The definition of “sink testing,” although not found in any dictionary, is the reporting of a value when in fact no testing has been performed. Another name for this practice is to “dry lab”—reporting a test value when the test tubes were unused or “dry.” This may include a range of acts from “writing-in” QC or PM results without performing the process or test, to far more serious acts as reporting patient results without ever performing the test.

Although we would all like to think that this practice is in fact a myth or laboratory joke, unfortunately even in the current laboratory environment, there is evidence that this unethical practice may occur. The problem is proving that a “professional” has actually committed intentional fraud. It is easier to think of an individual as lacking competence rather than lacking integrity. A situation I heard about several years ago involved a blood bank error that was discovered by the nurse preparing for a transfusion. The technologist had labeled the units as A POS on the crossmatch tags. In making the pre-infusion checks, the nurse noted that the units were clearly labeled as O POS. When the laboratory supervisor reviewed the compatibility testing records it was noted that the technologist had recorded the reactions for A POS on the unit group/type confirmation. The technologist stated that she had not noticed the error and had followed all the correct laboratory procedures. Question, was this an error or a deliberate act of “sink testing”? It is impossible to prove.

In the only case I am aware of where deliberate “sink testing” was proven, a pathologist suspected a night technologist of “sink testing” on compatibility testing. In order to prove that testing was not actually being performed, the pathologist replaced the blood bank check cells with unsensitized cells prior to the technologist’s shift. The next morning when the technologist had documented reactions for the check cells, it was proven that he had not actually performed the testing. As is the usual situation, the technologist was allowed to resign, and the issue was resolved.

However, I suspect that this situation where the suspicions were able to be confirmed is the exception. More often, even when there is a serious suspicion, there is no way of proving the unethical behavior. Even in cases where the suspicions are proven, no action is taken beyond “getting rid” of the problem employee.

In another situation that was related to me, there was a technologist in a blood bank who discovered that the other technologist working in the facility was “sink testing” the QC and maintenance results. The technologist copied the evidence and then approached the administrators. When presented with the evidence, the administrators fired the technologist who made the charges. The rationale was that the technologist had broken protocol by copying the records. No action or investigation was ever initiated against the technologist against whom the charges had been made. This may appear extreme, but it is probably the most common reaction by administrators. Do not investigate the charges—rather, eliminate the individual that is making the charges. Make it go away. Eliminate the problem.

In our current litigious climate and under control of the human resource departments, even when there are serious suspicions, the only action that a laboratory will take is termination. Get rid of the problem employee, or pass them on to another laboratory. However, in the profession as a whole, this response only creates a larger problem. Not only does it allow unethical technologists to continue to work, but it presents an image of a profession that is unwilling to make ethics a priority over public image. As I attempted to research for this article, it became obvious that this is not a subject often discussed or about which much is written. Most professionals do not want to believe that a fellow professional is capable of “sink testing.” There appears to be few published reports that address the problem of “sink testing.” So there is no way to estimate the size of the problem as long as it remains unconfirmed, unreported, and not discussed. Additionally, it remains unacknowledged within the profession.

A larger issue is the cost of “sink testing.” There is the overall cost to laboratories and the profession. Yet on a more personal scale, there is the cost to the individual patient. Recently while performing monthly quality assurance, a laboratory supervisor noticed that one fairly new cytotechnologist had markedly lower statistical numbers for positive slides than the other cytotechnologists. The individual was told to be more cautious. When the next month’s statistics were reviewed, the difference became significant, and a review process was initiated. When initial review of the slides read by this cytotechnologist revealed discrepancies, the director made the decision to review every slide that was screened by the technologist. This involved the reading of approximately 5,000 slides. Additionally, a letter was sent to the physicians informing them of the review that was ongoing and that there was the possibility of corrected reports. This situation created a tremendous expense for the company involved. It also took a personal toll on women who were notified that their original test results may possibly be erroneous.

Was this a case of “sink testing”? Impossible to prove. The technologist had passed all competency testing, so it was hard to believe that it was a case of incompetence. Yet, to prove that this was a case of intentional “sink testing” would require an intensive investigation and leave the laboratory open to a lawsuit if they made the charge and were unable to prove their case. So how does a company “do the right thing”? What is the “right thing”? Most importantly, how does the clinical laboratory profession make ethics a priority?
As a profession we need to take the ultimate responsibility for preventing unethical or fraudulent practices within the profession. This starts in the schools and training programs. Teaching ethics during medical technology training is essential. It is during the formative period of medical technology training that the individual develops their sense of ethics and professionalism they will maintain throughout their career. A professional’s concept of acceptable practices is developed early in the training period. If trainees are presented with a solid sense of ethics by the training technologists, they are inclined to absorb the mind set. It is important that ethics be both verbally taught and demonstrated by the professionalism of the training technologist. It is only through this process that our profession can build a strong ethical core.

As for technologists working in the field, it is important to always be internally monitoring their own sense of ethics. In a time when laboratories are understaffed and constantly pushed for increased production, cutting corners and other questionable practices are a constant temptation. Accepting results when controls do not all pass, skipping validations or correlations, manipulating curves, while not actual “sink testing,” are definitely “questionable practices.” Accepting “questionable practices” is a lapse of ethics. This is a “slippery slope” that may lead to more serious ethical lapses and ultimately “sink testing.” As professionals, we need to be constantly vigilant of not only our own ethics, but the ethics of fellow employees. Technologists need to be open in discussing technique and work practices with other technologists. This is not only a learning tool, but it helps everyone stay current. Technologists that are reluctant to openly share their work practices with other technologists may be covering what they are actually doing or not doing. It is our responsibility as professionals to both build and police the ethics of our profession.

Externally, the laboratory regulatory agencies have taken a major role in preventing “sink testing.” The increased requirement for documentation, competency evaluation, and proficiency testing are means for proving that the laboratory professional is performing their job correctly. As much as we are all burdened by the increased demands of these requirements, the purpose is to police our industry and weed out the unethical individuals, thereby bringing our industry to a higher standard.

So where do we go from here? We must all accept that there are individuals in our profession that are capable of putting patients’ lives and health at risk. Therefore, we as professionals need to work internally within our laboratories to both promote and exhibit a sense of ethics. Fortunately, I am employed at a company that has placed ethics as its number one priority. Every employee is presented with the Standards of Ethics at the time of employment. Ethics are openly discussed by both management and employees. Clinical laboratory scientist trainees are taught ethics from their very first day of training. This is not unique. We are a profession that has been built on service and the delivery of health care. Most of us entered this demanding profession for reasons other than just money. Many of us truly enjoy and take pride in what we do at our laboratories. Therefore, we need to come together and build on the core of ethics for our profession.

To do this we need to admit that “sink testing” does still occur in laboratories. Once this admission has been accepted, we must work together to be vigilant and eliminate it from our laboratories and our profession. IM