and other planetary
bodies of the solar system that originate in the steady
evolution, and catastrophic breakdown, of magnetic
structures on the sun. In the increasingly technological
society in which we live, the impacts of the sun are being
felt more and more by members of the public�even if
the vast majority do not know it!

Space weather has a range of impacts on our atmo-
sphere that manifest themselves across the scale from
raw natural beauty (through aurorae; e.g., Chapman
1957) to the destruction of critical public infrastructure
(e.g., Boteler 2001). The day-to-day tick tick tick of the
sun on our atmosphere costs the U.S. government and
private sectors upward of $10 billion per year (National
Research Council 2009), and it is one of the only ��nat-
ural disasters�� that the reinsurance industry will not
cover (e.g., Schrijver et al. 2014). While our planet�s
magnetic �eld is critical as a shield in protecting us from
the majority of solar variability, the characterization,
monitoring, and modeling of the sun�s magnetic �eld are
the critical drivers of the sun�Earth system and also pose
the most signi�cant challenge to progress.

Early investigations of solar magnetism and extreme
�avors of solar activity relied heavily on correlated im-
pacts on our atmosphere (e.g., Birkeland 1914). Indeed,
many investigations into what would eventually be dub-
bed space weather were rooted in the practical aspects of
military need during World War II. Both the Axis and
Allied powers deployed observational techniques that
were very advanced at the time to provide forewarning of
ionospheric distortions that would signi�cantly impact
battle�eld tactics through local and global radio commu-
nications (see, e.g., Hufbauer 1991; de Jager 2002): em-
pirical connections of the sun and Earth were the norm. In
those days the primary means of identifying solar
��storms�� was the detection of events on the sun�s east
limb using a device called a coronagraph, a device in-
vented by French astrophysicist Bernard Lyot (Lyot 1939)
to create arti�cial total eclipses by blocking the light
from the disk of the sun. A coronagraph reveals the Sun�s
corona�a cloud of gas surrounding the sun that is one
million times fainter than the sun�s disk�and chromo-
spheric protuberances called ��prominences.��

Following World War II, our knowledge of the sun�
Earth system advanced with the dawn of the rocket,
space, and satellite age, much as terrestrial meteorology
did, including V2 rocket-borne spectroscopic measure-
ment of the sun�s corona and its subsequent identi�cation
as being consistent with the presence of a million-kelvin
cloud of highly charged particles (Grotrian 1939; Edlen
1945), the prediction of the ��solar wind�� (Parker 1958),
and its eventual detection by the Russian Luna 1 sat-
ellite and subsequent Mariner mission measurements

(Neugebauer and Snyder 1962). The observational envi-
ronment outside of the turbulence and (photon) absorp-
tion of our atmosphere provided by the Orbiting Solar
Observatory (OSO) �eet and then Skylab identi�ed a new
relevant feature in the space weather lexicon: the ��coronal
mass ejection�� (CME; e.g., Hansen et al. 1971; Tousey and
Koomen 1972).

We know now that CMEs are very often intimately
related to �ares and prominence eruptions. They �ow
into a solar system that has plasma �ows dictated by the
sun�s magnetic �eld, the solar wind structure, and the
energization of the corona. Characterizing, and pre-
dicting that relentlessly evolving environment is the es-
sence of space weather forecasting (SWx).

The challenges of contemporary SWx can be consid-
ered to be of two �avors:

1) Once an eruptive event has occurred (noting that it
takes 8 min for the changes from the event to be seen at
Earth because of the 93 million mi (;150 million km)
of light travel time) we are in a race against time to
estimate the path of the disturbance through the solar
system, including the determination of the distur-
bance�s intersection with the orbit of Earth, estimation
of the arrival time at Earth; estimation of the magni-
tude of the interplanetary shock (CMEs can travel
faster than the background medium); and estimation of
the magnetic polarization of the disturbance�since an
antiparallel magnetic �eld in the disturbance will cou-
ple directly into Earth�s protective magnetosphere.
This sounds a lot like hurricane forecasting except
with a couple of critical differences�we really do not
know much about the mechanisms driving and popu-
lating the solar wind (the background state on which
the disturbance travels) and we have no observational
baseline to estimate the disturbance polarization, other
than a couple of sentinel spacecraft a few tens of min-
utes upstream of the sun�Earth line at the Lagrange
��L1�� point of gravitational balance between the sun
and Earth. Since numerical models form the primary
forecasting tool, there is wide acknowledgment of
fundamental limitations in predictive skill on an event-
by-event basis. This ��after the horse has bolted�� approach
is the current paradigm of SWx.

2) The alternate, predictive, approach to SWx doesn�t
really exist! To the vast majority of the SWx com-
munity, in addition to the broader solar research
community, solar �ares and CMEs are as ��intrinsi-
cally unpredictable�� as earthquakes. This paradigm
is neither acceptable nor true, as we�ll discuss below.
The future of human exploration of the solar system
and the protection of critical infrastructure in space
and in the troposphere requires the development of
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considerable predictive skill in SWx, both for solar
events and terrestrial impacts. (However, such de-
velopment should not be an ��unfunded mandate.��)

As mentioned earlier, signi�cant predictive skill for
tropospheric weather was accelerated by the dawn of the
satellite age through our ability to study the entire atmo-
sphere from the vantage point of low Earth orbit (e.g.,
Wexler 1962; Lorenz 1973). The identi�cation and char-
acterization of global-scale drivers of local-scale weather
and developing predictability for the former led to more
success in forecasting the latter. SWx research is at the
same status as terrestrial meteorology was at the dawn of
the space age (70 years ago) because the SWx enterprise is
limited by the single ��local time�� perspective. Our obser-
vational baseline is focused only on the sun�Earth line, and
our knowledge of the global solar atmosphere from where
the bulk of our issues stem is, to be frank, naïve.

Solar magnetism is the root cause of space weather. In
fact, solar magnetism drives the bulk of our star�s vari-
ability across scales and so characterizing that evolving
magnetism on time scales from seconds to millennia is
sometimes cast in the similar ��weather�� and ��climate��
paradigms as our investigations of Earth�s atmosphere.
The vast scale of the sun and the massive sun�Earth
distance make the SWx problem, or those relating to the
root of the space weather problem at the sun, a profound
remote sensing challenge�a challenge in which we cap-
ture photons and particles 93 million miles away to infer
the physics of the fundamental processes that propelled
them to us (e.g., Schwenn 2006; Schrijver et al. 2015).

Of most critical importance to the SWx enterprise is
the characterization of the sun�s magnetism throughout
the solar atmosphere (e.g., del Toro Iniesta and Ruiz
Cobo 2016). By exploiting quantum mechanical effects
and measuring polarized radiation we can get a bearing
on the sun�s vector magnetic �eld as it becomes visible
after building up in the sun�s opaque interior, via a
poorly understood process called the ��solar dynamo��
(e.g., Charbonneau 2010; Hathaway 2015).

Solar magnetism displays a host of variational time
scales of which the enigmatic 11-yr sunspot cycle is most
prominent. Sunspots are a manifestation of intense
magnetic �eld concentrations and are the hosts to �ares,
CMEs, and the most dynamic of prominences�in other
words, the majority of the most dangerous space
weather events. The other, more stealthy, and mysteri-
ous constituent of the space weather zoo is also rooted in
varying magnetism: the coronal hole. Coronal holes
were discovered once systematic, or synoptic, coronal
observations of the solar disk were visible from orbit
(Krieger et al. 1971) where they appeared, literally, as
dark ��holes�� in the bright corona. It was subsequently

discovered that coronal holes were the outward exten-
sions of spatially extended regions of the unipolar
magnetic �eld (Timothy et al. 1975) and the source of
the ��fast solar wind�� (Krieger et al. 1973).

The solar wind has two primary states, ��slow�� (200�
500 km s21) and ��fast�� (.500 km s21). The former is
really a continuum of slow states, where differences in
slow wind parcels are most easily quanti�ed through
differences of plasma composition in the parcels (e.g.,
Hundhausen 1970) that result from the different mag-
netically con�ned regions of the sun�s corona from
which that plasma originates (e.g., Harvey and Sheeley
1979). Slow wind can arise from quiescent and active
regions on the sun. The physical origins of the slow solar
wind, its gradual acceleration, and its compositional
contrast pose challenges to our community. The simpler
state, in principle, is the fast wind, coming from the
relatively simple coronal hole environment, but the
rapid acceleration and starkly different compositional
signature similarly pose physical challenges. A simple
delineation between slow and fast wind, beyond their
measured velocities is that the latter is ��cooler�� with a
compositional signature consistent with a plasma of , 1MK,
and the former with a range of consistent root plasma tem-
peratures that can greatly exceed 1MK (e.g., Zurbuchen
et al. 2002). These two states vary and mix in the three-
dimensional magnetic system that is the heliosphere on
pathways that are themselves set by the magnetic �eld
con�gurations at the center of the system.

Establishing the ��solar wind roadmap,�� the state of
the background plasma environment into which a �are,
CME, or prominence is launched poses as much of a
challenge to our community as the disturbances them-
selves. In a sense though, it is more critical, because any
scientist knows about the impact of poor initial condi-
tions on a mathematical or numerical problem. Can you
imagine the chances of successfully forecasting the
characteristics of a hurricane when you have no more
than 50% accuracy on any of the background environ-
mental variables? That wouldn�t be acceptable, would
it? There are many ��decision points�� in the contempo-
rary SWx challenge. Operational practice leans heavily
on past experience that results from the analysis of high-
heritage observational tools.

We must rise to these challenges! The SWx capability
required to protect future human explorers in the solar
system, in addition to critical ground- and space-based
infrastructure, is being conceived through the recent
National Space Weather Strategy (https://www.sworm.
gov/). This strategy is devised to reduce and/or eliminate
the shortcomings of the physical challenges and fore-
casting decision points. Observational tools to reduce
risk with regard to the background solar wind, CME
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directionality, CME and prominence magnetic polariza-
tion, and so on are all critically wedded to information
technology, data assimilation, and the array of numerical
modeling techniques that have been extensively de-
veloped over past decades in the solar�terrestrial phys-
ics community. A truly critical need for future space
weather understanding (and increased forecast skill) is
the full characterization of the sun�s global magnetic �eld
distribution�we must begin to study the sun�s atmosphere
as a weather system, exploiting the observational tools and
methods developed by the meteorological community.
Early investigations of (truly) global solar phenomena
point to strong analogs between our atmosphere and the
sun�s (McIntosh et al. 2017) and offer insight into the gross
predictability of solar activity that belongs to persistent
longitudinal patterns in solar magnetism.

On the terrestrial side of SWx, observational plat-
forms are being deployed to explore the magnetosphere,
radiation belts, and now the ionosphere with the Global-
Scale Observations of the Limb and Disk (GOLD;
Eastes et al. 2017) and Ionospheric Connection Explorer
(ICON; Immel et al. 2018) missions. Those missions,
their data, and the numerical models derived from them
are going to provide critical insight into the ��top-down��
(from the sun) and ��bottom-up�� (from the troposphere)
impacts on the ionospheric interface between magnetically
and thermodynamically controlled environments. As is
often the case, some of the most interesting physical phe-
nomena and challenging measurements to characterize
occur at boundaries of physical domains. Conquering the
physics of the ionosphere will be necessary to improve
forecast skill of that region beyond a few hours. Applica-
tion of high-skill, long-duration ionospheric forecasts has a
reach beyond the academic environment, into commercial
and the military sectors where war�ghters critically de-
pend on their �eld communication devices.

The need for high-skill and accurate space weather
forecasts of the coupled sun�Earth system will not di-
minish. Our societal dependence on technology continues
to increase; it will drive a need to understand our star and
its persistent connection to our planet like never before.

4. Applications in wildland fire management

Wildland �res are a component of the natural envi-
ronment that is essential to maintaining healthy eco-
systems, but they are also often destructive, affecting
natural resources, threatening human life and property,
reducing air quality, leading to soil erosion and �ooding,
and potentially affecting weather and climate. The ear-
liest evidence of wildland �re based on plant fossils
preserved as charcoal can be dated to the Silurian period
more than 400 million years ago. Throughout geological

history, wild�re frequency and intensity were related to
the level of oxygen in the atmosphere (Watson et al.
1978) and the availability of fuel sources. Applications
of meteorology in wildland �re management can be
traced back to the development of wildland �re man-
agement. In the United States the event that is often
considered as a turning point in wildland �re manage-
ment is the Great Fire of 1910 also called the ��Big
Blowup,�� a wild�re in the western states in the summer
of 1910. The resulting burn area spread over parts of
three states: Washington State, Idaho, and Montana,
covering an area of 12 100 km2, similar to the size of the
state of Connecticut. The passage of a cold front on
20 August with hurricane-strength winds resulted in a
large number of smaller wildland �res aggregating into
two large ones. Over two days in August 1910 the �re-
storm killed 87 people, a large number of whom were
�re�ghters. The devastating effect of this and other wild-
land �res resulted in the U.S. Forest Service policy of
suppressing all wildland �res (Pyne 1982). The Forest
Service of�cially abandoned this policy in 1978. Initially
better wildland �re suppression and later management
required a better understanding of wildland �re behavior
and, consequently, an improved understanding of in-
teractions and feedbacks between wildland �re and
weather and climate. Advances in climatology, meteorol-
ogy, and weather forecasting over the last 100 years have
resulted in corresponding advancements in the prediction
of wild�re likelihood and spread. Today, development of
coupled wildland �re and atmospheric environment models
enables predicting extreme �re behavior resulting in rapid
rates of spread. Accurate predictions could provide essen-
tial information for effective wildland �re management.

Fires in general, including wildland �res, require three
components: a heat source, fuel, and oxygen. These three
essential components are all intrinsically connected to en-
vironmental conditions, and therefore, to the atmosphere.
In wildland �res the heat source required to ignite fuels is
often provided by lightning. Regional climate conditions, in
addition to terrain and soil type, determine which fuels are
dominant in a speci�c area. Weather and climate affect fuel
moisture content. Finally, burning, or combustion, is an
exothermic chemical reaction between a fuel and an oxi-
dant. In wildland �res the oxidant is atmospheric oxygen.
While oxygen is the second largest constituent of Earth�s
atmosphere, accounting for almost 21% of its volume, at-
mospheric circulations, through turbulent mixing, are es-
sential for providing a continuous supply of oxygen for
combustion processes in wildland �res. Atmospheric con-
ditions including winds, relative humidity, precipitation,
cloud cover, solar irradiance, and so on affect the spread of
wildland �res. In turn, wildland �res directly affect at-
mospheric conditions through modi�cation of the surface
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sensible and latent heat �ux, moisture �ux, aerosol
loading, and indirectly through modi�cation of convec-
tive updrafts, resulting in modi�ed wind patterns and
smoke dispersion that modi�es radiative transfer. Under
favorable conditions, large wildland �res can result in
formation of pyrocumulus clouds. Depending on the
available moisture, pyrocumulus clouds can evolve into
thunderclouds, or pyrocumulonimbus, which can pro-
duce rain, lightning, and potentially strong downdrafts,
sometimes called ��collapsing columns,�� all of which can
affect wildland �re evolution. Wildland �res and atmo-
spheric conditions therefore form a complex coupled
nonlinear dynamical system with feedbacks that control
wildland �re spread.

The importance of weather phenomena for wildland �re
spread, as well as the effect of large wildland �res on local
weather, has been observed and documented before it was
possible to measure these effects and carry out detailed
quantitative analyses. Some of the �rst descriptions, pub-
lished in the United States, of the effect of wildland �res
on weather phenomena coincide with the year when the
American Meteorological Society was formed, 1919.
These studies focused on observations of convective
clouds as a consequence of large wildland �res in Cal-
ifornia (Carpenter 1919) and Hawaii (Reichelt 1919), as
well as a number of rain events from cumulus clouds over
wildland �res reported during the mid-1800s (Espy 1919).

Although today the majority of wildland �res may be
ignited by humans, a signi�cant number of wildland �res
are still ignited by lightning. In the western United
States, in particular, a larger number of wildland �res
are ignited by dry lightning (Abatzoglou et al. 2016; also
cf. EcoWest 2013). Dry lightning-ignited wildland �res
in remote, not easily accessible, and sparsely populated
areas often result in the largest burned areas. Dry
lightning is cloud-to-ground lightning that is not ac-
companied by rainfall. The likelihood of dry lightning
occurrence depends on the stability aloft and lower-level
atmospheric moisture content (Rorig and Ferguson
1999). Spatial representation of lightning likelihood af-
ter the passage of a storm can be an important aid for
wildland �re managers. Wildland �re ignition potential
by lightning depends on environmental conditions, in-
cluding live and dead fuel moisture content, and weather
conditions (i.e., wind speed, temperature, and humid-
ity). While dry lightning often ignites wildland �res, re-
cent studies indicate that climate conditions are the
dominant controlling factor of variability in the burned
area throughout the western United States. Forecasting
lightning and lightning ignition potential represents one
of the greatest challenges for modeling and managing
wildland �res due to the inherent spatial and temporal
stochasticity and other associated uncertainties.

The complexity of the coupled wildland �re�atmosphere
system represents a signi�cant challenge to the develop-
ment of effective applications for wildland �re man-
agement. An effective decision-support system combines
observations and observation-derived data products
with predictive models. A decision-support system for
wildland �re management necessarily integrates a wide
range of disparate data sources including data about
lightning strikes, fuel types, and fuel moisture content,
as well as climate and weather conditions (e.g., Wildland
Fire Decision Support System 2018; Calkin et al. 2011;
Wildland Fire Assessment System 2018; Jolly and
Freeborn 2017).

The U.S. Forest Service�s Wildland Fire Assessment
System (WFAS; WFAS 2018; https://www.wfas.net)
provides a range of information related to �re potential
and danger, including Fire Danger Rating, Haines index
(Haines 1988), and dry lightning maps. Fire Danger
Rating is based on preceding weather conditions, fuel
type, and fuel moisture content for dead and live fuels.
Using data from the National Digital Forecast Data-
base, WFAS produces �re danger forecasts. Fuel mois-
ture content for both dead and live fuels depends on
weather and climate conditions.

The Haines index characterizes the lower atmosphere
stability and dryness speci�cally for �re weather in order
to quantify the likelihood of wild�re growth. The Haines
index is computed using morning atmospheric soundings
provided by the Universal Rawinsonde Observation
Program (RAOB; http://www.raob.com/features.php).
Dry lightning maps are produced by combining daily es-
timates of rainfall produced by the National Weather
Service Advanced Hydrologic Prediction Service (AHPS)
with lightning density grids derived from daily cloud-to-
ground lightning strike data (Cummins et al. 1998). The
dry lightning is calculated using a lightning fuel-type grid
utilizing maps of land cover type (Schmidt et al. 2002).
Last, the potential lightning ignition is calculated by
combining lightning strike data and the lightning ef�ciency
map. The lightning ef�ciency depends on the ratio of
positive and negative discharges since positive discharges
result in a higher likelihood of ignition.

Moisture content in wildland fuels represents an im-
portant parameter controlling the ignition and spread of
wildland �res. Accurate estimates of dead and live fuel
moisture content are therefore essential for accurate
assessment of wildland �re risk and spread. Dead fuels
are classi�ed by the time lag, which depends on the
diameter of the fuel. The time lag approximates the
time it takes for the fuel to reach two-thirds of its way
to equilibrium with the environment. Dead fuels are
classi�ed as 1-, 10-, 100-, and 1000-h fuels. Dead fuel
moisture depends only on environmental conditions. In
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addition to direct estimates of fuel moisture content, the
growing season index (GSI), NDVI, Keetch�Byram
index (Keetch and Byram 1968), and Palmer index
(Palmer 1965) can be used to assess the state of wildland
fuels. GSI is used to quantify physiological limits to
photosynthesis in live fuels. GSI depends on minimum
temperature, vapor pressure de�cit, and the duration of
daylight. Biochemical processes in plants are sensitive to
low temperatures: in particular, water uptake by roots is
affected by soil temperatures. The vapor pressure de�cit
of the atmosphere is used as a proxy for the soil water
balance, which is dif�cult to measure. The daylight
corresponds to the period when plant photosynthesis
takes place and is related to the seasonal cycle. NDVI
derived from Advanced Very High Resolution Radi-
ometer satellite data is used to determine vegetation
greenness. The Keetch�Byram index is a drought index
used to assess �re potential. The Palmer index, or the
drought severity index, is based on the water balance
equation taking into account available water content
(AWC) in the soil, precipitation, temperature, and the
concept of supply and demand. As a standardized
measure of drought, this index enables comparison be-
tween different times of year and different locations.

While the assessment of �re danger is largely based
on a wide range of environmental observations, effec-
tive wildland �re management depends on accurate
wildland �re spread prediction. Numerical weather
prediction (NWP) was one of the early applications of
computers and numerical methods for solution of partial
differential equations [see the chapter in this mono-
graph series by Benjamin et al. (2019)]. The increased
computational power led to higher-resolution NWP and
development of the �rst limited-area models in the early
1970s (e.g., the Mesoscale Model; Anthes and Warner
1974, 1978). These developments coincided with the �rst
attempts to numerically simulate wildland �re behavior
(Sanderlin and Sunderson 1975; Sanderlin and Van
Gelder 1977). Simulation of wildland �re behavior re-
quired development of mathematical models of wild-
land �re spread. One such model that is still widely used
today was developed by Rothermel (1972). Rothermel
combined theoretical considerations and empirical ob-
servations to derive a wildland �re rate of spread model
linking fuel properties and environmental conditions.
According to the Rothermel model, in addition to the
packing ratio, bulk density of the fuel bed, heat of pre-
ignition, fuel loading, the fuel�s mineral content, and the
fuel�s heat content, which depend on the fuel type, the
rate of spread also depends on the wind speed, terrain
slope, and fuel moisture content. The Rothermel �re
spread model represents a core component of a num-
ber of wildland �re spread simulation models. These

wildland �re spread simulation models combine a �re
spread model with information about the environmental
conditions to provide estimates of wildland �re perim-
eter growth, �ame length, crowning, potential for spot-
ting, heat release, and so on. Effective wildland �re
spread simulation models lead to better understanding
and prediction of �re behavior. Such models can be used
to mitigate risk of wildland �res, plan �re suppression
activities, and aid in training �re�ghters. The effective-
ness of wildland �re spread models depends on the �-
delity of representing the physical processes that govern
�re behavior, as well as fuel types and fuel moisture
content. Accurate, high spatial resolution characteriza-
tion of fuel types is therefore critical for accurate wildland
�re spread prediction. Fuels characteristic of the United
States are categorized by the fuel models of Anderson
(1982) and Scott and Burgan (2005). Scott and Burgan
expanded the original 13 fuel types of the Anderson
model to 40 fuel types. High-resolution, 30-m gridcell-
size fuel maps are available for both fuel models. Keane
(2015) presented a comprehensive summary of wildland
fuel types and concepts and related applications including
fuel sampling, mapping, and treatments.

Sullivan (2009a,b,c) presented an extensive review of
models for simulation of wildland �re spread developed
since 1990. Sullivan classi�es models based on their
complexity and theoretical or empirical underpinnings
as: physical and quasi-physical, empirical and quasi-
empirical, and simulation and mathematical analog
models. An alternative classi�cation of wildland �re
spread simulation models divides them into uncoupled
and coupled models. Uncoupled models do not include a
dynamic representation of atmospheric conditions, but
rather rely on local measurements, weather forecasts, or
of�ine atmospheric simulations for wind speed and wind
direction, as well as temperature, moisture, and other
environmental conditions needed to predict �re behav-
ior. Uncoupled models cannot account for the effect of
heat released by combustion processes on the atmo-
spheric �ow conditions at the �aming front. The heat
released by combustion induces convective circulations
that, depending on the rate of heat release, can result in
signi�cant modi�cation of local atmospheric �ows and
potentially enhance �re spread. Furthermore, convec-
tive plumes raise �rebrands that can then be carried long
distances downwind from the �aming front, potentially
resulting in spotting. In addition to plume rise, spotting
ef�ciency depends on a number of parameters and is
essentially a stochastic process (Albini 1983; Martin and
Hillen 2016). Coupled models that simultaneously re-
solve atmospheric motions and model combustion pro-
cesses account for the feedbacks between the �aming
front and atmospheric conditions, and therefore can
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potentially represent and predict �re behavior more ac-
curately. These models are substantially more complex
than uncoupled models and therefore require signi�cant
computational resources. However, coupled models are
required to capture extreme �re behavior such as �re
whirls and tall convection columns that can result in rapid
rates of �re spread. Coupled models can be further divided
into those that rely on �re spread models such as the
Rothermel (1972) model to account for the combustion
effects and those that resolve some elements of combus-
tion processes. The latter require much higher resolution
with grid sizes of a few meters or less. Because of com-
putational requirements, such models are most often used
as research tools to study wildland �re spread under ide-
alized conditions. Two representatives of this group of
models are FIRETEC (Linn 1997; Linn et al. 2002) and
the Wildland�Urban Interface Fire Dynamics Simula-
tor (WFDS; Mell et al. 2007) models. The complex com-
bustion reactions of a wildland �re are represented in
FIRETEC using a simpli�ed set of reactions including
pyrolysis of vegetative fuels, solid�gas reactions, and gas�
gas reactions (Linn 1997). This model can be further sim-
pli�ed by reducing the combustion process to a single
solid�gas reaction (Linn et al. 2002). While the FIRETEC
model requires grid cell sizes on the order of a meter or
less, the WFDS model is commonly used for slightly
coarser-resolution simulations with grid cell sizes of a few
meters. The WFDS model is an extension of the Fire
Dynamics Simulator developed by the Building and Fire
Research Laboratory at the National Institute of Stan-
dards and Technology (McGrattan et al. 2018) that ac-
counts for wildland fuel combustion. In the WFDS,
detailed chemical reactions are not represented but com-
bustion is modeled assuming that the time scale of the
chemical reactions is signi�cantly shorter than the time
scale of mixing, so that the combustion is a result of stoi-
chiometric mixing of the fuel gas and oxygen independent
of temperature. The spatial resolution requirement of
coupled models that include combustion models im-
plicitly limits the size of �res that can be simulated. Nev-
ertheless, when combined with observations, validated
high-resolution models represent an indispensable tool
for developing a better understanding of processes gov-
erning wildland �re behavior and development of better
�re spread parameterizations for operational wildland �re
spread simulation models. While these models are com-
putationally intensive they can be used for planning con-
trolled burns and other fuel management strategies.

Coupled models that can be used as a component of
decision-support systems for wildland �re spread pre-
diction usually rely on parameterizations of wildland �re
spread based on the Rothermel or similar models. One
such model is the Coupled Atmosphere Wildland Fire

Environment (CAWFE) model (Clark et al. 1996). The
CAWFE model couples a Clark�Hall cloud-scale model
(Clark and Hall 1991) with the Rothermel (1972) rate-
of-�re-spread model and fuel burn rates determined
experimentally by Albini (1976). Following the de-
velopments by Clark et al. (1996), more recently, a rate-
of-�re-spread model implemented in the CAWFE
model was integrated into the WRF Model (Skamarock
and Klemp 2008). The WRF Model is a limited-area
model widely used for both operational weather fore-
casting as well as research studies. It is also used as a
platform for testing and evaluating improvements to
parameterizations of various atmospheric processes.
The WRF Model can be con�gured as a coupled atmo-
sphere wildland �re model, known as WRF-Fire (Mandel
et al. 2009; Coen et al. 2013; e.g., Fig. 24-8).

While it has been recognized that an effective
decision-support system for wildland �re prediction
needs to include a capability that couples a weather
forecast with �re spread prediction, such a system has
not yet been implemented (Sun et al. 2009). The com-
plexity of the weather�wildland �re system, required
high-resolution data, associated uncertainties, and sig-
ni�cant computational requirement until recently pre-
cluded development of an effective operational coupled
system. The development of databases needed by cou-
pled operational models, including frequently updated
high-resolution fuel and fuel moisture content maps and
�re perimeters, as well as high-resolution datasets from
prescribed burns (e.g., RxCADRE; Clements et al.
2016) that can be used for their assessment are pre-
requisites for the effective integration of coupled models
into decision-support systems. Advances in computa-
tional platforms, including high-performance computing
and cloud computing, will enable transfer of models that
are currently used as research tools to operations.

At present, uncoupled wildland �re spread simulation
models represent the core prediction capability for
decision-support systems for wildland �res. Some of the
more widely used uncoupled wildland �re models are
the Fire Area Simulator (FARSITE; Finney 1998) and
BehavePlus (and its predecessor ��BEHAVE��; Andrews
1986, 2014) in the United States, Prometheus designed
for Canadian fuel complexes (Tymstra et al. 2009),
Amicus in Australia (Plucinski et al. 2017), ��SYPYDA��
for Mediterranean pine forests (Mitsopoulos et al. 2016),
and so on. Uncoupled models are able to provide pre-
dictions of wildland �re behavior in real time with limited
computational resources. They utilize weather data ei-
ther from weather forecasts provided by national cen-
ters (e.g., NCEP) or local observations, or rely on wind
�elds generated by downscaling weather forecasts us-
ing diagnostic, mass consistent, wind models such as
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WindNinja (Forthofer et al. 2014a,b). The capabilities of
the WindNinja model have been recently extended to
include an option for integration of momentum conser-
vation equation (WindNinja 2018).

Both coupled and uncoupled models that rely on
semiempirical models for rate of �re spread require a
�aming-front-tracking algorithm. FARSITE and Pro-
metheus use the Huygens principle of wave propagation
for that purpose (Huygens 1690), and the CAWFE
model includes a Lagrangian particle-tracer algorithm
(Clark et al. 2004). The coupled atmosphere�wildland
�re model based on the Meso-NH mesoscale model
(Filippi et al. 2009) uses the method of markers. Several
models, including WRF-Fire (Mandel et al. 2009), use
the level-set technique for front tracking. The level-set
technique is based on �rm mathematical foundations and is
widely used in computational physics for tracking moving
boundaries (Osher and Sethian 1988). Bova et al. (2016)
found minor differences between the marker method and
level-set methods implemented in the same code, and
Muñoz-Esparza et al. (2018) demonstrated that errors in
�re spread can be reduced signi�cantly by using a higher-
order scheme for level-set advection and implementing a
level-set reinitialization algorithm. In addition to front-
tracking algorithms, wildland �re spread simulation
models include crown �re spread models (e.g., Rothermel
1991) and �re-spotting models (e.g., Albini 1983).

Developing an effective decision-support system for
wildland �re represents a signi�cant challenge. In addi-
tion to the large amount of frequently updated high-
resolution data characterizing environmental and fuel

conditions, wildland �re spread prediction requires
high-resolution simulations. For the largest, most de-
structive wildland �res that have the potential to raise
signi�cant �re phenomena, coupled atmosphere�wildland
�re models are required. While signi�cant advances
have been made in understanding and modeling wild-
land �re behavior, in addition to computational limita-
tions, there are still gaps in our understanding of the
underlying processes. Since Finney et al. (2013) identi-
�ed the need for a comprehensive theory of wildland �re
spread, advances have been made in elucidating the role
of buoyant �ame dynamics in wild�re spread (Finney
et al. 2015). However, a comprehensive theory of wild-
land �re behavior can only be achieved by studying in-
tricate nonlinear feedbacks that characterize coupled
atmosphere�wildland �re environments that lead to the
observed wildland �re behaviors. An effective decision-
support system for wild�re management can be built on
�rm foundations by recognizing and quantifying the
uncertainties inherent in this complex coupled system.
To achieve this goal, a concerted effort is needed to
collect high-resolution and high-quality data from both
wild�res and prescribed burns.

5. Applications of AI in applied meteorology

Humans have always noticed patterns in the weather
and sought to understand them. This understanding
advanced in parallel directions. One direction was cat-
egorizing weather events and looking for patterns that
often were repeatable. An example of this approach is

FIG. 24-8. A simulation of a grass �re near Last Chance, Colorado, on 25 Jun 2012, with the
WRF-Fire coupled atmosphere�wildland �re model. Smoke emitted by the �re is represented
as an orange isosurface (provided through the courtesy of D. Muñoz-Esparza).
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the old saying ��Red sky at night, sailor�s delight.�� Peo-
ple did not feel that they needed to understand the
process to be able to use the knowledge to generalize the
likelihood of good versus bad weather for the next day
(Haupt et al. 2009c). This approach is the basis for early
forms of arti�cial intelligence: break things into gener-
alizable rules based on observations. This heuristic
method is in stark contrast to the reductionist approach,
where scientists sought to understand the processes by
breaking them down into small parts. An example is
using a control volume approach to analyze the various
forces on a parcel of air; this method is typically used to
derive the dynamical equations of motion that describe
the advection of weather patterns. We were not really
able to integrate those equations successfully until the
advent of the digital computer. After the initial suc-
cesses of integrating the Navier�Stokes equations by
Charney et al. (1950), the dynamical/physical approach
based on the reductionist theories advanced alongside
the growth of computational power.

a. The rise of AI

Advances in computing not only spurred advances
in the dynamical/physical approach, but also enabled
modern arti�cial intelligence (AI) to develop. In 1950,
Alan Turing published a paper exploring whether ma-
chines could be trained to think and proposed a test to
determine whether a suspicious interrogator could dis-
tinguish answers to questions from a machine versus a
human (Smith et al. 2006). Simultaneously, Claude
Shannon was contemplating ways to teach a computer
to play chess (AAAI 2017). In 1956, John McCarthy
convened a conference at Dartmouth University that
brought together the top researchers and coined the
name ��arti�cial intelligence�� for the push to advance
the concept of machines emulating human thought
(Smith et al. 2006; AAAI 2017). Although less progress
was made at that meeting than originally hoped, it
prompted a few decades of defense funding to propel the
�eld forward, particularly in areas of machine trans-
lation of languages. Much of this work was in the more
heuristic �eld of expert systems, which codi�es and
blends the knowledge of experts (Poole and Mackworth
2017). Unfortunately, early hype led to disappointments
for the sponsors: when apparent successes did not lead to
the expected usable products, funding was discontinued.
Thus ensued the ��AI winter�� beginning in the 1980s in
the United States, leading to two decades of reluctance
to fund work in AI. A host of new names for the �eld
emerged to mask the real nature of the research, in-
cluding machine learning, informatics, pattern recogni-
tion, knowledge-based systems, and more (Smith et al.
2006). These nomenclatures attempted to distinguish

the more nascent methods that are based more on data
from the earlier, primarily heuristic approaches. In-
dustry, however, continued the work and with IBM�s
success with Deep Blue beating chess champion Gary
Kasparov in 1997, interest in AI resumed (Smith et al.
2006) and U.S. funding agencies began to regain interest
in the �eld.

During the boom in the more heuristic methods, en-
vironmental scientists began codifying expert systems
as a way to combine information from multiple sources
and make logical inferences. The March 1987 special issue
of Atmospheric and Oceanic Technology (volume 4, num-
ber 1; http://journals.ametsoc.org/toc/atot/4/1) gives a sam-
pling of the types of work being done at that time. It
includes examples of convective storm forecasting (Elio
et al. 1987), recognizing low-level wind shear from radar
observations (Campbell and Olson 1987), and pattern rec-
ognition as applied to forecasting (McArthur et al. 1987).

The environmental sciences possess a host of in-
teresting problems amenable to advancement by in-
telligent techniques. Those advances were occurring in
parallel to the advent of both NWP and AI. They began
as advances using increasingly complex applications of
statistics. NWP forecasts could be improved by using
multivariate linear regression on historical data, pro-
ducing model output statistics (MOS; Glahn and Lowry
1972) that could apply those ��learned�� corrections to
the current forecast. More could be discerned about
atmospheric modes of oscillation by doing multidimen-
sional correlation analysis (Schlatter et al. 1976) and
principal component analysis, which began to be
dubbed empirical orthogonal functions (Lorenz 1956;
Wilks 2005; Hasselmann 1988). Those correlation tech-
niques could also be applied in time to train predictive
models using canonical correlation analysis and modes
of oscillation (von Storch and Navarra 1995). Re-
searchers began building models using these eigenmodes
as basis functions, both in terms of dynamical model de-
composition (Selten 1997) and in terms of applying
Markov process theory to build stochastic forecast systems,
and using the results to identify the time-dependent prin-
cipal oscillation patterns (Hasselmann 1988; Penland 1989;
Penland and Ghil 1993; von Storch et al. 1995; Branstator
and Haupt 1998). Such models were often shown to predict
as well as physical models (Penland and Magorian 1993;
Penland and Matrosova 1998) or to better respond to im-
posed forcing (Branstator and Haupt 1998).

Some of the blending of statistical methods described
above began to invoke the philosophy of machine
learning. For instance, when making forecasts for a
speci�c location, human forecasters often study the
output of various models and use their experience and
intuition to blend the information and mentally weight
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each model depending on the current weather situation.
From experience they know that when a front is
encroaching on the Colorado Front Range, model A
may get the timing better than model B, but model B
may better predict the resulting precipitation. They
mentally correct the model output. In the mid-1990s,
companies such as the Weather Channel decided to
scale up their operations to international, which meant
that the number of locations continually requiring
forecasts would exceed the capability of human fore-
casters. Thus, they initiated a collaboration with the
National Center for Atmospheric Research (NCAR) to
design, test, and deploy a computerized system to ac-
complish this goal. The outcome was the copyrighted
Dynamical Integrated Forecast (DICast) System. DICast
ingests output from multiple models and applies a two-
step process to optimize the blending (Myers et al. 2011;
Mahoney et al. 2012). First, the biases of each model are
removed using a dynamic version of MOS. Second, gra-
dient descent methods are used to optimize the weights
assigned to each of the models for each particular lead
time at each particular location. Thus, the results are very
speci�c to the relative performance of each input model
at each location for each lead time. As with MOS, this
information is learned by DICast from historical obser-
vations and forecasts and the system is updated dynami-
cally. Although DICast has evolved over the last two
decades, it is still being used as the primary postprocess-
ing engine by some of the best-known forecasting com-
panies. It is one of the �rst forecasting systems that
crossed over from applications of statistics to AI.

We choose not to dwell on differentiating between the
complexity that evolved in the statistical methods from
AI, but rather take the point of view that we do not need
to. We prefer to consider it as a continuum of statistical/
machine-learning techniques, and practitioners can draw
from that full continuum to apply the right tool for
each problem, which is certainly what has occurred.
Some of the same researchers who were convolving
multiple statistical methods began to look more broadly
at the AI methods to apply to their problems. Many of
the advances began to diverge from the expert-system
approach and toward learning directly from the data.
Neural networks (NNs) became a popular approach.
Krasnopolsky et al. (1995) used a neural network to
retrieve wind speeds from a microwave imager. Gardner
and Dorling (1998) reviewed NNs and how they could
be used in atmospheric sciences, such as in pattern classi-
�cation, prediction, and function approximation. Hsieh
and Tang (1998) described how some perceived dif�cul-
ties with using neural networks in meteorological and
oceanographic prediction can be overcome. Marzban
and Stumpf (1996) used a neural network to diagnose

circulations likely to lead to tornadoes. Other problems
were more oriented toward optimization. During the same
time period, Haupt (1996) began exploring using genetic
algorithms to interpret the changes in eigenfunctions used
in Markov models as the dimensionality was changed.

To advance the �eld, the AMS Committee on Ap-
plications of Arti�cial Intelligence in the Environmental
Sciences taught a series of short courses, including in
Orlando, Florida, in 2001, Seattle, Washington, in 2004,
Atlanta, Georgia, in 2006, Corpus Christi, Texas, in
2007, Seattle in 2011, and Seattle in 2017. The lectures
were archived in a book in 2009 (Haupt et al. 2009d).
The committee also began to hold regular AI fore-
casting contests including for storm-type classi�cation in
2008, precipitation-type classi�cation in 2009, wind power
forecasting in 2010, daily average solar energy prediction in
2014, and predicting rainfall from radar observations in
2015. These courses and contests encouraged more appli-
cations, and the �eld continued to grow. When the com-
mittee turned to the kaggle competition website (https://
www.kaggle.com/) to host the contest in 2014, the kaggle
developers won the top three spots, all using forms of
gradient-boosted regression trees. This outcome spurred
the meteorological community to begin employing these
techniques as well.

b. Current applications and methods

As we embark on the 100th anniversary of the
American Meteorological Society, the applications of
AI to the atmospheric sciences are far too numerous to
fully review. Instead, we will highlight a few areas of
applications where AI techniques have facilitated sub-
stantial advances and point the reader to sources of
further information on each of these. This section is
organized by broad application area rather than by
technique. The most successful applications have been
built on a �rm understanding of the underlying physics,
allowing the practitioner to draw from the full contin-
uum of methods as well as that knowledge of the physics
to best solve the problem.

1) WEATHER FORECASTING

Forecasting the weather, the ocean state, the ecosys-
tem conditions, and beyond is one of the focal points of
applied environmental science. There has been a huge
jump in data production as models move to higher res-
olution, new instruments are deployed, and more re-
mote sensing methods allow unprecedented levels of
detail. As access to these data grows, it becomes less
possible for a human to absorb and integrate all of the
information that it contains. Thus, it is not surprising
that data-based techniques for forecasting the weather
have been one of the most prevalent uses of AI in
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environmental science. MOS and DICast were certainly
successful demonstrations mentioned above that whet
the community�s appetite for more speci�c applications.
McGovern et al. (2017) review the types of methods that
have been applied to forecasting problems and pro-
vides examples of some recent successful applications to
high-impact weather. Gradient-boosted regression trees
proved the most accurate method for predicting storm
duration, forecasting severe wind (Lagerquist 2016), and
predicting severe hail (Gagne et al. 2017). Another ap-
plication highlighted there is classifying precipitation
using crowd-sourced data together with forecasts from
physical models (Elmore et al. 2014, 2015; Elmore and
Grams 2016). All of these examples incorporate knowl-
edge of the physics into the training design and variable
selection process. There have been a plethora of ways to
smartly use AI in weather prediction, too numerous to
review here.

Applications in sectors with very speci�c needs have
emerged. As discussed in Part II of this series of chapters
on applied meteorology in the AMS 100 Year Mono-
graph (Haupt et al. 2019b), success in those types of
applications relies on communicating with the end user and
developing methods that the user will trust. Not only is ac-
curacy needed, but also communicating an understanding
of how to use the output. One example presented in
McGovern et al. (2017) is aviation turbulence prediction.
Multiple techniques have come together to meet these
needs at the same time as advancing the underlying science
(Williams 2009; McGovern et al. 2014). Part II (Haupt et al.
2019b) describes some successful aviation systems based on
blending AI with physics. There have also been useful ap-
plications in air pollution meteorology. Gardner and Dorling
(2000) showed that an NN performed better than either
linear regression or classi�cation and regression trees.
Pelliccioni et al. (2003) coupled NNs and dispersion models
to optimize the important variables of the dispersion model,
then Pelliccioni and Tirabassi (2006) used those integrated
models on traditional observational dispersion datasets
and showed improvements upon using the dispersion
models alone.

AI has been a prevalent method to also predict ex-
treme events such as sea level and coastal effects. Hsieh
(2009) describes ways to use nonlinear principal com-
ponent analysis, based on NNs, to better analyze tidal
data. Tissot et al. (2002) and Cox et al. (2002) report
integrating NN and statistical approaches to predict
water levels in the microtidal shallow waters of the Gulf
of Mexico where atmospheric forcings often dominate.
Collins and Tissot (2015) used an NN to predict thun-
derstorms in southern Texas. Roebber et al. (2003) ap-
plied an ensemble of neural networks to the problem of
predicting/diagnosing snow density and the technique

was subsequently implemented at NOAA�s National
Centers for Environmental Prediction as part of their
national snowfall guidance. McCandless et al. (2011)
compared multiple AI methods for predicting snowfall
and found that there are a myriad of ways to improve
such forecasts. Jin et al. (2008) combined an evolution-
ary genetic algorithm with an NN to form a genetic NN
and used it for ensemble prediction of typhoon intensity
and showed that it overcame the over�tting problem.

Part II of this series (Haupt et al. 2019b) also discussed
forecasting for renewable energy and provided some
examples of how making forecasts more accurate en-
ables utilizing higher penetrations of these variable re-
newable resources. It also opens an opportunity to
advance the AI techniques to meet their goals. For in-
stance, short-range forecasting, or nowcasting, allows
the utilities to foresee ramps in the production of re-
newables; both up ramps and down ramps can disrupt
the energy system. To deal with such ramps, the utility
must be able to plan to adjust other power units in
compensation. That chapter reviews the plethora of
methods used for renewable energy and how they have
helped enable deploying more of this variable resource.

2) PROBABILISTIC FORECASTING

Another area of forecasting ripe for advances using
AI is probabilistic forecasting. The current approaches
to probabilistic forecasting involve running ensembles
of NWP simulations with perturbations to the initial
conditions, boundary conditions, physics parameteriza-
tion, or even base model dynamics in an attempt to
quantify the uncertainty. That approach requires a large
computing resource to accomplish those goals, particu-
larly to run a suf�cient number of ensemble members
to span the uncertainty space. Once again, statistical
methods have been developed to ��dress�� an ensemble
to improve its reliability (e.g., Raftery et al. 2005).

However, AI methods have emerged that go beyond
that approach to work with a single NWP run and histor-
ical data. Krasnopolsky (2013) reviews the use of NNs to
form ensembles for various applications. He compares
nonlinear approaches to linear ones and demonstrates
marked improvements using the nonlinear approaches for
several variables.

Another useful technique for generating AI ensembles
is evolutionary programming (EP). Roebber (2015c)
used EP methods to evolve ensembles, demonstrating
that smaller temperature RMSEs and higher Brier skill
scores could be generated than with a 21-member oper-
ational ensemble. Roebber (2015b) then showed that this
method was also successful for minimum temperature
forecasts, and then he demonstrated further improve-
ments for adaptive methods (Roebber 2015a).
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Composing analog ensembles (AnEn) has been
shown to be as accurate and reliable as running a sub-
stantial number of ensemble members (Delle Monache
et al. 2011, 2013). This method utilizes a single high-
quality model simulation that has corresponding ob-
servations. For each forecast, a search is made for the
closest historical forecasts. The matching observations to
those analogous forecasts then form an ensemble. This
method has already been applied to forecasting wind
(Alessandrini et al. 2015a; Haupt and Delle Monache
2014), solar power (Alessandrini et al. 2015b; Cervone
et al. 2017), and air quality (Djalalova et al. 2015), among
others. Current research is showing how this method can
also be applied in gridded forecasting (Sperati et al.
2017). This is an example of how novel AI applications
can reduce the need for large computational resources,
which can allow running higher-resolution NWP more
frequently while still producing a probabilistic forecast.

3) CLIMATE APPLICATIONS

In the longer term, understanding, predicting, and
interpreting the stressors for climate is an important
application for AI. AI can accomplish some of the tasks
that have been needed to go the next step in interpreting
the results of global climate models (GCMs). Pasini
(2009) describes how neural networks can be effective at
downscaling data from GCMs to more local scales by
training to appropriate data.

Hsieh (2009) and collaborators began exploring non-
linear principal component analysis (NLPCA), demon-
strating its applicability on chaotic systems and then on
various problems such as simulating sea surface tem-
perature and sea level pressure. This method �ts a
nonlinear curve rather than a straight line when forming
the principal components, thus requiring a method such
as an NN to accomplish the �t. It can be used to dem-
onstrate the major modes of climate variability, in-
cluding the Atlantic Oscillation, Paci�c�North America
teleconnection, El Niño�Southern Oscillation, quasi-
biennial oscillation, Madden�Julian oscillation, and
more as reviewed by Hsieh (2009) and discussed in de-
tail in the papers referenced therein.

Various AI methods have been used to study pre-
dictability because they more easily generalize to the
nonlinear realm. The Lorenz three-dimensional attrac-
tor (Lorenz 1963) is often the �rst dif�cult nonlinear
dynamical system tested, and it has been modeled using
various AI techniques. Monahan (2000) demonstrated
that NLPCA can capture the general map of the Lorenz
attractor. Cannon (2006) showed the ef�cacy of using
multivariate NNs to capture intersite correlations for
that same Lorenz attractor. Haupt (2006) used a genetic
algorithm to �t a nonlinear matrix of Markov process

coef�cients to the Lorenz system and was able to cap-
ture the general shape of the butter�y attractor. Pasini
(2009) tested local predictability of the Lorenz attractor
using NNs by analyzing frequency distributions of dis-
tance errors. As expected, the quasi-bimodal distribu-
tions are sensitive to the closeness to transition from one
wing of the butter�y to the other.

One can also use AI to study long-term climate based
on measured data. Pasini et al. (2017) built a NN model
of climate over the past 160 years using both anthro-
pogenic and natural environmental variables that re-
sulted in a high agreement with observations. This
allowed them to them �x certain variables to determine
changes in the model under differing assumptions.
When anthropogenic forcing was set to preindustrial
levels, the results deviated substantially from those ob-
served, indicating that those anthropogenic forcings
were associated with the changes in temperature that
have been observed. This process also allowed them to
analyze the natural variability, look for associations, and
study the uncertainties in the analysis.

Finally, we note that various applications need smartly
postprocessed climate information and AI methods can
greatly aid that process. For example, the energy industry
wishes to estimate projected changes in the wind and
solar resource under a changing climate. To address this
issue over the United States, Haupt et al. (2016) lever-
aged current reanalysis data as well as model output from
regional climate models and a series of AI and statistical
methods to create resource estimates of current and
projected future climate that contain similar patterns. To
do that, they computed self-organizing maps (SOMs) of
the current climate reanalyses, then projected the future
climate simulations onto those same SOMs. After cor-
recting for changes in temperature and other variables, a
future climate database was generated through Monte
Carlo sampling of the patterns representative of the
speci�c time of year. That database allows direct com-
parison with the current climate data. Regional and sea-
sonal variability was evident in the projected changes in
the wind and solar resource.

4) OPTIMIZATION

A major class of problems for which AI applications
have demonstrated progress is in optimization. In opti-
mization problems, we often know a �nal state or a se-
ries of boundary conditions, and want to �nd a solution
that �ts those conditions. Quite a few problems can be
cast in terms of optimization. To do that, one must de-
�ne an objective, or cost function, that is to be mini-
mized (or maximized).

Here we focus on genetic algorithms (GAs) as an
example method that is robust at �nding global minima
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of a cost surface without the necessity of being able to take
derivatives, as required for some of the standard gradient-
based methods. GAs can work with extremely complex
cost surfaces and simultaneously search a wide sample of
the cost surface for the best solution; therefore, they are
less likely to become stuck in local minima. John Holland
�rst introduced GAs in the 1960s and 1970s (Holland
1975), but they were popularized by his student David
Goldberg (Goldberg 1989). Quite a few �avors of genetic
algorithms have been developed since that time. Although
they were originally coded as binary GAs, the more ver-
satile continuous or real-valued GAs became more
popular. An advantage of the GA is that one can simul-
taneously search for binary, continuous, and integer-
valued parameters in a single problem (Haupt et al. 2011).

The GA mimics a combination of cellular mitosis and
evolution to reach solutions that �t the prescribed con-
ditions. They begin with a randomly constructed pop-
ulation of chromosomes, which are strings of encoded
variables represented in the cost function. Each chro-
mosome is fed to the cost function for evaluation, and
the cost ranked. The best, or ��most �t,�� chromosomes
survive to the next generation while the rest die off.
Those �t chromosomes form the mating pool. The
operation of mating combines information from two
chromosomes to produce offspring chromosomes. The
mutation operation causes random changes in some
chromosomes. These two operations of mating and
mutation allow exploration and exploitation of the cost
surface in an iterative fashion, allowing evolution to-
ward the global optimum of the cost function. This

process is illustrated in Fig. 24-9. More details can
be found in Haupt and Haupt (2004), among other
references.

GAs have been applied to a wide range of problems.
They have been used to solve inverse problems, to de-
sign optimal solutions, to demonstrate a dynamic as-
similation method (Haupt et al. 2009b, 2013), and even
to solve nonlinear partial differential equations (Haupt
2006). One series of problems involved estimating the
source term of an unspeci�ed pollution source. When
one measures levels of air contamination, it is often
desirable to be able to apportion that contamination to
its sources. When there is insuf�cient information to
measure percentages of contaminant, one can combine
information on wind direction and speed to estimate
how dispersion may have occurred from various sources
in the region. Genetic algorithms have been shown to be
successful at such estimations (Haupt 2005, 2007; Haupt
et al. 2006, 2009a; Allen et al. 2007a,b; Cervone and
Franzese 2011). Defense agencies use such techniques to
identify the location and release amounts for potentially
unknown releases of hazardous contaminants and the
GA has proven to be competitive with other methods,
including Bayesian and variational methods (Bieringer
et al. 2017; Petrozziello et al. 2016). These methods have
also been used to estimate the amount of volcanic ash
emitted (Schmehl et al. 2012). Kuroki et al. (2010) used
a genetic algorithm combined with an expert system to
determine best paths to guide an unmanned aerial ve-
hicle to sample a contaminant in order to back-calculate
the source parameters.

FIG. 24-9. Flowchart of a typical genetic algorithm.
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Other optimization problems have also found evolu-
tionary strategies, such as GAs, to be useful. Mulligan and
Brown (1998) used a GA to calibrate a water quality model
by estimating optimal parameters. They showed that the
GA works better than more traditional techniques plus
that the GA has the added capability to provide in-
formation about the search space, enabling them to de-
velop con�dence regions and parameter correlations.
Other water quality studies use GAs to determine �ow
routing parameters (Mohan and Loucks 1995), size distri-
bution networks (Simpson et al. 1994), solve groundwater
management problems (McKinney and Lin 1993; Rogers
and Dowla 1994; Ritzel et al. 1994), and calibrate param-
eters for an activated sludge system (Kim et al. 2002).

Peralta and collaborators have combined GAs with
neural networks and simulated annealing techniques to
solve problems with managing groundwater supplies. Aly
and Peralta (1999a) �t parameters of a model to optimize
pumping locations and schedules for groundwater treat-
ment with GAs. In a next step, they combined an NN with
the GA to model the complex response functions (Aly
and Peralta 1999b). Then, Shieh and Peralta (1997) com-
bined simulated annealing with GAs to maximize ef�-
ciency. Fayad (2001) together with Peralta looked at
managing surface and groundwater supplies using a
Pareto GA with a fuzzy-penalty function to sort optimal so-
lutions, while using an NN to model the complex aquifer
systems in the groundwater system responses. Chan
Hilton and Culver (2000) used GAs to optimize ground-
water remediation design.

5) EMULATING PROCESSES

Many environmental processes are extremely com-
plex, and our knowledge of precisely how they work is
somewhat limited (e.g., cloud physics). Others can be
modeled but are expensive to implement computation-
ally (e.g., radiative transfer). An alternative is to emu-
late processes with AI models. Krasnopolsky (2009,
2013) has been quite proli�c in developing these
methods, which are reviewed in those two overview
works. Most modern forecast models of physical pro-
cesses are based on partial differential equations derived
from �rst principles plus a series of physics parameter-
izations. Those physics parameterizations typically de-
scribe processes that are only partially understood and
are often a combination of known physics and empirical
coef�cients derived from data. So a question is whether
an AI technique can effectively model such processes,
forming a hybrid model. A �rst problem treated by
Krasnopolsky and collaborators was emulating the
longwave radiation (LWR) component of a GCM, spe-
ci�cally NCAR�s Community Atmospheric Model
(CAM). They performed this emulation using data

produced by the original LWR scheme in CAM, which
is a computational bottleneck, by training an NN with 50
hidden nodes. The resulting emulation produced results
that are barely distinguishable from the original CAM
runs. Similar accomplishments were possible for short-
wave radiation (SWR) and in other climate models.
When both LWR and SWR schemes were emulated
with NNs, the run time sped up by a factor of 12 while
preserving the original accuracy.

Similar advances have been accomplished for emu-
lating nonlinear interactions in wind wave models
(Krasnopolsky 2009) and for cloud parameterizations
(Krasnopolsky et al. 2013). A model of the surface layer
of the atmospheric boundary layer was constructed us-
ing NNs by Pelliccioni et al. (1999). Note that this ap-
proach could be very promising for future applications
but does require a series of training data that is suf�-
ciently representative to cover all possible observations.

6) IMAGE PROCESSING

Lakshmanan (2009) reviews methods for automating
spatial analysis. He analyzes the features that make spa-
tial analysis important, such as the inherent correlations
between neighboring points. This work recognizes that
each work �ow includes essential processes, or elements
such as �ltering, edge �nding, segmentation, feature ex-
traction, and classi�cation. Some of these processes, such
as the classi�cation element, are quite amenable to AI
techniques, such as NNs. Putting all of these processes
together constitutes a machine learning application.

Krasnopolsky (2009) describes methods to extract
information from satellite remote sensing in the ocean
environment. He discusses how to use NNs for mapping
processes, then how to apply NNs for both emulating the
forward models as well is for solving the inverse prob-
lems that constitute retrievals. Young (2009) provides a
practical application example. These merely scratch the
surface of using traditional AI for image processing and
the reader is referred to the extensive literature on
the topic.

The rise of deep learning is revolutionizing image
processing. ��Deep learning�� refers to neural networks
with many more hidden layers than are traditionally
used and to the corresponding techniques to take ad-
vantage of them. This inherently image-based method is
�nding its way into atmospheric science problems.
Methods such as convolutional neural networks, gen-
erative adversarial networks, recurrent neural net-
works, and more are currently being applied to problems
in image processing and identi�cation. Applications
of Deep Learning in the atmospheric sciences have
begun, including identifying, predicting, and interpret-
ing hail processes (Gagne et al. 2018, 2019, manuscript
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submitted to Mon. Wea. Rev.), creating radar-like pre-
cipitation analyses for aviation applications (Veillette
et al. 2018), identifying atmospheric rivers in climate
simulations (Mahesh et al. 2018), improving the use of
satellite data for model initialization (Lee et al. 2018),
and climate downscaling (Vandal and Ganguly 2018),
among others.

c. Prospects for future advances

Because AI is a rapidly evolving �eld, it is dif�cult to
predict the advances in the next decade and beyond. The
current topics of research are expected to continue to
advance with new techniques emerging. Whole new
paradigms may arise that replace how we think about
arti�cial intelligence and machine learning. However, let
us look at some of what we might see given the criticisms
of using these techniques as well as recent advances.

One of the primary criticisms of AI in the applications
community is the perception of the physicists that many
of the methods are a ��black box.�� That is changing as
AI practitioners focus more on interpretability. Some
methods, such as decision trees, can be readily in-
terpreted; for others, including neural networks, one
must be careful not to interpret the weights as having
physical meaning. Now many methods assist the user in
understanding variable importance, which may lead to a
deeper understanding of the physics. But many of the
problems where AI is applied are inherently nonlinear,
and it is dif�cult to tease out the relationships in
meaningful ways. In these cases, the practitioner may
need to be clever to design numerical experiments to
interpret the results. One recent example of how AI is
being used to test the impact of speci�c variables on the
outcome and attribute the result to the most important
variables is by Pasini et al. (2017). This work is an ex-
ample of using NNs to determine the most important
variables contributing to the observed patterns of long-
term temperature changes. They argue that using these
methods, they can build in more independence to their
attribution studies than is possible using global climate
models. As interpretability becomes a priority, the AI
community, particularly those who seek applications in
the environmental sciences, are helping to develop and
test methods to learn physics from the applications of AI
methods, including deep learning (Gagne et al. 2019,
manuscript submitted to Mon. Wea. Rev.).

Advancing forecasting has been an important appli-
cation for AI, yet there is much left to be done. There
have been promising results in using regime dependence
to classify conditions and then training AI methods
separately for the regimes. This approach showed po-
tential for temperature forecasts (Greybush et al. 2008),
which used principal component analysis to distinguish

weather regimes. For forecasting solar irradiance
McCandless et al. (2016a,b) used k-means clustering to
separate the cloud regimes, then trained a NN for each
regime separately, showing improvement over a single
NN model when suf�cient training data were available.
Regime dependence can be determined either implicitly
by a technique (such as using tree-based methods, which
essentially categorizes in the �rst splits of the tree) or by
explicitly applying a categorization method (such as a
clustering method) and training each cluster separately
with the preferred AI method. In addition, numerical
weather prediction can be further combined with AI to
emulate processes as discussed above, thus speeding the
calculations and, perhaps, even improving upon empir-
ical models of some of those processes.

Another direction to advance forecasting is likely to
come from embracing gridded methods, which allow
object identi�cation and classi�cation. Such methods
could allow identifying objects and translating, stretch-
ing, or morphing them according to the behavior of
similar objects in historical data. Like many applications
in the atmospheric sciences, this is likely to grow from
the statistical methods. Assessment methods to compare
objects that use these techniques have already been
developed and are pushing advances in comparing
model output to observations by including these object-
based methods (Gilleland 2017).

The biggest development in the greater AI commu-
nity in the past decade has been applications of deep
learning. The growth of data stored on digital computers
has allowed suf�cient data to train all the weights re-
quired for such deep networks. These approaches could
advance solutions to some of the problems mentioned
above in new ways. They intrinsically will identify re-
gimes and take a fully gridded approach to forecasting.
As we write this monograph, the AI community is in the
��irrational exuberance�� stage of infatuation with such
methods. Although some level of disappointment in not
meeting all promises currently offered is inevitable, we
expect that these methods have the potential to advance
the �eld into a new era of being able to interpret and
better utilize the large amounts of data currently being
generated in new ways for new uses.

In 2015, the AI world was astounded when AlphaGo, a
deep-learning system, beat a world champion human Go
player (Silver et al. 2016, 2017). Go had been considered
one of the hardest problems for AI to solve. However, by
combining supervised learning of value networks using
human experts with reinforcement learning of policy
networks as well as the value networks through playing
games, the AlphaGo system beat other programs 99.8%
of the time as well as the European champion by 5 games
to 0. It is noteworthy that supervised learning leveraging
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human knowledge was a key component to its success.
In much the same way, in environmental science, many
of the advances cited above are due to humans with
knowledge of the physical systems cleverly con�guring
AI methods to make the most innovative progress.

As we move toward the next generation of computing,
paradigms may change. It is yet unknown whether
continuing to increase the number of processors (many
core approach) will be the architecture of the future, or
whether graphics processing units (GPUs) will dominate
the next computers. New paradigms are likely to de-
velop that will facilitate new techniques. Deep learning
may overwhelm the methods that have gone before. Or
perhaps those other methods may �nd a permanent
place in our arsenal of techniques. Moreover, whatever
evolves, it is likely that these methods will enhance our
understanding of the environment, advance our ability
to model and predict it, and motivate many existing and
new applications in the environmental sciences.

6. Summary and concluding thoughts

This series of chapters on 100 Years of Progress in
Applied Meteorology has just scratched the surface
of the many applications accomplished in our �eld,
let alone those that are possible. The �rst part of this
series (Haupt et al. 2019a) dealt with some of the oldest
and most basic applications�those in weather modi�-
cation, applications to aviation, and security applica-
tions. We saw that although those applications had
started quite some time ago, they continue to grow. In
addition, research in the applied realm feeds back into
enhancing our understanding of the underlying physics
and dynamics. The second part (Haupt et al. 2019b),
together with the �rst section of this part, has empha-
sized those applications that directly deal with providing
for a growing population by studying urban meteorol-
ogy, energy applications, air pollution meteorology,
applications to surface transportation, and applications
that enable agriculture and food security. We saw that
decision-support systems can aid these applications.
Although many of these applications have been long-
standing, they also continue to evolve. We need to
provide our knowledge plus weather and climate in-
formation not only to help improve human interaction in
these areas, but also to show how these human-made
problems impact the environment in very visible ways.
Thus, it is critical that we continue to advance the sci-
ence for both points of view so that science can help
provide for the growing population and also help us to
understand how that burgeoning population impacts the
environment that we depend on for the resources to
survive and provide a quality lifestyle for all humankind.

The remainder of this chapter has emphasized some
applications that are evolving very rapidly. Section 3
described the development of space weather models,
which are still in their early stages. The dif�culty in
observing these phenomena and integrating those ob-
servations into the models makes it very dif�cult to ad-
vance the state of the science. However, advances are
coming more rapidly now with increased access to space
observation systems.

In section 4, we saw that although wildland �re mod-
eling in some sense has been ongoing, the use of fully
coupled atmosphere�wildland �re models is relatively
new. It is only in these coupled systems that the heat,
moisture, and other impacts of the �re feed back to the
atmosphere, allowing modeling of some of the impor-
tant phenomena, including whirls, spotting, and other
aspects of �re behavior as well as the development of
pyrocumulus and pyrocumulonimbus.

The �nal section treats applications of arti�cial in-
telligence to problems in the environmental sciences.
Although ancient humans codi�ed their observations into
knowledge, it is only with the advent of modern com-
puters that we can learn directly from data. We discussed
the many applications and the movement toward newer
AI methods that could revolutionize science.

The observational abilities of early humans focused on
identifying particular elements, such as the earth�air�
�re�water model of Empedocles in ancient Rome. Our
current approach to science, taking systematic approaches
to building �rst-principle models that are based on ob-
servations, is also evolving as we learn directly from the
observations and discover the holes in our knowledge.

Many of the applications described in this series of
chapters have resulted in some type of decision-support
system that enables better planning by users of the in-
formation, whether it be better managing wildland �res,
planning how to integrate the variable renewable energy
resources into the electric grid, or planning when to
fertilize and irrigate crops. These decision-support sys-
tems often include both the �rst-principle models and
AI models, working together to optimize the informa-
tion provided to the decision makers. As we discussed in
Part II (Haupt et al. 2019b), when building those sys-
tems, it is perhaps more effective to use an information
value chain approach in order to hear from the end users
what they really need before building a system to mea-
sure, model, interpret, and provide the weather and
climate information to that user. We have also seen in
this series of chapters that to build such applications
requires more research, which in turn feeds our un-
derstanding of the systems that we model.

In Part I (Haupt et al. 2019a) of this applied meteo-
rology series we began with a quote from Walter Orr
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Roberts, �rst director of NCAR, with which we wish
also to end. He said, ��I have a very strong feeling that
science exists to serve human betterment and improve
human welfare�� (NCAR 2018). We have certainly made
huge strides in this direction, but there are many more to
make. Future generations will have a plethora of op-
portunities to contribute by using meteorology to make
the world a better place.
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