The τ^+-decay and the Boson Isobar with $I=2$ of the Sakata Model

Shoji Sawada, Tamotsu Ueda and Minoru Yonezawa

Department of Physics
Hiroshima University
Hiroshima

March 13, 1961

Some analyses of the single pion production in π^-N collision\(^1\) have been made to find the evidence of the boson isobars\(^2\) of the Sakata model. From these analyses it has been suggested that the boson isobar with $I=2$, i.e. $B_4^1(0,2)$ of the Sakata model, exists and has the 2π-decay mode.

The $B_4^1(0,2)$ isobar is, then, expected to have the effect to the pionic decay of kaon. Especially the 3π decay process of kaon is very interesting since the present experimental data of pion energy spectra in τ^+-decay process\(^3\) show a small deviation from the theoretical spectrum for spinless kaon given by Dalitz and Fabri.\(^4\) (See Figs. 1 and 2.)

Some studies have already been made to understand the deviation as the effect due to the possible strong interaction among the final pions.\(^5\)

In this short note we also study the problem by taking the effect of $B_4^1(0,2)$ which can be corresponded to the strong $\pi\pi$ interaction, but our approach is a little different from these analyses.

Now let us assume the following for the moment.

1) The τ^+ and $\tau^{+'}$ decay mainly consist of the following cascade decay.

\[
K^+ \rightarrow B_4^1(0,2) + \pi \text{ (recoil pion)},
\]

\[\rightarrow 2\pi \text{ (decay pions).} \]

2) $B_4^1(0,2)$ is 0^+ and can be treated in the calculation as though it is a metastable particle, except that it has not a definite mass, but mass distribution $\rho(m_B)$.

3) The decay interaction for
Letters to the Editor

869

$K^+ \rightarrow B_1^0(0, 2) + \pi$ and $K_1^0 \rightarrow 2\pi$ are effectively of the type

$g\phi_n\phi_\pi \phi_K$ and $g'\phi_n\phi_\pi\phi_K$ (2)

with $g \sim g'$ (Universality of weak interaction).

The theoretical energy spectra of the final pions in τ^+-decay and $\tau^+\tau^-$-decay through the decay scheme (1) will be given by the following expressions when the $dI=1/2$ rule holds for these processes:

π^--spectrum in τ^+-decay

$I^-(E_\pi) dE_\pi \propto [1/30 I_1(E_\pi)
+ 18/30 I_2(E_\pi)] dE_\pi$, (3a)

π^+-spectrum in τ^+-decay

$I^+(E_\pi) dE_\pi \propto 2[18/30 I_1(E_\pi)
+ 1/30 I_2(E_\pi)] dE_\pi$, (3b)

π^+-spectrum in $\tau^+\tau^-$-decay

$I^+(E_\pi) dE_\pi \propto [9/30 I_1(E_\pi)
+ 2/30 I_2(E_\pi)] dE_\pi$, (3c)

$I_1(E_\pi)$ and $I_2(E_\pi)$ are the energy distribution function of the decay pions and the recoil pions respectively and expressed by

$I_1(E_\pi) dE_\pi \equiv m_\pi^{\text{max}}$

$= N_1 \int_{m_\pi^{\text{min}}}^{m_\pi^{\text{max}}} dM_B \rho(m_B) m_B / p_{\pi B} dE_\pi$, (4)

$I_2(E_\pi) dE_\pi = N_2 \rho(m_B) m_K p_B / m_B dE_\pi$,

where m_K and m_B are the mass of the kaon and $B_1^0(0, 2)$ respectively and $p_{\pi B} = \sqrt{(m_B/2)^2 - m_\pi^2}$ (for further notations, see reference 1)).

The dominant factor for the pion energy spectra is the mass distribution of $B_1^0(0, 2); \rho(m_B)$. However, we know little about it now. Some information will be obtained from the consideration of the decay rate of kaons. From the decay interactions (2) we shall obtain

$R = \frac{W(K^+ \rightarrow B_1^0(0, 2) + \pi)}{W(K_1^0 \rightarrow 2\pi)}$

$\frac{m_B^2 - m_\pi^2}{g^2 p'}$

where $\rho(m_B) (= p_B)$ and p' is the pion momentum in $K^+ \rightarrow B_1^0(0, 2) + \pi$ and $K_1^0 \rightarrow 2\pi$ process respectively. If we take $280 \text{ MeV} < m_B^2 < 354 \text{ MeV} (= m_K^2 - m_\pi^2)$, where m_B^2 is the parameter characterizing the maximum of the mass distribution, and put $g \sim g'$, we shall obtain

$R \approx 0.1 \sim 0.6$

which is to be compared with the experimental value $R < 10^{-3}$.* This fact indicates that the maximum of the $\rho(m_B)$ will probably be at $> 354 \text{ MeV}$. The tendency of the $\rho(m_B)$ may manifest itself in the pion energy spectrum. Neglecting the \cdot term $I_1(E_\pi)$, in π^--spectrum, we obtain

$\rho(m_B) \propto I_1(E_\pi) \cdot (p_B / m_B)^{-1}$

$\simeq I^-(E_\pi) (p_B / m_B)^{-1}$.

Then assuming that the τ^+-decay occurs entirely through (1), we shall obtain the experimental $\rho(m_B)$. It is noted that such a $\rho(m_B)$ can be safely represented by the monotonic in-

* The mass distribution $\rho(m_B)$ with the parameters $m_B^2=400 \text{ MeV}$ and $r_B=30 \text{ MeV}$ which was used in reference 1) gives this ratio $\sim 10^{-8}$.

by guest
on 16 September 2017
creasing curve (the solid curve in Fig. 3).

![Graph](image)

Fig. 3. The mass distribution $\rho(m_B)$ fitted to the experimental data of π^- spectrum.

Using thus obtained $\rho(m_B)$, we have calculated π^+-energy spectra which is given in Fig. 2. The agreement of the calculated spectrum with the experiment is fairly satisfactory.

As for the direct 3π decay process we shall only remark that the consistent interpretation of the π-spectrum is also possible even if this process is comparable to the $B_1(0, 2)$ channel, by taking the slightly changed $\rho(m_B)$. The branching ratio $\tau^+/\tau^{+\prime}$ is worthwhile to notice. With no direct process the ratio is $19/11$ for $\Delta I=1/2$. This value seems to be a little smaller than the present experimental value 2.9 ± 0.5. In order to increase the branching ratio from $19/11$ it is necessary to introduce either the $\Delta I=3/2$ decay amplitude or the direct 3π decay process.

The possible existence of $B_1(0, 2)$ may bring the effect in $K\rightarrow 2\pi$, but the problem essentially needs information about the large mass part of $\rho(m_B)$ and the strength of the reaction with $\Delta I=3/2$, and will require further investigation. It is noted that the process $K\rightarrow B_1(0, 2)+e+\nu$ is forbidden in the Sakata model.