Letters to the Editor

The opinions expressed in these columns do not necessarily reflect those of the Editors.

Veneziano-Like Model with $2q2\bar{q}$
Meson Trajectory and pp
Scattering at 90°e.m.

Taketoshi INO

Department of Physics, Shimane University
Matsue 690

February 13, 1978

The pole-pole duality, introduced by Veneziano in his model for scattering amplitude and supplied with the quark-diagram interpretation by several authors, may be one of the fundamental characteristics of hadron interactions. A possible framework for the duality is the Veneziano-type model in terms of the $q\bar{q}$- and $2q2\bar{q}$-meson and $3q$-baryon trajectories. In this short note, we make an application of the model to pp scattering, for which reaction exchanged states in a channel should be $2q2\bar{q}$-mesons.

Some indications of $2q2\bar{q}$-meson exchange have been obtained in NN scattering\(^{11}\) and other reactions.\(^{33}\) Theoretical models\(^{3}\) suggest that there exist various types of $2q2\bar{q}$-mesons. It is interesting to examine what $2q2\bar{q}$-mesons dominate in low-energy NN scattering. In this work, an effective $2q2\bar{q}$ trajectory, denoted by $\alpha_4(u)$ hereafter, is assumed. Its slope and intercept are motivated from the phenomenological σ\(^{11}\) and ρ'\(^{40}\) trajectories. The ρ' trajectory $\alpha_{\rho'}(u) = -0.13 + 0.3u$, introduced to understand πN charge-exchange scattering, may be a $2q2\bar{q}$ trajectory.\(^{31}\) The σ meson, needed in models of low-energy NN scattering (the OBE models), is assumed to be related to the σ trajectory ($\alpha_\sigma(u)$

\[= -0.4 + 0.9u \].\(^{11}\)

It is in general not so easy to compare a Veneziano model for NN scattering with experiments, because the strong absorptive effects from s-channel unitarity must be considered. We discuss the pp elastic scattering at 90°e.m. in the P_L range of $1.5\sim 11$ GeV/c, from the viewpoint that the scattering is non-diffractive at least at low energies. The suppression due to the absorption is taken into account by a simple parameter modification. Our interest is in the slope of energy-dependence of $(d\sigma/dt)_{pp}$ and breaks in it.

Now, we assume the following amplitude:

\[
A_i(s, t, u) = \mu_e \left[\frac{\Gamma(1 - \alpha_\rho(t))}{\Gamma(1 - \alpha_\rho(t) - \alpha_4(u))} + (t \leftrightarrow u) \right] \\
+ \nu_e \left[\frac{\Gamma(1 - \alpha_\rho(t))}{\Gamma(1 - \alpha_\rho(t) - \alpha_4(u))} + (t \leftrightarrow u) \right].
\]

(1)

Here, $\alpha_{\rho}(t)$ represents the exchange-degenerate $\rho - A_2 - \omega - f$ trajectory. The amplitudes A_i are related, by our definition, to the invariant amplitudes $G_i^{(5)}$ as $A_i = m_q^2 G_i (i = 1, 3, 5)$. (The G_2 and G_4 for pp scattering are antisymmetric under $t \leftrightarrow u$ and vanish at 90°.) The two terms in Eq. (1) are needed to maintain two kinds of the ρNN couplings and the interference between them. And, for the ωNN vertex, the tensor coupling is set equal to zero. Equating the residues at ρ and ω poles of Eq. (1) to those of the one-ρ and ω-exchange amplitudes in models of low-energy NN scattering respectively, we have
\[\nu_1 = \frac{f_p^2}{16} \left(1 + 2 \frac{g_{p^0}}{f_p^2} \right) \alpha_\pi', \]

\[\mu_1 = \nu_1 \alpha_\pi(0) + m_p^2 \alpha_\rho \left[\frac{5r+4}{32} f_p^2 \right. \]

\[\left. + \frac{r-2}{8} f_p^2 g_{p^0} - 2 \left(\frac{g_{p^0}^2}{4} + g_{\rho^0}^2 \right) \right], \]

\[\nu_3 = -\frac{f_p^2 \alpha_\pi'}{16 \alpha_\pi}, \]

\[\mu_3 = \nu_3 \alpha_\pi(0) + m_p^2 \alpha_\rho \left[\frac{r-4}{32} f_p^2 \right. \]

\[\left. + \frac{f_p g_{p^0}}{4} + \left(\frac{g_{p^0}^2}{4} + g_{\rho^0}^2 \right) \right], \] (2)

\[\nu_3 = \nu_1, \]

\[\mu_5 = \nu_5 \alpha_\pi(0) + m_p^2 \alpha_\rho \left[\frac{5r+4}{32} f_p^2 \right. \]

\[\left. + \frac{r+6}{8} f_p g_{p^0} + 2 \left(\frac{g_{p^0}^2}{4} + g_{\rho^0}^2 \right) \right], \]

where \(r = m_p^2 / m_\rho^2 \). Here, it is assumed that the \(\rho \) and \(\omega \) have not satellites. We assume also \(\alpha_\pi(u) = 1 \) from the isovector nucleon electromagnetic from factor. \(\alpha_\pi(0) = 0.6u - 0.3(\alpha_\pi(u) + \alpha_\rho(u))/2 \), and \(\alpha_\rho(0) = 0.9t + 0.5 \).

With the values of \(g_{\rho^0}^2 \) and \(g_{\omega^0}^2 \) consistent with those obtained in models of low-energy NN scattering,\(^\text{1,7}\) we find that

\[\frac{d\sigma}{dt} \bigg|_{90^\circ \text{c.m.}} = \frac{\pi}{10} \frac{E_p}{m_p^2} \left[(E^2 A_1 + m_p^2 A_2) + (p^2 A_3) + (p^2 A_4) \right] \] (3)

shows an exponential-like behaviour with \(p^2 \) and has two concave curvature structures (called breaks hereafter for simplicity) in its slope around \(p^2 \simeq 0.5 \) and 1.5 (GeV/c)^2. Here, \(p^2 \) is the squared c.m. momentum of proton, and \(E^2 = p^2 + m_p^2 \).

In Fig. 1, the present model is compared with experiments\(^8\) with \(g_{\rho^0}^2 = 2.5 \) and \(g_{\omega^0}^2 = 6 \), and considering the absorptive effect by multiplying \(A_4 \) by a factor \(c = 0.13 \). The values of \(\mu_1 \) and \(\nu_1 \), corresponding to these coupling constants, are \(\mu_1 = -8.6 \), \(\mu_3 = 4.9 \), \(\mu_5 = 19.7 \), \(\nu_1 = 4.9 \), \(\nu_3 = -3.2 \) and \(\nu_5 = 4.9 \). And so, the interference between the two terms in Eq. (1) is destructive for \(A_1 \) and \(A_3 \); while, for \(A_3 \) it is constructive. The dot-dashed curve in Fig. 1 denotes the contribution from the first plus second terms in Eq. (3) multiplied by the factor \(c^2 \). The exponential by dotted line is for convenience's sake. In this model, the break at \(p^2 \simeq 0.5 \) (GeV/c)^2 is due to the spin effects and the interference between the two terms in Eq. (1), and the slope change around \(p^2 \simeq 1.5 \) (GeV/c)^2 is owing not only to these spin and interference effects but also to the fact that in the \(A_3 \) amplitude the \(\mu \)-term dominates at momenta \(p^2 < 1.5 \) (GeV/c)^2, while at \(p^2 \simeq 1.5 \) (GeV/c)^2 the \(\nu \)-term becomes influential more and more with momentum and overcomes the \(\mu \)-term soon. The main cause responsible for the slope change around \(p^2 \simeq 1.5 \) (GeV/c)^2 is,
of course, the latter fact.

As seen in Fig. 1, the pp elastic scattering at 90° t.m. in the range $0.4 \leq p^2 \leq 3$ (GeV/c)^2 is understood fairly well by the amplitude (1) with an effective $2q2\bar{q}$ trajectory $\alpha_4(u) \approx (\alpha_\sigma(u) + \alpha_\rho(u))/2$. Thus, it is suggested that the σ and ρ' trajectories (and some $2q2\bar{q}$ trajectories being exchange-degenerate with the σ and ρ' ones) dominate in the u-channel (or t-channel) of low-energy NN scattering.

If the ρ' trajectory couples with the ρ-A_2 trajectory (into a dual pair) more strongly than with the ω-f one, then we may have a larger slope change around $p^2 \approx 1.5$ (GeV/c)^2 than one obtained here by Eq. (1).

The break at $p^2 \approx 3.4$ (GeV/c)^2, seen in experiments, cannot be understood by the present model.

3) See models cited in Ref. 2).
5) B. Nicolescu, in Ref. 2).