New records and new taxa of Permian brachiopods from the Khuff Formation, Midhnab Member, central Saudi Arabia

Lucia Angiolini, Denis Vaslet, Yves-Michel Le Nindre and Miriam Zarbo

ABSTRACT

Brachiopods are described for the first time from outcrops of the lower part of the Midhnab Member of the Khuff Formation in central Saudi Arabia. The very rare fauna discovered includes Kotlaia sp. ind. of the order Orthida and Omanilasma husseinii n. gen. n. sp. of the order Terebratulida. Besides this new taxon, another new species Omanilasma desertica n. gen. n. sp. from the Khuff Formation of Interior Oman is here erected. The brachiopods were collected from an open-marine horizon and are associated with nautiloids, bactritids, bivalves, foraminifers, algae, and ostracods. A probable Late Permian age is assigned to the lower part of the Midhnab Member based on foraminifers. The brachiopods are compared to similar faunas from the Middle Permian Khuff Formation of Interior Oman, Amb Formation of Salt Range (Pakistan) and Rat Buri Limestone of Southeast Thailand.

INTRODUCTION

The Permian-Triassic Khuff Formation (Steineke and Bramkamp, 1952; Steineke et al., 1958; Powers, 1968; Vaslet et al., 2005) crops out in central Saudi Arabia along a N-S belt that is some 1,200 km in length (Figure 1). The formation rests everywhere unconformably (Pre-Khuff Unconformity, PKU) over Lower Palaeozoic or Proterozoic shield rocks (Powers et al., 1966; Powers, 1968). The Khuff Formation is conformably overlain by the clayey and evaporitic Lower Triassic ('Scythian') Sudair Shale Formation. Le Nindre et al. (1990a, b) published the first synthesis of field work and extensive systematic geological mapping, conducted in the 1980s by the Saudi Arabian Deputy Ministry of Mineral Resources (DMMR, now the Saudi Geological Survey - SGS) and the French geological survey (BRGM), including lithostratigraphy, biostratigraphy and palaeoenvironment reconstructions. More recent compilations from central Saudi Arabia, were interpreted in terms of sequence stratigraphy by Alsharhan and Nairn (1995), Al-Aswad (1997) and Sharland et al. (2001, 2004).

A complete revision, including new field acquisitions, and compilation of local studies for oil exploration (Senalp and Al-Duaiji, 1995, 2001), was prepared by Vaslet et al. (2005). It includes a reassessment of the biostratigraphy based on foraminifers and algae (Vachard et al., 2002, 2003, 2005), ostracods (Crasquin-Soleau et al., 2004, 2006) and palaeoflora (Broutin et al., 2002; Berthelin et al., 2006). Vaslet et al. (2005) divided the central Saudi Arabian outcrops of the Khuff Formation (some 200 m thick) into five members, from oldest to youngest: Ash Shiqqah, Huqayl, Duhaysan, Midhnab and Khartam members (Figure 2).

Up to now few records of Permian brachiopods have been reported from Saudi Arabia and they consist mainly in the mention of brachiopod debris in the Khuff Formation in the Al Faydah quadrangle (Vaslet et al., 1985, p. 16) (Figure 1). In a compilation made by Le Nindre et al. (1990b, p. 53) brachiopod fragments have been recorded from several horizons within the upper Huqayl, Duhaysan, Midhnab and Khartam members of the Khuff Formation. Al-Aswad (1997, pages 316 and 318) also reported brachiopod fragments from the lower part of the Midhnab Member and from the lower part of the Khartam Member. These scattered findings in Saudi Arabia make a striking contrast with the rich brachiopod faunas described from the Khuff Formation of the Al Huqf and Jabal Gharif regions of Interior Oman by Angiolini and Bucher (1999) and Angiolini et al. (1998, 2001, 2003, 2004).

The brachiopod fauna that is examined here was discovered in the Khuff Formation of Saudi Arabia, during a field trip led by D. Vaslet and Y.-M. Le Nindre in 2002. The fossiliferous site is located in the Buraydah quadrangle (Vaslet et al., 1985) at 26°07’01”N, 44°02’26”E, 5 km to the north of Midhnab.
The brachiopods occur in the lowest part of the subunit 2 of the Midhnab Member (Vaslet et al., 2005), in bluish bioclastic platy limestones rich in marine fauna, alternating with yellow clayey limestones (Figures 1 and 2). This unit corresponds to the maximum flooding interval (MFI) in central Saudi Arabia in the Late Permian times (Le Nindre et al., 1990b; Sharland et al., 2001, 2004; Vaslet et al., 2005).
The aim of this paper is to describe in a systematic manner the brachiopod fauna recently discovered in the lower part of the Midhnab Member of the Khuff Formation in central Saudi Arabia, and to assess their biostratigraphical, palaeoecological and palaeogeographical implications.

LITHOSTRATIGRAPHY, BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE KHUFF FORMATION

The Ash Shiqqah Member (nearly equivalent to the obsolete Unayzah member of Delfour et al., 1982) of the Khuff Formation consists of terrigenous sediments with secondary clayey dolostone, and local evaporites in the upper part of the member. The palaeoenvironments range from transitional to...
continental and supratidal. The Unayzah Flora (Hill and El-Khayal, 1983; El-Khayal and Wagner, 1985; Broutin et al., 1995), formerly described in the lower part of the Khuff Formation, is now attributed to the underlying Unayzah Formation (Vaslet et al., 2005). Rare benthic smaller foraminifers occur locally in the upper part of the Ash Shiqqah Member, indicating a possible Middle Permian Capitanian age for this lowest member of the Khuff Formation (Vachard et al., 2002; Vaslet et al., 2005).

The Huqayl Member is subdivided into two sequential units containing calcarenite, gypsiferous claystone, dolostone, and solution breccias related to subsurface evaporites. This marine transgressive unit has been tentatively assigned a Late Permian Wuchiapingian (Dzhulfian) age according to its benthic foraminifers content (Vachard et al., 2003, 2005; Vaslet et al., 2005).

The Duhaysan Member is the first true calcareous subtidal to littoral unit of the Khuff Formation (Le Nindre et al., 1990b), and interpreted as the transgressive unit of the overlying Midhnab Member (Vaslet et al., 2005). The Duhaysan Member has yielded benthic foraminifers, nautiloids, gastropods, and abundant bactritids. A Late Permian Wuchiapingian to Changhsingian age has been tentatively assigned to the Duhaysan Member (Vaslet et al., 2003, 2005).

The Midhnab Member displays a succession ranging from marine fossiliferous limestones at the base, toward gypsiferous and dolomitic rocks deposited in restricted palaeoenvironments, in the upper part. The lower part of the Midhnab Member has been dated by benthic foraminifers as Late Permian Changhsingian by Vachard et al. (2003, 2005). However, a conodont specimen recently discovered in the lower part of the Midhnab Member indicates a late Capitanian age (Nicora et al., 2006). Moreover, ongoing isotope analyses on Midhnab brachiopod shells (done by the first author in cooperation with M.H. Stephenson of BGS, Nottingham and D.P.F. Darbyshire and M.J. Leng of NERC Isotope Geosciences Laboratory, Nottingham) suggest a late Capitanian or early Wuchiapingian age. Locally, in northern central Saudi Arabia, the topmost continental facies of Midhnab Member include lacustrine limestone, sandstone channels and claystone in meandering river systems and swamps. These facies contain drifted woods and plant remains (Hill and El-Khayal, 1983; Vaslet et al., 1985; Le Nindre et al., 1990b; Vaslet et al., 2005). Recent descriptions of the Midhnab Flora indicate a Late Permian mixed flora including Cathaysian, Euramerian and Gondwanan plant remains (Broutin et al., 1995, 2002; Berthelin, 2002, 2006).

The Khartam Member, the uppermost mainly carbonate unit of the Khuff Formation, is subdivided into two marine units characterised by littoral to tidal and intertidal palaeoenvironments. The Lower Khartam Member consists of claystone, dolostone and sandstone, deposited in supratidal to tidal palaeoenvironments. The Upper Khartam Member is an oolitic, peloidal and bioclastic limestone locally dolomitized, deposited in littoral to tidal and intertidal palaeoenvironments. The Lower Khartam Member yielded rare benthic foraminifers possibly dated as latest Permian (Changhsingian) by Vachard et al. (2003, 2005). The Upper Khartam Member, consisting principally of reworked Dasycladacean algae ooids, is characterised by the appearance of Spirorbis phlyctaena Brönniman and Zaninetti, a serpulid that is particularly abundant in the Early Triassic rocks in Neo-Tethyan areas.

According to Vaslet et al. (2005), the Khuff Formation consists of four main Depositional Sequences (DS PKh, DS PKm, DS PKk and DS TrS, see Figure 2). The last Depositional Sequence starts with the Khuff Formation and continues in the overlying Sudair Shale Formation. The DS PKh (named after Permian-Khuff-Huqayl) includes the Ash Shiqqah and the Huqayl members. Its basal Sequence Boundary (SB) corresponds to the Pre-Khuff Unconformity (PKU) and it contains the first Late Permian flooding event over central Saudi Arabian outcrop areas (MFI PKh). This flooding interval is located in the basal part of the Huqayl Member and is followed by the regressive evaporitic palaeoenvironments of the Huqayl Member (Le Nindre et al., 1990a, b; Vaslet et al., 2005).

The DS PKm (named after Permian-Khuff-Midhnab) starts with the deposition of subtidal to littoral Duhaysan Member above an erosive surface at the top of DS PKh, and ends with the regressive supratidal to continental deposits of the upper part of the Midhnab Member. A maximum flooding surface (MFS PKm) is clearly located in the outcrops at the base of the Midhnab Member; it is characterised by abundant open-marine fauna including cephalopods and brachiopods (Chirat et al., 2006; Vaslet et al., 2005).
The DS PKk corresponds to the Lower Khartam Member (Permian-Khuff-Khartam), and represents the terminal Late Permian Depositional Sequence in the outcrops of central Saudi Arabia. The basal SB is marked by a return to marine subtidal conditions after the continental break at the end of DS PKm. It contains a maximum flooding interval (MFI PKk) that is manifested by marine fauna, including abundant Permian ostracods (Crasquin-Soleau et al., 2004, 2005), bactritids and locally cephalopods (Chirat et al., 2006).

The DS TrS (named after the Sudair Shale Formation) starts with the littoral, tidal to intertidal deposits of the Early Triassic Upper Khartam Member of the Khuff Formation, and ends with the closed-basin, clayey to evaporitic rocks of the Lower Triassic Sudair Shale Formation (Le Nindre et al., 1990b; Vaslet et al., 2005).

BRACHIOPOD FAUNA

The brachiopod fauna collected at the base of the Midhnab Member consists of 13 specimens belonging to two species of two different orders: *Kotlaia* sp. ind. of the order Orthida and *Omanilasma husseinii* n. gen n. sp. of the order Terebratulida. It is worth noting that both taxa also occur in the Wordian Khuff Formation of Interior Oman (Angiolini and Bucher, 1999; Angiolini et al., 2003, 2004), which however is characterised by a much more diversified brachiopod fauna comprising more than 2,000 specimens collected in outcrops and belonging to 30 species. The biostratigraphic analysis of the brachiopods of Interior Oman led to the establishment of three assemblage zones: (1) the *Neochonetes (Nongtaia) arabicus-Celebetes manarollai* Biozone; (2) the *Acritosisia* sp. and *Globosobucina* sp. Biozone; and (3) the *Grandaurispina ghabaensis - Kozlowskia tescorum* Biozone. The biozones are of Wordian age as supported by the associated conodonts and ammonoids (Angiolini et al., 2003, 2004). The two taxa that are shared by the Khuff Formation, in Oman and Saudi Arabia, do not conclusively resolve the age of the Midhnab Member. This is because *Kotlaia* is a genus spanning the Middle to Late Permian time interval and *Omanilasma* n. gen. is presently known only from Oman and Saudi Arabia. In fact, foraminifers date the Midhnab Member as Late Permian (Vachard et al., 2005).

The lithology and faunal composition of the shell beds in the lower part of the Midhnab Member is also strongly reminiscent of the bioclastic beds of the Khuff Formation in Oman. These tempestites comprise abundant mixed autochthonous and allochthonous marine fauna dominated by scaphopods, algae, crinoids, foraminifers, bryozoans, ostracods, gastropods, nautiloids, ammonoids, brachiopods, and bivalves. The latter two groups show convexity upward. Elongated forms such as scaphopods, gastropods and cephalopods show the long axis isorriented towards the palaeocurrents.

Kotlaia sp. ind. and *Omanilasma husseinii* n. gen n. sp. are pedicle-attached brachiopod taxa in which substrate relationships are governed by the pedicle system. They are generally considered to be ubiquitous as the pedicle can be modified for several life-styles depending on the energy of the environment. The shape and size of the Saudi Arabian Khuff brachiopod shells and the position of the foramen suggest that they are close to recent articulated generalist species. These species can be found in highly variable substrates and energy regimes, with the highest population densities occurring around the shoreline (Richardson in Williams et al., 1997).

Angiolini (2001) has shown the strong palaeobiogeographical affinity of the Middle Permian brachiopod fauna of Interior Oman, the Salt Range in Pakistan (Amb Formation) and southeastern Thailand (Ratburi Limestone). All these faunal stations belonged to the Sibumasu Province, stretching during Middle Permian times, mainly along the southern shore of the Neo-Tethys Ocean. The two taxa found in the Midhnab Member are Gondwanan genera, which also occur in the Middle and Upper Permian succession of the Salt Range; however they represent an insufficient record to establish palaeobiogeographical ties.

SYSTEMATIC DESCRIPTION (L. Angiolini and M. Zarbo)

All described specimens are housed in the Palaeontological Museum of the Dipartimento di Scienze della Terra “A. Desio”, University of Milano, Italy. Specimens are registered with the prefix MPUM
Plate 1

1.1: *Kotlaia* sp. ind., dorsal valve, MPUM9369 (KH0211-5); from the Khuff Formation, Midhnab Member of Saudi Arabia, Buraydah quadrangle, 26°07′01″N, 44°02′26″E.

1.2–1.5: *Omanilasma husseinii* n. gen. n. sp., articulated specimen, holotype MPUM9370 (AO45-16), ventral, dorsal, lateral, anterior views; from bed AO45, section K4, Khuff Formation, Member 3 of Interior Oman.

1.6: *Omanilasma husseinii* n. gen. n. sp., articulated specimen, MPUM9371 (KH0211-7), dorsal view, from the Khuff Formation, Midhnab Member of Saudi Arabia, Buraydah quadrangle, 26°07′01″N, 44°02′26″E.

1.7–1.8: *Omanilasma husseinii* n. gen. n. sp., articulated specimen, MPUM9372 (KH0211-9), ventral and dorsal views, from the Khuff Formation, Midhnab Member of Saudi Arabia, Buraydah quadrangle, 26°07′01″N, 44°02′26″E.

1.9, 1.10: *Omanilasma husseinii* n. gen. n. sp., articulated specimen, MPUM9373 (KH0211-15), ventral and dorsal views, from the Khuff Formation, Midhnab Member of Saudi Arabia, Buraydah quadrangle, 26°07′01″N, 44°02′26″E.

1.11, 1.12: *Omanilasma desertica* n. gen. n. sp., articulated specimen MPUM9378 (AO210-163) ventral and dorsal views; from bed AO/OL210, section K7, Khuff Formation, Member 3 of Interior Oman.

1.13, 1.14, 1.15: *Omanilasma desertica* n. gen. n. sp., articulated specimen, MPUM9370 (AO210-98), ventral, dorsal and anterior views; from bed AO/OL210, section K7, Khuff Formation, Member 3 of Interior Oman.
followed by a four-digit number and by the field number within brackets. This study follows the classification of Williams and Harper in Williams et al. (2000) for the orthids and the classification of Muir Wood et al. in Williams et al. (1965) for the terebratulids.

Subphylum: Rynchonelliformea Williams et al., 1996
Class: Rynchonellata Williams et al., 1996
Order: Orthida Schuchert and Cooper, 1932
Suborder: Dalmanellidina Moore, 1952
Superfamily: Enteletoidea Waagen, 1884
Family: Schizophoriidae Schuchert & LeVene, 1929
Genus: Kotlaia Grant, 1993

Type-species: Kotlaia capillosa Grant, 1993 from the Upper Permian Chhidru Formation of Kishor Range, Pakistan.

Remarks: Among the Schizophoriidae, the Middle Permian genus Kotlaia Grant, 1993 is very close both to Orthotichia Hall & Clarke, 1892 and to Acosarina Cooper & Grant, 1969. Kotlaia differs from the Carboniferous Orthotichia by its sulcate to emarginate anterior commissure, divergent dental plates, ventral muscle field bisected by low median septum extending up to 2/3 of the valve length and short but strongly divergent brachiophore plates. Both genera are ornamented by tubular costellae on both valves. The Lower Permian genus Acosarina holds intermediate features between Orthotichia and Kotlaia suggesting an evolutive trend from the Carboniferous Orthotichia, through the intermediate Lower Permian genus Acosarina, to the Middle Permian Kotlaia. The genus Kotlaia has been reported up to now from the Middle Permian of Chios (Greece), Middle Permian of Oman and Late Permian of Salt Range (Angiolini et al., 2005).

Kotlaia sp. ind. (Plate 1.1)

Material: One articulated specimen MPUM9368 (KH0211-16); 1 dorsal valve MPUM9369 (KH0211-5).

Figured material: One dorsal valve: MPUM9369 (KH0211-5).

Description: Small-sized biconvex shells, with slightly transverse outline. Maximum width 6.6 mm, corresponding length 5.7 mm. Anterior commissure rectimarginate. Ornamentation of both valves with thin tubular costellae numbering 20 per 5 mm. Interior of ventral valve with low median septum.

Discussion: Notwithstanding the small dimensions, the few available specimens show some of the distinctive features of the Middle-Upper Permian genus Kotlaia.

Order: Terebratulida Waagen, 1883
Suborder: Terebratulidina Waagen, 1883
Superfamily: Dielasmatoidea Schuchert, 1913
Family: Dielasmatidae Schuchert, 1913
Subfamily: Dielasmatinae Schuchert, 1913
Genus: Omanilasma n. gen.

Type-species: Omanilasma husseinii n. sp. from the Wordian (Middle Permian) Khuff Formation of Interior Oman.

Derivatio Nominis: From Oman (type region) and the allied genus Dielasma King, 1859.

Diagnosis: Similar to Dielasma King, 1956, but interior of ventral valve with reduced dental flanges fused to valve walls.
Discussion: Omanilasma n. gen. is externally very similar to Dielasma King, 1859, sharing its biconvex, elongate subovate shape with generally uniplicate anterior commissure and labiate foramen, but it differs from Dielasma by the absence of dental plates inside the ventral valve. The new genus is in fact characterised by the occurrence of reduced dental flanges supporting the teeth but not extending to the valve floor. Internally its dorsal valve shows the hinge plates forming an open ‘V’ between the socket ridges and the valve floor, as Dielasma. The latter feature differentiates Omanilasma n. gen. from other externally similar genera, such as Hoskingia Campbell, 1965.

Omanilasma husseinii n. sp. (Plates 1.2–1.10; Plates 2.1–2.14)

Holotype: An articulated specimen, MPUM9370 (AO45-16).

Type Locality and Horizon: Interior Oman, Haushi ring, Khuff Formation, Member 3, top of section K4 in Angiolini et al. (2001, p. 27), bed AO45, 21°02’30”N, 57°42’00”E. Wordian (Middle Permian).

Other Material: Eleven articulated specimens from the Khuff Formation, Midhnab Member of Saudi Arabia: KH0211-1,-2,-3,-7,-8,-9,-10,-11,-13,-15,-18; 190 articulated specimens from the Khuff Formation, Members 2 and 3 of Oman, beds AO45, AO59, AO73, AO109, AO111, AO112, AO113, AO/OL210, OL100, OL101, OM16, OM18, OM20 from the Haushi ring (sections K4, K5, K7, I1) and from Jabal Gharif (for location see Angiolini et al., 2001, 2003).

Figured material: Four articulated specimens, holotype MPUM9370 (AO45-16), MPUM9371 (KH0211-7), MPUM9372 (KH0211-9), MPUM9373 (KH0211-15).

Diagnosis: Spatuliform Omanilasma with proportionately large, labiate foramen.

Description: Medium-sized, biconvex shells with spatuliform outline. Anterior commissure rectimarginate to broadly uniplicate. Maximum width at or slightly anterior to midlength. Maximum width ranging between 7.7 and 22.1 mm, corresponding length respectively 10 and 35.8 mm and thickness 4.9 and 13.5 mm. Ventral valve more convex than the dorsal one, especially in the posterior region. Ventral foramen subcircular to subtriangular, epithyrid, labiate, with pedicle collar. Dorsal valve elongate subovate. Both valves smooth except for growth lines and widely spaced growth lines.

Plate 2
2.1–2.5: Omanilasma husseinii n. gen. n. sp., articulated specimen, MPUM9374 (KH0211-1), dorsal valve upward. 2.1-2.4: serial sections at 0.1 mm, 2.4 mm, 3.2 mm, 3.6 mm from the umbo; 2.5: enlargement of fig. 4 showing hinge plates forming an open ‘V’ between the socket ridges and the valve floor. Specimen from the Khuff Formation, Midhnab Member of Saudi Arabia, Buraydah quadrangle, 26°07’01” N-44°02’26” E.

2.6, 2.7: Omanilasma husseinii n. gen. n. sp., articulated specimen, MPUM9375 (KH0211-13), dorsal valve upward. Serial sections at 1.2 mm and 1.3 mm from the umbo showing absence of dental plates. Specimen from the Khuff Formation, Midhnab Member of Saudi Arabia, Buraydah quadrangle, 26°07’01”N, 44°02’26”E.

2.8–2.14: Omanilasma husseinii n. gen. n. sp., articulated specimen, MPUM9376 (AO45-66), dorsal valve upward. 2.8–2.10, 2.12, 2.14: serial sections respectively at 0.4 mm, 1.1 mm, 4.5 mm, 5.7 mm, 8.8 mm from the umbo. 2.11: enlargement of figure 2.10. 2.13: enlargement of Plate 2.12. All showing reduced dental flanges fused to valve walls and hinge plates forming an open ‘V’ between the socket ridges and the valve floor. Specimen from bed AO45, section K4, Khuff Formation, Member 3 of Interior Oman.
lamellae. Interior of ventral valve with reduced dental flanges fused to valve walls and short, extending anteriorly for few mm only. Interior of dorsal valve with hinge plates forming an open ‘V’ between the socket ridges and the valve floor.

Discussion: Additional material collected during 1997, 2000 and 2001 from the Khuff Formation in the Haushi and Jabal Gharif regions of Oman, and the new findings in the Saudi Arabian Khuff provide the opportunity to establish a new terebratulid genus and species based on the new specimens as well as on those previously determined as *Dielasma sp. A* by Angiolini (in Angiolini and Bucher, 1999). If the erection of the new genus is essentially based on the internal characters, the new species is based on its spatuliform shape and on its proportionately large and labiate foramen.

Angiolini (in Angiolini and Bucher, 1999, p. 694) pointed out the similarity of the Oman specimens to the ones from the Amb Formation of Salt Range (Pakistan) attributed to *Dielasma itaitubense* (Derby, 1974) by Waagen (1882, p. 348, pl. 26, fig. 5), of which the internal characters are unknown. The same holds true for some of the Thai specimens described as *Dielasma species* by Grant (1976, p. 244, pl. 68, figs. 6–10, 13–17, 23–27), specimens for which serial sections showing internal characters are not provided. The problem with the Thai specimens is that they show a great variability of external characters and more than one species was grouped by Grant (1976) under *Dielasma species*. For example, of the four specimens showing ventral interior with well-developed dental plates, two (Grant, 1976, pl. 68, figs. 41, 42) have different external characters from *O. husseinii* n. sp., whereas the remaining two (pl. 68, figs. 29, 30) are articulated fragments of umbonal ends so that it is impossible to discern the external features.

Omanilasma desertica n. sp. (Plates 1.11–1.14)

Derivatio Nominis: For the deserts of Oman.

Holotype: An articulated specimen, MPUM8495 (OL28-1) figured in Angiolini & Bucher (1999, p. 693, fig. 17.16-17).

Type Locality and Horizon: Interior Oman, Haushi ring, Khuff Formation, Member 2, composite section in Angiolini & Bucher (1999, fig. 2), bed OL28, 21°00'37"N, 57°39'35"E and 21°02'06"N, 57°41'23"E. Wordian (Middle Permian).

Other Material: 28 articulated specimens from the Khuff Formation, Member 3 of Oman, beds AO45, AO56, AO73, AO/OL210, OM18 from the Haushi ring (sections K4, K5, K7) (for location see Angiolini et al., 2001, 2003).

Figured material: Two articulated specimens: MPUM9378 (AO210-163) and MPUM9379 (AO210-98).

Diagnosis: Equibiconvex elongated oval *Omanilasma*.

Description: Medium-sized, biconvex shells with elongated oval outline. Anterior commissure slightly uniplicate. Maximum width at midlength. Maximum width ranging between 10 and 19 mm, corresponding length respectively 17 and 33.4 mm and thickness 6.9 and 14 mm. Ventral valve only slightly more convex than the dorsal one. Ventral foramen epithyrid, labiate, with pedicle collar. Ventral umbonal slopes long, usually folded above the dorsal lateral margins. Both valves smooth except for growth lines and widely spaced growth lamellae. Interior of ventral valve with reduced dental flanges fused to valve walls and short. Interior of dorsal valve with hinge plates forming an open ‘V’ between the socket ridges and the valve floor.

Discussion: *Omanilasma desertica* n. sp. differs from *Omanilasma husseinii* n. sp. by its narrower shell, elongated oval outline and longer umbonal slopes. Its dorsal valve shows a greater convexity than
the same valve in *Omanilasma husseinii* n. sp. *Omanilasma desertica* n. sp. is externally similar to *Dielasma purdoni* Reed, 1944 (p. 156, pl. 45, fig. 9; pl. 49, fig. 14) from the Amb Formation of Salt Range, of which the internal characters were not described.

CONCLUSIONS

Very rare brachiopods have been discovered in the lowest part of the subunit 2 of the Midhnab Member of the Khuff Formation in central Saudi Arabia outcrops and are described here for the first time. The discovered fauna includes *Kotlaia* sp. ind. of the order Orthida and *Omanilasma husseinii* n. gen. n. sp. of the order Terebratulida. The brachiopods were collected from an open-marine bed and are associated with nautiloids, bactritids, bivalves, foraminifers, algae, and ostracods. A probable Late Permian age is assigned to the lower part of the Midhnab Member based on foraminifers. The new brachiopods are compared to similar faunas from the Middle Permian Khuff Formation of Interior Oman, Amb Formation of Salt Range (Pakistan) and Rat Buri Limestone of Southeast Thailand. In addition the new species *Omanilasma desertica* n. gen. n. sp. from the Khuff Formation of Interior Oman is here erected.

ACKNOWLEDGEMENTS

This study is based on geological field data acquired in 2002, during a field trip organized by Saudi Aramco on the Khuff Formation outcrops. The authors wish to express their thanks to Saudi Aramco geologists R.K. Al-Dakhil, I. Al-Jallal, R.A. Kamal, A.A. Tawil, I. Billing, R.G. Demaree and G.W.G. Hughes for the help given in the field and during further discussions. Thanks also to Beicip geologists B. Murat and E. Pluchery for their contribution in the field, and to A. Rizzi and C. Malinverno for their technical assistance. N.W. Archbold, M. Stephenson and M.I. Al-Husseini are thanked for their thorough and constructive reviews. Finally the GeoArabia team is thanked for the preparation of the text and the final design of the paper.

REFERENCES

ABOUT THE AUTHORS

Lucia Angiolini is a Palaeontologist at the Department of Earth Sciences, University of Milano, Italy. She received a PhD in Earth Sciences from Milano University in 1994. Lucia has 10 years experience in Permian brachiopods from the Peri-Gondwana region and the Cimmerian blocks from Turkey to the Himalayas through Oman and Karakorum. Her research interests include, besides pure taxonomy, quantitative biostratigraphy, palaeobiogeography based on multivariate analyses, and Permian correlation between Gondwanan and Tethyan realms.

Lucia.Angiolini@unimi.it

Denis Vaslet is Head of the Geology and Geoinformation Division at the Bureau de Recherches Géologiques et Minières (BRGM), the French Geological Survey. He has 30 years of experience in the geology of the Middle East. From 1977 to 1979 Denis was involved in geological mapping and phosphate prospecting in Iran for the Geological Survey of Iran and the National Iranian Oil Company. From 1979 to 1991, he was responsible for the Cover Rocks mapping program in Saudi Arabia for the Saudi Arabian Deputy Ministry for Mineral Resources. Denis has been involved in the complete lithostratigraphic revision of the Phanerozoic rocks of central Saudi Arabia, for which he received his Doctorate of Sciences from the University of Paris in 1987. He is currently in charge of geological and geophysical mapping both in France and overseas, and for the production and distribution of digital geological information at BRGM. Denis remains involved in several research projects in the sedimentary geology and stratigraphy fields within the Arabian Peninsula.

d.vaslet@brgm.fr

Yves-Michel Le Nindre has more than 10 years of experience in the geological mapping of the Phanerozoic rocks of Saudi Arabia. He received his Doctorate of Sciences from the University of Paris in 1987. Yves-Michel’s dissertation was on the sedimentation and geodynamics of Central Arabia from the Permian to the Cretaceous. He is currently working with the Bureau de Recherches Géologiques et Minières on sedimentary basin analysis and modelling, particularly in hydrogeology, and is also involved in present-day littoral modelling.

ym.lenindre@brgm.fr

Miriam Zarbo obtained a BSc in Natural Sciences from the Università degli Studi di Milano in February 2004. The subject of her thesis was the systematic study of brachiopods species from the Khuff Formation of Oman and Saudi Arabia. She is currently continuing her education studying for a Masters in Palaeobiology at the Università degli Studi di Milano.

ym.lenindre@brgm.fr