Helium Burning Reactions in Stars

Hira Lal DUORAH

Department of Physics, University of Delhi
Delhi-6, India

(Received February 6, 1962)

Helium burning reaction rates are calculated with newly acquired experimental information at temperatures in the ranges $1-2 \times 10^8 \text{oK}$ and $3-6 \times 10^8 \text{oK}$. A fresh supply of helium at higher range of temperatures may have come from certain heavy-ion reactions. At lower temperature range Ne20 production rate is found to be too slow.

§ 1. Introduction

The helium burning phase starts in the core of the red giant stage of stellar evolution after the exhaustion of hydrogen as the energy producing material. The first reaction that takes place in a helium core at $T \approx 10^8 \text{oK}$ is the triple alpha collisions forming C12 in its 7.66 Mev excited state. Then subsequent captures of helium by C12 produce O16, and so on. Hayakawa et al.1 calculated the reaction rates leading to the formation of C12, O16 and Ne20 under the condition at temperature $\sim 10^8 \text{oK}$. The rates of formation of C12 and Ne20 were found to be larger. Nakagawa et al.2 made detailed calculations on the helium capturing reactions. Many other authors3, 4, 5 studied the fusion of helium as a mode of element synthesis in stars. The helium burning processes were found to be responsible for the synthesis of C12, O16, Ne20, and perhaps Mg24.

Recent experimental investigations and results thereof warrant a reinvestigation of the reaction rates during the helium burning phase of stellar evolution. The rate of production of Ne20 was expected to be due to the 4.97 Mev excited state of Ne20 whose spin-parity were supposed to be $2+$. The formation of Ne20 through O16(α, γ)Ne20 requires that the level should have either odd-spin, odd-parity or even-spin, even-parity. Experiments,5, 6 however, showed that this level has spin-parity $2-$, and hence might not be formed by alpha-capturing reaction in O16. There are other two levels in Ne20 in the relevant energy regions5, 6 (5.64 and 5.80 Mev levels) having odd-spin and odd-parity. Thus it is expected that these two levels will contribute to the resonance formation of Ne20 in stellar interiors. It was suggested7 that hydrogen from the envelope might be mixed into the expanding helium core in a globular cluster star at the tip of the giant branch. Considerable amounts of carbon cycle products would then take part in helium burning reactions. Neutrons produced through C18(α, n)O16, which become operative even at slightly lower...
temperature \((\approx 8 \times 10^7 \text{K})\), will soon be depleted through \(^{14}\text{N}(n, p)\)\(^{14}\text{C}\) reaction and enough neutrons will not be available for heavy element synthesis. To facilitate heavy element formation it is required that \(^{14}\text{N}\) should be used up by \(^{14}\text{N}(\alpha, \gamma)\)\(^{18}\text{F}\)\((\beta^+, \nu)\)\(^{18}\text{O}\) reaction.

\[\text{§ 2. Calculations}\]

\(\text{Ne}^{20}\) production rates through the two resonance levels are calculated by the usual procedures outlined in the literature. The quantity \(\omega \Gamma_\gamma \Gamma_\alpha / \Gamma\) for the 5.64 (3\(\text{–}\)) and 5.80 (1\(\text{–}\)) Mev levels are 0.003 ev\(^{10}\) and \(\lesssim 0.15\) ev\(^{9}\), respectively. For the \(^{14}\text{N}(\alpha, \gamma)\)\(^{18}\text{F}\) resonant reaction through 4.651 Mev state of \(^{18}\text{F}\), the different parameters are taken from the work of Cameron\(^{10}\). \(\Gamma_\alpha\) is calculated to be \(4.0 \times 10^{-11}\) ev with the help of Wigner and Eisenbud’s dispersion relation for nuclear reactions\(^{11}\). \(3\alpha \rightarrow \text{C}^{12}\) rates are calculated with a slightly modified value of \(\Gamma_\gamma\) due to Alburger\(^{12}\) for the 7.66 Mev second excited state of \(^{12}\text{C}\). \(\Gamma_\gamma\) is taken to be \(2.5 \times 10^{-8}\) ev. The nonresonant rates of formation of \(\text{Ne}^{20}\) and \(\text{Mg}^{26}\) through \((\alpha, \gamma)\) reaction are also calculated by the method outlined by Cameron\(^{13}\) assuming that \(\Gamma_\gamma \ll \Gamma_\alpha \approx \Gamma\), \(\langle \sigma \rangle / \langle \sigma \rangle(\alpha, \gamma) = \Gamma_\gamma / \Gamma_\alpha \approx 0.01\). These reaction rates are shown in Fig. 1.

\[\langle \sigma \rangle = \frac{2\pi^2}{K_\alpha} \left(\frac{\omega \Gamma_\alpha \Gamma_\gamma}{\Gamma D} \right) \times 10^{24} \text{ barns}, \quad (1)\]

![Fig. 1. Helium burning mean lifetimes vs. temperatures (t is in year and temperature is in \(10^8\) K unit, \(px_0 = 10^5 \text{ g/cc}\)). (1) and (2) against \(\text{O}^{18} \rightarrow \text{Ne}^{20}\) give the mean lifetimes of this reaction for the 5.64 and 5.80 Mev levels respectively.](image)
which after simplifications (like $\Gamma_a \ll \Gamma_{\gamma} \approx \Gamma$ and $\Gamma_a = 2K_a P_{\alpha}^2$) reads

$$\langle \sigma \rangle = \frac{12\pi^3}{K_a} P_0 \langle r^3/D \rangle \times 10^{24} \text{ barns}, \quad (2)$$

for $\langle \omega \rangle = 3$, where P_0 is the barrier penetrability for s-wave alpha-particles and $\langle r^3/D \rangle$ is taken to be equal to ten-percent of the black-nucleus value ($= 2 \times 10^{-14} \text{cm}$). Knowing $\langle \sigma \rangle$, the reaction rates are calculated with the nonresonant rate formula. Figure 2 shows the reaction rates at higher temperatures ($3-6 \times 10^8 \text{K}$) for $\rho x_a = 10^4 \text{ g/c.c.}$.

§ 3. Discussions and conclusions

The helium burning time-scale and temperature are supposed to be $\sim 10^7 \text{ years}$ and $1-2 \times 10^8 \text{K}$ respectively. During this period negligible amount of O is converted into Ne due to helium burning. Thus it is expected that Ne is not synthesized in considerable amount during the helium burning stages. At higher temperatures, supposed to be prevalent in the core of late giants or pre-supernova stage of a star, the rates of formation of Ne and Mg are faster. However, the reaction rate of Ne (α, γ)Mg is definitely an over-estimate at lower temperatures. But as helium is exhausted at lower temperatures, further helium burning reactions do not proceed unless a fresh supply of helium is available. At this stage, heavy-ion reactions such as C (α, γ)Ne may provide a helium source; but it takes place at temperature of $\sim 6 \times 10^8 \text{K}$. Otherwise, the helium burning reactions (Fig. 2) may be envisaged to be taking place at the supernova shell sources where the temperature is considerably higher. N (α, γ) rate is found to be faster than that of $3\alpha \rightarrow C$ (Fig. 1). Therefore, it may be expected that this reaction would compete with 3α reaction as a source of energy generation at the temperature and density under consideration. Ne and Mg formation rates are found to be quite low.
References

2) Nakagawa, Ohmura, Takebe and Obi, Prog. Theor. Phys. 16 (1956), 389.
3) Burbidge, Burbidge, Fowler and Hoyle, Rev. Mod. Phys. 29 (1957), 547.
7) A. G. W. Cameron, CRL-41 (AEC of Canada Ltd., 1957).
8) Gove et al., unpublished.
9) Kuehner et al., unpublished.