A framework for ensuring a balanced accounting of the impact of antimicrobial stewardship interventions

Madalina Toma¹, Peter G. Davey², Charis A. Marwick² and Bruce Guthrie¹,²,∗

¹Scottish Improvement Science Collaborating Centre (SISCC), School of Nursing and Health Sciences, University of Dundee, 11 Airlie Place, Dundee DD1 4HJ, UK; ²Population Health Sciences Division, School of Medicine, University of Dundee, Kirsty Semple Way, Dundee DD2 4BF, UK

*Corresponding author. Tel: +44-(0)1382-383740; E-mail: b.guthrie@dundee.ac.uk

Drawing on a Cochrane systematic review, this paper examines the relatively limited range of outcomes measured in published evaluations of antimicrobial stewardship interventions (ASIs) in hospitals. We describe a structured framework for considering the range of consequences that ASIs can have, in terms of their desirability and the extent to which they were expected when planning an ASI: expected, desirable consequences (intervention goals); expected, undesirable consequences (intervention trade-offs); unexpected, undesirable consequences (unpleasant surprises); and unexpected, desirable consequences (pleasant surprises). Of 49 randomized controlled trials identified by the Cochrane review, 28 (57%) pre-specified increased length of stay and/or mortality as potential trade-offs of ASI, with measurement intended to provide reassurance about safety. In actuality, some studies found unexpected decreases in length of stay (a pleasant surprise). In contrast, only 11 (10%) of 110 interrupted time series studies included any information about unintended consequences, with 10 examining unexpected, undesirable outcomes (unpleasant surprises) using case–control, qualitative or cohort designs. Overall, a large proportion of the ASIs reported in the literature only assess impact on their targeted process goals—antimicrobial prescribing—with limited examination of other potential outcomes, including microbial and clinical outcomes. Achieving a balanced accounting of the impact of an ASI requires careful consideration of expected undesirable effects (potential trade-offs) from the outset, and more consideration of unexpected effects after implementation (both pleasant and unpleasant surprises, although the latter will often be more important). The proposed framework supports the systematic consideration of all types of consequences of improvement before and after implementation.

Introduction

Increasing antimicrobial resistance poses a major threat to human health. Health services internationally have responded by planning or implementing a range of antimicrobial stewardship interventions (ASIs) to promote judicious use of antimicrobials to preserve their future effectiveness.³ ASIs are usually complex with multiple components,² with expected benefits balanced against unintended adverse consequences such as delayed or ineffective treatment of life-threatening infections.³–⁵ Antimicrobial stewardship shares many characteristics with other healthcare quality improvement programmes, including improvers typically focusing on delivering a predefined set of benefits in terms of processes of care. However, any evaluation of the impact of an improvement programme should report all unintended consequences (which may be negative or positive), as well as the targeted processes of care that are intended for improvement.⁶ In this paper, we examine the range of outcomes measured in published evaluations of ASIs in hospitals, and describe a framework for thinking about the consequences of interventions to help achieve a balanced accounting of impact.

What outcomes do ASIs measure?

The recently updated Cochrane systematic review of the impact of ASIs in hospital² included 221 studies in total, with 49 randomized controlled trials (RCTs) and 110 interrupted time series (ITS) studies contributing to at least one meta-regression or meta-analysis. Reflecting the design of the Cochrane review, all the included RCTs and ITS studies measured antimicrobial outcomes, with 46 RCTs (93.8%) and 101 ITS studies (91.8%) aiming to improve antimicrobial treatment and the remaining 3 RCTs (6.1%) and 9 ITS studies (8.2%) aiming to improve surgical prophylaxis (Table 1).

In contrast, only a minority of studies examined any other type of outcome. Only 5 RCTs (10.2%) and 26 ITS studies (23.6%) examined microbial outcomes, most commonly colonization or infection with resistant bacteria, or Clostridium difficile infection (CDI), with an explicit or implicit assumption that these would reduce. Twenty-eight (57.1%) RCTs and 4 (3.6%) ITS studies examined all-cause mortality while length of hospital stay was measured in 15 RCTs (30.6%) and 2 ITS studies (1.8%). However, it was often unclear whether length of stay and mortality were expected to change, and if so, in which direction (whether there was a hope...
that the ASI would reduce mortality and length of stay, or a fear that they would increase).

Other outcomes relating to the impact and safety of interventions were reported in 23 RCTs (46.9%) and 8 ITS studies (7.2%), usually relating to anticipated (or feared) negative outcomes of stewardship. These included concerns about delays in starting antimicrobial treatment or delays in seeing other patients with urgent needs in the emergency department, and concerns about changes in antimicrobial use causing acute kidney injury (AKI), longer duration of fever, increased duration of mechanical ventilation, increased allergic reactions or increased surgical site infections.

Overall, the review authors concluded that they had found high-certainty evidence that ASIs are effective in increasing compliance with antimicrobial policy and reducing duration of antimicrobial treatment, and that lower use of antimicrobials likely reduces length of stay and probably does not increase mortality. Additional trials comparing antimicrobial stewardship with no intervention are unlikely to change these conclusions. Reflecting the limited range of outcomes examined by the included studies, more research was recommended to examine the wide range of unintended consequences of restrictive interventions.

What kinds of consequences should implementers of ASIs consider?

There is no clear consensus on what outcomes should be measured to evaluate the impact of ASIs. Professional organizations have proposed that alongside the process measures of antimicrobial use that dominate the existing literature, interventions should measure patient outcomes (mortality, length of hospital stay and readmission rates) and unintended consequences.7-5 In practice, antimicrobial stewardship trialists and improvers have to make choices about what to measure given available resources. This paper describes an approach based on quality improvement work in other contexts to help plan measurement strategies in a structured way to ensure a balanced accounting of antimicrobial stewardship impact.

As with other improvement interventions, there are two prominent features of the types of measure used to evaluate effectiveness in the studies examined. These are whether outcomes are desirable or undesirable, and whether outcomes are expected or not. Of note is that for some outcomes desirability depends on the expected direction of change (an obvious example being that reduced mortality is desirable, whereas increased mortality is undesirable), but many published papers do not clearly state their expectations before implementation. Potential metrics can therefore be divided into four main categories, any of which can be measured in terms of process and outcome, both in the clinical setting targeted by improvement and other clinical settings in which consequences might occur (for example due to readmission to other services). The four types of consequence are adapted from the diffusion of innovations literature10-14 and described in Figure 1:

- ASI goals: the expected and desirable consequences of the improvement intervention.
- ASI trade-offs: the expected but undesirable consequences of the improvement intervention. Before intervention, these are assumed to be smaller in magnitude than the goals (and so implicitly are an acceptable compromise), but may include outcomes such as mortality where any significant increase is likely to outweigh improvement in goals and which are often measured to reassure about safety.
- ASI pleasant surprises: unexpected and desirable consequences emerging after implementation.
- ASI unpleasant surprises: unexpected and undesirable consequences emerging after implementation.

Examples of goals, trade-offs and surprises in the antimicrobial stewardship literature

ASI goals (expected desirable consequences)

Overall, the primary goal of ASIs is to reduce total or specific antimicrobial use. All the interventions included in the review measured antimicrobial prescribing but only a minority clearly specified other types of goal, such as microbial outcomes. Other pre-specified goals included reduced length of stay and/or reduced in-hospital mortality in 31 (63%) RCTs but only 6 (5%) ITS studies evaluating stewardship interventions intended to change antimicrobial prescribing (Table 1).

<table>
<thead>
<tr>
<th>Type of outcome measured</th>
<th>RCTs, n (%)</th>
<th>ITS studies, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 49)</td>
<td>(N = 110)</td>
</tr>
<tr>
<td>Antimicrobial treatment</td>
<td>46 (93.8)</td>
<td>101 (91.8)</td>
</tr>
<tr>
<td>Surgical antimicrobial prophylaxis</td>
<td>3 (6.1)</td>
<td>9 (8.2)</td>
</tr>
<tr>
<td>Microbial outcomes</td>
<td>5 (10.2)</td>
<td>26 (23.6)</td>
</tr>
<tr>
<td>Mortality</td>
<td>28^ (57.1)</td>
<td>4^ (3.6)</td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td>15^ (30.6)</td>
<td>2^ (1.8)</td>
</tr>
<tr>
<td>Other outcomesd</td>
<td>23 (46.9)</td>
<td>8 (7.2)</td>
</tr>
</tbody>
</table>

^Eleven ITS studies included a control group for comparison.
^Thirty-one RCTs in total: 16 mortality only, 12 mortality and length of hospital stay, and 3 length of stay only.
^Six ITS studies in total; no study included both mortality and length of hospital stay.
^Most commonly measured other outcomes included delays in starting antimicrobial treatment, duration of fever, time spent on mechanical ventilation or increased allergic reactions.

ASI trade-offs (expected undesirable consequences)

Several studies pre-specified increased mortality and increased length of stay as expected undesirable consequences, with measurement intended to allow examination of trade-offs (length of stay) or provide reassurance about safety (mortality). For instance, two RCTs15,16 explicitly framed length of stay and mortality as ‘safety outcomes’ because they were concerned that both might increase, although neither actually did. Similarly, even in a context where the improvers expected their intervention to reduce length of stay, they were concerned that this might lead to higher rates of rapid readmission and measured the latter as a predefined trade-off.17 In studies in emergency departments, some authors were concerned that prioritizing rapid antimicrobial administration for patients with fever and neutropenia might compromise care for other patients. The initial measurement plans therefore included
trade-offs between achieving the goals of more rapid initiation of antimicrobials and potential treatment delays for patients with other urgent problems and/or an expected increase in patients leaving without being seen. In the latter study, other potential trade-offs identified before implementation included the intervention effect on nurses’ workload when a febrile neutropenic patient was placed in their nursing area and the potential for staff to develop user fatigue, but the improvers chose not to explicitly measure these.

Pleasant surprises (unexpected desirable consequences)

Some consequences are not expected before implementation, and therefore only become visible or apparent subsequently. For instance, three RCTs pre-specified length of stay as a trade-off (that is, they expected or feared an increase due to the stewardship intervention), but actually found unexpected decreases (a pleasant surprise). A few studies explicitly examined other outcomes that were unexpected and desirable, such as an observed reduction in delay to first antimicrobial treatment from an intervention that aimed to reduce the number of unnecessary diagnostic tests in infants with risk factors for early-onset neonatal sepsis. More commonly, papers speculated that there were unmeasured pleasant surprises; for example, discussion of an intervention effect on nurses’ workload when a febrile neutropenic patient was placed in their nursing area and the potential for staff to develop user fatigue, but the improvers chose not to explicitly measure these.

Unpleasant surprises (unexpected undesirable consequences)

Only 10 studies in the Cochrane review examined unexpected or surprising negative outcomes. When outcomes are unexpected, then data have not typically been collected before and after intervention implementation, and studies most commonly examined unpleasant surprises using case-control, qualitative and cohort designs. For example, a case–control study investigating an abrupt and persistent 30% increase in the absolute number of reported nosocomial infections found it was actually a pseudo-outbreak caused by physicians altering their threshold for diagnosis and reporting in response to implementation of a restrictive antimicrobial policy. In response to a similarly restrictive intervention, qualitative interviews with clinical staff revealed unexpected difficulties with the prior approval process for restricted antimicrobials, including failure to clearly document approval and ambiguity in the duration of approval. The consequences were erosion of trust in the accuracy of feedback data about appropriate use of restricted antimicrobials.

Four cohort studies investigated post-implementation concerns about restrictive interventions that had arisen some years after the implementation of ASIs (Table 2). The aims of these studies varied considerably in that one was intended to provide reassurance about the risks of automatic stop orders whereas the other three were intended to confirm concerns about prior approval programmes. As reported, the results did not reveal any surprises per se because the authors interpreted them as supporting their predictions that stop orders would be safe and that requiring prior approval carried risks (Table 2). These conclusions would have been much stronger if the studies had explicitly addressed the potential trade-offs involved. For example, how much delay in vancomycin treatment in how many patients would it take to consider modifying a stop order policy?

Three cohort studies addressed concerns that public reporting of hospital performance on a national quality indicator of timely treatment of patients with community-acquired pneumonia (CAP) might be leading to unnecessary antibiotic treatment of patients who did not have pneumonia. These concerns were supported by additional studies that were not included in the Cochrane review, and the performance measure was subsequently revised and then withdrawn altogether.

One study used an ITS design to address post-implementation concerns that a change in surgical prophylaxis policy from...
cefuroxime to flucloxacillin plus gentamicin may have increased risk of post-operative AKI in orthopaedic patients. The results confirmed a clinical impression of increased AKI, and resulted in a further change to the prophylaxis policy (described in detail in Table 3 and below).

Challenges associated with achieving a balanced accounting of ASI impact

The framework described in Figure 1 has the benefit of bringing a systematic approach to considering the consequences of ASIs, which is important because decisions often have to be made in the face of considerable uncertainty and then adapted to new information. This is illustrated by the experience of the development, implementation and modification of an ASI intended to reduce the use of surgical antimicrobial prophylaxis associated with higher risk of CDI in one Scottish Health Board (Table 3). AKI risk was explicitly considered pre-intervention, in response to clinician concern about AKI risks in changing surgical prophylaxis to gentamicin plus flucloxacillin, and the planned intervention was amended in the patient group at highest risk of AKI (patients with fractured neck of femur). However, it was also decided that routine

Table 2. Cohort studies of unintended consequences of restrictive interventions

<table>
<thead>
<tr>
<th>Study</th>
<th>Restrictive intervention</th>
<th>Source of concern</th>
<th>Measures and results</th>
<th>Author conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connor et al.</td>
<td>Automatic stop order for vancomycin after 72 h of treatment.58</td>
<td>Stop orders may lead to inadvertent discontinuation or interruption of appropriate therapy.</td>
<td>Interruption of vancomycin: 1. Frequency 8% 2. Duration 6–36 h</td>
<td>'Automatic stop orders are unlikely to pose a substantial risk of denying necessary antibiotic therapy to patients. These data should provide reassurance to ASPs that are considering instituting automatic stop orders.'</td>
</tr>
<tr>
<td>LaRosa et al.</td>
<td>A prior approval ASP that was active between 8 am and 11 pm.58</td>
<td>In a prior qualitative study at the same hospital some house staff stated that they engaged in ‘stealth dosing’ (waiting until after the prior-approval period ended to prescribe restricted antimicrobial drugs).49</td>
<td>1. Prescribing of restricted antibiotics was 57% of total 11–12 pm versus 50% 10–11 pm 2. Restricted therapy continued for >1 day 65% after 11 pm versus 89% before 11 pm Inappropriate antimicrobial therapya with inaccurate data versus other calls: 1. Any data inaccurate: OR 2.2, CI 1.1–4.6 2. Microbiological data inaccurate: OR 7.5, CI 2.1–27.0</td>
<td>'Although ASPs have been shown to be beneficial, our findings reflect a potential limitation of these programs. Further efforts to identify and correct the limitations of existing ASPs are needed to optimise their usefulness.'</td>
</tr>
<tr>
<td>Linkin et al.</td>
<td>A prior approval ASP that was active between 8 am and 11 pm.58</td>
<td>Data communicated from clinicians were found to contain inaccurate patient information in >40% of calls made to practitioners in a prior study of this hospital’s ASP.48</td>
<td>Inappropriate antimicrobial therapya with inaccurate data versus other calls: 1. Any data inaccurate: OR 2.2, CI 1.1–4.6 2. Microbiological data inaccurate: OR 7.5, CI 2.1–27.0</td>
<td>'Studies are needed to test and extend our findings by evaluating other causes of inappropriate recommendations, downstream clinical outcomes, and the effect of technological interventions. "Clinicians and ASP practitioners should confirm critical communicated data before use in prescribing decisions.'</td>
</tr>
<tr>
<td>Winters et al.</td>
<td>A prior approval ASP. Stat doses of restricted antimicrobials could be ordered without approval 10 pm to 8 am but not during the day. Year of introduction of ASP not clear</td>
<td>Prior approval may delay time to first antibiotic dose</td>
<td>Delays when the antimicrobial was restricted versus not restricted: 1. 1 h a. 8 am–10 pm: 46% versus 36% b. 10 pm–8 am: 39% versus 36% 2. ≥2 h a. 8 am–10 pm: 24% versus 16% b. 10 pm–8 am: 15% versus 14%</td>
<td>'Delays in antimicrobial administration should be kept to a minimum and avoided altogether in critically ill patients. One way to accomplish this might be to not require approval for the first administration of a stat antibiotic but require approval of subsequent doses.'</td>
</tr>
</tbody>
</table>

ASPs, antimicrobial stewardship programmes.

aMost common reason for rating a recommendation as inappropriate was that antimicrobial therapy was not indicated.

Review
Table 3. Potential challenges in achieving a balanced accounting of intervention impact: changing policies for surgical prophylaxis in one Scottish Health Board

In response to high rates of CDI, the Antibiotic Management Group in the 855 bed Ninewells Hospital in NHS Tayside introduced a number of measures intended to reduce the use of antibiotics associated with a high risk of CDI in analysis of local data. Antimicrobial prophylaxis for orthopaedic implant surgery was changed from single-dose cefuroxime 1.5 g to four doses of flucloxacillin 1 g plus single-dose gentamicin 4 mg/kg. During intervention planning, concerns were raised about the renal risks of the new regimen in patients with fractured neck of femur who are older and have higher prevalence of chronic kidney disease, resulting in the recommendation to use co-amoxiclav (which although still relatively high risk for CDI remained on the formulary for some indications, whereas cefuroxime did not). There was no plan to measure rates of AKI in either group of orthopaedic patients because AKI risks from the chosen single-dose prophylaxis in each group were considered remote (i.e. a trade-off was not considered likely).

In 2012, another Scottish hospital reported concerns about increased rates of post-operative AKI in orthopaedic patients from the same change in surgical prophylaxis. In response to this concern, NHS Tayside carried out an ITS analysis with the belief that it would refute the concern. The analysis unexpectedly confirmed increased rates of AKI in orthopaedic surgery but not in other types of surgery (a very unpleasant surprise), with a subsequent reduction in AKI when antimicrobial prophylaxis was changed to co-amoxiclav for all types of orthopaedic surgery.

More detailed analysis has shown that AKI rates did not change after the first change in policy in 2008 for people with fractured neck of femur (who had a switch from cefuroxime to co-amoxiclav; pre-intervention 15.0% versus post-intervention 14.8%) although CDI rates in this group more than halved (3.6% versus 1.7%). For other implant surgery where prophylaxis changed from cefuroxime to flucloxacillin/gentamicin, AKI rates pre- and post-intervention were 6.2% and 10.8%, and C. difficile rates were 0.8% versus 0.4%, confirming that any possible benefit in terms of reduced CDI in this group was likely to be much smaller than the increased potential harm in terms of AKI.

Implications for doing and evaluating improvement

Although the focus of this paper is on choice of outcomes, Antimicrobial Management Teams (AMTs) will also have to ensure that their evaluation design delivers results that are internally valid and can be accounted for terms of being as resistant to confounding and bias as possible. Although RCTs remain the gold standard for ensuring internal validity, the Cochrane Effective Practice and Organisation of Care Group also considers that other study designs can allow reasonable inference of causality including trials that allocate non-randomly, controlled before-and-after studies, and ITS studies. In the field of antimicrobial stewardship, though, the choice for those with research funding is more likely to be between cluster RCTs (cRCTs) and ITS designs (ideally controlled ITS where there is a comparison with a setting without an intervention), with ITS designs the most feasible evaluation design for clinicians and managers seeking to evaluate a local stewardship intervention.

Assessing the full value of ASIs requires a balanced accounting of the costs, risks and benefits, but assessment will often be resource constrained, meaning that AMTs have to make choices about what to measure in the face of uncertainty about the difficulty predicting how a complex, dynamic system will respond to change. Before beginning or expanding a stewardship programme, the AMTs therefore need to plan their measurement strategy, brainstorming goals and trade-offs, articulate assumptions around the expected direction of change, and speculate on potential surprises and how they might be revealed. The aim should be to identify ASI goals and likely trade-offs, and then to determine which should be measured. Indeed, many undesirable outcomes are predictable and should be accounted for from the outset. It should no longer be any surprise to an AMT that stop orders or requirements for prior approval have the potential to interrupt or delay treatment (Table 2), or that performance measurement of time to first antibiotic for patients with CAP may lead to unnecessary antibiotic treatment in patients who do not have pneumonia. Consequently, AMTs considering an ASI using these methods should always consider whether measurement of predictable trade-offs is needed, although AMTs still need to carefully identify other likely consequences of their particular ASI in their specific context.

Plan-Do-Study-Act (PDSA) cycles are a practical method for identifying consequences. However, the application of the PDSA methodology to healthcare has often resulted in an over-
simplified ‘Do, Do, Do’ approach focused on desired goals at the expense of study and reflection before and after implementation, which means that improvement teams often fail to account for unexpected consequences and may not maximize benefit. Two systematic reviews of application of PDSA methods to healthcare state that they can reveal unanticipated consequences of change, but neither actually includes a detailed consideration of the full range of consequences in their data synthesis framework. Only one of these reviews included any information about reporting of consequences, finding that only 6 (6.4%) of 94 included studies reported ‘disconfirming observations’ about the intervention.

Furthermore, the Cochrane review identified that only a small minority of studies explicitly addressed unintended consequences, and it is notable that four (including the only RCT) were from the same institution (the University of Pennsylvania School of Medicine). These studies were informed by previous research from the same hospital, which investigated the unintended effects of computerized physician orders with focus groups, interviews, shadowing and observation of house staff, nurses, information technology leaders, pharmacy leaders and attending physicians. It is likely that this research increased awareness about unintended consequences of the ASI at this hospital. However, considering unexpected consequences should be the rule rather than the exception. An ‘improvement pause’ to take stock at a planned time after implementation will allow teams to consider whether there is enough evidence that surprises have happened to make it worth systematically measuring their impact.

In this regard, antimicrobial stewardship programmes need to learn from experience of performance measurement and systems analysis in other sectors. Most of the consequences identified by the review arise from one of the commonest problems with performance measurement: tunnel vision, where what is measured leads to neglect of unmeasured aspects of performance. However, the Cochrane review also found examples of misrepresentation of microbiological results, misinterpretation of information about appropriateness of prescription of restricted antibiotics and workarounds to avoid prior approval policies. Four strategies have been recommended to minimize the risk of tunnel vision, misrepresentation and misinterpretation: involving staff at all levels; retaining flexibility in the use of performance indicators; quantifying every important outcome; and keeping the system under constant review. There are examples of studies in the Cochrane review that employed these strategies (Table 4), and they are aligned to the framework in terms of working with stakeholders to identify and measure a balanced set of processes and outcomes, and ensuring post-implementation study to identify and measure significant unpleasant surprises.

Although measurement is central to improvement, qualitative methods have much to offer in the identification of unexpected consequences to maximize benefit. Qualitative methods can be used to help design interventions, exemplified by the Reducing Antibiotic Prescribing in Dentistry (RAPiD) study, which used data about community dentists’ perceptions of consequences of using surgical treatment rather than antimicrobials to design a behavioural change intervention. Qualitative methods can also support post-implementation study and reflection. It is to be expected that clinicians will sometimes evade restrictive antimicrobial stewardship policies in ways that undermine the intervention, but the existence, rationale and form of workarounds can also be evidence that clinicians perceive the restriction to be difficult to safely fit into clinical workflows and that the intervention therefore needs adaptation.

Implications for reporting improvement interventions

The Standards for Quality Improvement Reporting Excellence (SQUIRE 2.0) recommend that reporting of results should include ‘unintended consequences, such as unexpected benefits, problems, failures or costs associated with the intervention’ (standard 13e).

Table 4. Strategies for minimizing the unintended consequences of performance measurement and examples of studies from the Cochrane review

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Examples from the Cochrane review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involve staff at all levels</td>
<td>Forming inter-professional improvement teams with front-line staff involving senior and junior doctors, nurses and pharmacists. Involving management at clinical service and hospital levels. Involving junior doctors and other front-line staff such as pharmacists in interpreting and learning from collected data.</td>
</tr>
<tr>
<td>Retain flexibility in the use of performance indicators</td>
<td>Using process maps to identify performance indicators and tests of change to modify them. Using run charts to identify outliers and chart review to investigate causes and targets for change. Using staff coaching to identify factors contributing to performance lapses and invite suggestions for improvement.</td>
</tr>
<tr>
<td>Quantify every important outcome</td>
<td>Two studies identified delay in treatment of other patients as a potential consequence of reducing time to first antibiotic dose for children with sepsis in emergency departments. However, only one went on to test and implement quantitative measures of identified trade-offs (time left without being seen for all patients in the emergency department and time to first dose of β-agonist for children with asthma).</td>
</tr>
<tr>
<td>Keep system under constant review</td>
<td>Specifying two or more intervention periods to allow review of consequences and adaptation of intervention.</td>
</tr>
</tbody>
</table>
However, the detailed explanation and elaboration document does not specifically mention this or provide an example, and the measurement element (standard 10) focuses on process and outcome measures without specifying that these can evaluate both positive and negative consequences. Similarly, although the Outbreak Reports and Intervention studies of Nosocomial Infection (ORION) guidelines require the reporting of any harms measured, neither the STrengthening the Reporting of Observational studies in Epidemiology (STROBE) nor the proposed antimicrobial stewardship extension (STROBE-AMS) reporting standards specifically mention unintended consequences in discussion of outcomes. Irrespective of which reporting standard is most appropriate to any individual study, we recommend that reports of ASIs (and other improvement interventions) should describe how the initial improvement plan was developed, including whether and how expected undesirable consequences (trade-offs) were accounted for, whether there were post-implementation surprises, and whether they were measured. Analysis should report all measured positive and negative consequences and a balanced interpretation across all measures.

Conclusions

A large proportion of the ASIs reported in the literature only assess impact on their targeted process goals—antimicrobial prescribing—with limited examination of other potential goals, including microbial and clinical outcomes. Reflecting this and the high certainty that stewardship improves prescribing in hospitals, the Cochrane review concluded that ‘future research should instead focus on measuring clinical outcomes and assessing other measures of patient safety and different stewardship interventions and explore the barriers and facilitators to implementation’ (p. 31). There is, however, less certainty about the effects of ASIs in the community, although it will be equally important to study a balanced set of outcomes in that context.

Achieving a balanced accounting of the impact of an ASI in both hospital and community settings requires careful consideration of expected undesirable effects (potential trade-offs) from the outset, and more consideration of unexpected effects after implementation (both pleasant and unpleasant surprises, although the latter will often be more important). Consensus studies to establish a core outcome set for studies of ASIs would be useful, but the proposed framework supports the systematic consideration of all consequences of improvement before and after implementation.

Acknowledgements

We are grateful to The Health Foundation and the British Society for Antimicrobial Chemotherapy for co-funding a workshop on ‘The Challenge of Antimicrobial Stewardship in Hospitals: Seeking Solutions from Improvement Science’ held at The Health Foundation in London on 12 February 2016.

Funding

This work was supported by the Scottish Improvement Science Collaborating Centre (SISCC), funded by the Scottish Funding Council, Chief Scientist Office, NHS Education for Scotland and The Health Foundation with in-kind contributions from participating partner universities and health boards. The review that formed the basis for this paper was supported by the Chief Scientist Office (Grant CZH4861) and the British Society for Antimicrobial Chemotherapy. The funding bodies had no role in the design of the study, in analysis and interpretation of data and in writing the manuscript.

Transparency declarations

None to declare.

Author contributions

P. G. D. and C. A. M. carried out the Cochrane review on which this paper draws. M. T. and B. G. were responsible for planning and leading the data extraction and analysis for this paper, and all authors contributed to analysis and interpretation. M. T. led the writing of the manuscript and re-drafted in response to team input. B. G., P. G. D. and C. A. M. participated in critically appraising and revising the intellectual content of the manuscript. All authors read and approved the final manuscript.

Disclaimer

The views and opinions expressed are those of the authors.

Availability of data and material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

