Spatial and Temporal Variations of the Diffuse Iron 6.4 keV Line in the Galactic Center Region

Dmitrii Chernyshov,1,2,3 Vladimir Dogiel,1 Masayoshi Nobukawa,4 Takeshi Go Tsuru,4 Katsusi Koyama,4 Hideki Uchiyama,5 and Hironori Matsumoto6

1 I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute of Physics, Leninski pr. 53, 119991, Moscow, Russia chernyshov@td.lpi.ru
2 Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
3 Institute of Astronomy, National Central University, Zhongli 320, Taiwan
4 Department of Physics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502
5 Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
6 Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602

(Received 2011 July 6; accepted 2011 September 6)

Abstract

We analyzed the diffuse Fe I Kα line generated in the diffuse interstellar molecular hydrogen by primary photons or subrelativistic protons injected by Sagittarius (Sgr) A*. We showed that unlike emission from compact molecular clouds, this emission can be permanently observed in the directions of the Galactic center. We conclude that the diffuse emission of the 6.4 keV line observed at present is probably due to Fe I Kα vacancy production by primary photons if the X-ray luminosity of Sgr A* was about $L_X \approx 10^{39} - 10^{40}$ erg s$^{-1}$. In principle these data can also be described in the framework of the model when the 6.4 keV line emission is generated by subrelativistic protons generated by accretion onto the central black hole, but in this case extreme parameters of this model are necessary.

Key words: cosmic-rays — Galaxy: center — X-rays: ISM

1. Introduction

Detection of the Fe I Kα (6.4 keV) line from molecular clouds in the Galactic center (GC) is one of the most remarkable events in high-energy astrophysics of the last decades. The story started in 1993 when Sunyaev, Markovitch, and Pavlinsky (1993) found a diffuse X-ray emission from compact sources in the GC. They interpreted this emission as being due to the reflection of photons by dense molecular clouds (Compton echo) which were irradiated by a nearby X-ray source. In addition, they predicted a bright fluorescent cloud (Compton echo) which was irradiated by a nearby compact source in the GC. They interpreted this emission as being due to the reflection of photons by dense molecular clouds (Compton echo) which were irradiated by a nearby X-ray source. In addition, they predicted a bright fluorescent cloud (Compton echo) which was irradiated by a nearby compact source in the GC.

The 2–10 keV luminosity of primary photons from Sgr A* X-ray flashes of the central source would be the time variability of the 6.4 keV line emission from molecular clouds because of a relatively short time in which a photon crosses them. This idea about the Sgr A* past activity as being the origin of 6.4 keV emission from Sgr B2 was confirmed.
recently. Observations found a steady decrease of the X-ray flux from Sgr B2 for the period $\lesssim 10$ yr. Time variations of the emission are expected in the XRN model, and interpreted as the photoionization of iron atoms by a flux of primary X-rays emitted by the central source, Sgr A*, due to an X-ray flare that occurred there about 100–300 years ago (Koyama et al. 2008; Inui et al. 2009; Terrier et al. 2010; Nobukawa et al. 2011).

1.2. Alternative Models of 6.4 keV Line Emission

In principle flux of the 6.4 keV line can also be generated by collisions of subrelativistic charged particles with the molecular gas in the GC. Thus, Yusef-Zadeh, Law, and Wardle (2002) accounted for the impact of subrelativistic electrons with energies of 10–100 keV from local sources with diffuse neutral gas producing both nonthermal bremsstrahlung X-ray continuum emission and diffuse 6.4 keV line emission. Dogiel et al. (2009a) suggested a scenario for the 6.4 keV line emission from stellar clouds, which was excited by a flux of subrelativistic protons produced by star accretion onto the central black hole. Below these two scenarios are denoted as the low-energy cosmic-ray electron model (LCERe) and the low-energy cosmic-ray proton model (LECRp). We note that because of the relatively long lifetime of protons in comparison with the average time of star capture the LECRp component of the 6.4 keV line emission in the GC is quasi-stationary.

Generation of the 6.4 keV line is accompanied by a continuum X-ray emission produced by Thomson scattering for the XRN scenario and by bremsstrahlung for the LCERe and LECRp models. Therefore, the origin of the 6.4 keV line flux from the clouds can be defined from an analysis of the equivalent width, E_{W}, of the iron line in the spectrum, which is the ratio of the line flux to the continuum intensity at $E_{\text{x}} = 6.4$ keV,

$$E_{\text{W}} = \frac{F_{\text{6.4}}}{F_{\text{x}}(E_{\text{x}}=6.4 \text{ keV})}. \tag{4}$$

The width is a function of the iron abundance, η, in the clouds.

From estimations of E_{W} for the cloud Sgr B2, Nobukawa et al. (2010) concluded that the photoionization interpretation seemed to be more attractive in comparison with the electron impact scenario. The required abundance of iron in the cloud was estimated by Nobukawa et al. (2011) by the value $\eta = 1.3$ solar. However, Capelli et al. (2011) might find the iron line emission that was produced by subrelativistic particles. They presented results of eight years of XMM-Newton observations of the region surrounding the Arches cluster in the Galactic center. They analyzed the spatial distribution and the temporal behavior of the 6.4 keV line emission, and concluded that the origin of this emission might be of photoionization origin, although excitation by cosmic-ray particles was not excluded. Moreover, they concluded that for the three clouds nearest to the Arches cluster, which showed a constant flux over the 8-year observation, the origin of the line as photoionization by photons from Sgr A* seemed to be at best tentative, and the hardness of the nonthermal component associated with the 6.4-keV line emission might be best explained in terms of bombardment by cosmic-ray particles.

Recent Suzaku observations might also find the iron line emission which was produced by subrelativistic particles (Fukuoka et al. 2009; Tsuru et al. 2010). For the clumps G 0.174−0.233 with $E_{\text{W}} \approx 950$ eV, they concluded that the XRN scenario was favored. On the other hand, for the clump G 0.162−0.217 with $E_{\text{W}} \approx 200$ eV they assumed that the emission from there was due to low-energy cosmic-ray electron (LECR). They found also that the E_{W} of the 6.4 keV emission line detected in the X-ray faint region (non Galactic molecular cloud region) was significantly lower than one expected in the XRN scenario but higher than that of the LECRp model.

Dogiel et al. (2011) showed that estimates of E_{W} alone did not allow to distinguish firmly between the XRN and LECR scenarios because in the latter case the value of E_{W} depended strongly on a spectral index of ionizing charged particles, especially if they were subrelativistic protons. In the case of ionization by charged particles, the spatial characteristics of 6.4 keV line are expected to be quite different for electrons and protons. While for electrons we expect rather local ionization of the medium because of their relatively short lifetime, protons can fill an extended region around the GC. If protons generate the 6.4 keV line in the GC, then at least two components of 6.4 keV line emission from the molecular clouds and the diffuse molecular gas can be generated there. The first one is a time-variable component generated by a flare of primary X-rays emitted by Sgr A*, and the second is a quasi-stationary component produced by subrelativistic protons interacting with the gas.

Observations of the 6.4 keV flux from Sgr B2 have not found up to now any evident stationary component for the GC molecular clouds, though as predicted by Ponti et al. (2010) a fast decrease of 6.4 keV emission observed with XMM-Newton for several molecular clouds suggested that the emission generated by low-energy cosmic-rays, if present, might become dominant in several years. A component of another than that of the XRN origin may also be seen in the X-ray spectrum of faint molecular regions in the GC as follows from Fukuoka et al. (2009). Below we derive parameters of the diffuse 6.4 keV line emission in the framework of the XRN and LECRp models in attempts to define the origin of the observed diffuse line flux from the GC.

2. Diffuse Emission of the 6.4 keV Line from the GC

The intensity of the diffuse 6.4 keV line from the GC depends on parameters of the intercloud molecular gas there. The inner bulge (200–300 pc central region) contains $(7–9) \times 10^7 M_{\odot}$ of hydrogen gas. In spite of the relatively small radius, this region contains about 10% of the Galaxy’s molecular mass. Half of the molecular gas is contained in very compact clouds of mass $10^4–10^6 M_{\odot}$, the average densities of which are $\gtrsim 10^4$ cm$^{-3}$ with a volume filling factor of only a few percent; then, the cloud radius is in the range of 1–40 pc. The other half forms the molecular intercloud gas with the densities of at least $n_{\text{H}} > 10–10^2$ cm$^{-3}$ (see Morris & Serabyn 1996). Launhardt, Zylka, and Mezger (2002) estimated for the inner ~200 pc region the averaged molecular hydrogen density, n_{H}, to be 140 cm$^{-3}$, assuming a homogeneous matter distribution, and for a thin intercloud medium $n_{\text{H}} \sim 10$ cm$^{-3}$.

Recently Koyama et al. (2009) provided careful analysis with high energy resolution and low background of the diffuse...
6.4 keV emission and of the hard X-ray continuum associated with this line in the GC region. From the Suzaku data they estimated the continuum X-ray emission, which is proportional to the intensity of the diffuse 6.4 keV line.

More recently, Uchiyama et al. (2011) provided a careful analysis of 6.4 keV emission from the region around the GC. Their spatial distribution of the 6.4 keV line in the GC is shown in figure 1, where spikes of this emission correspond to the directions to molecular clouds.

We expect that the characteristics of the 6.4 keV emission produced by subrelativistic cosmic-rays and by a flux of primary X-ray photons are quite different. Below we reproduce the spatial distributions of the 6.4 keV line within the framework of the XRN and LECRp models.

3. Spatial Distribution of the Diffuse 6.4 keV Line Emission in the XRN Model

It is assumed in the XRN model that Sgr A* was active for about T_1 years in the past as an emitter of primary X-ray photons with the energy E_x. The average luminosity of this source during the active period was

$$L_{\beta} \simeq 10^{39} \text{erg s}^{-1}$$

for the range 2–10 keV. The source activity is supposed to have ceased T years ago.

For the observed spectrum (2), we define the total density of primary photons on the divergent front of primary photons, which is at the distance r from Sgr A*, as

$$n_{ph} = \frac{L_{\beta}}{4\pi c r^2 E_{\min} \ln (E_{\max}/E_{\min})},$$

where E_{\min} and E_{\max} are the minimum and maximum energies of the spectrum of primary photons. Then, the differential spectrum of primary photons, $dn(E_x)/dE_x$, for the total photon density (6) we present as

$$\frac{dn(E_x)}{dE_x} = n_{ph} F_x(E_x)$$

with the following normalization condition for $F_x(E_x)$:

$$\int_{E_{\min}}^{E_{\max}} F_x(E_x) dE_x = 1.$$

Therefore, for the spectrum (2) we have

$$F_x(E_x) = \frac{E_x^{\min} E_x^{\max}}{(E_x^{\max} - E_x^{\min})} E_x^{-2} \theta (E_x - E_{\min}) \theta (E_{\max} - E_x)$$

$$\simeq E_x^{\min} E_x^{\max} E_x^{-2} \theta (E_x - E_{\min}) \theta (E_{\max} - E_x)$$

for $E_{\max} \gg E_{\min}$.

Here, $\theta(y)$ is the Heaviside step function.

These primary photons ionize iron atoms. The cross-section of photoionization, σ_K, has the form

$$\sigma_K(E_x) = \sigma_0 \left(\frac{E_x}{E_0} \right)^{-3} \theta (E_x - E_0),$$

where $E_0 = 7.1$ keV and $\sigma_0 \sim 3 \times 10^{-20} \text{cm}^2$ (see Tatischeff 2003).

Then, the emissivity of the 6.4 keV line is

$$\epsilon_{6.4}(r) = c \eta \omega_K n_H n_{ph} \int_{E_0}^{E_{\max}} \frac{F_x}{E_0} \left(1 - \frac{E_0^4}{E_x^4} \right)$$

$$= c \eta \omega_K n_H n_{ph} \frac{E_x^{\min}}{4E_0} \left(1 - \frac{E_0^4}{E_x^{\max}} \right) 4E_0,$$

where ω_K is the fluorescence yield of the X-ray photon emission, which is about 0.3 for iron. The average density of the diffuse molecular gas was defined as n_H. Below we take everywhere for calculations $n_H = 10 \text{ cm}^{-3}$, and assume a uniform density distribution of the molecular gas in the GC that gives an upper limit of diffuse 6.4 keV emission from the GC. The iron abundance, η, is supposed to equal twice solar, $\eta \sim 2 \eta_\odot \simeq 7 \times 10^{-5}$.

Fig. 1. Longitude (along $b = -0.046$) and latitude ($l = -0.17$) distributions of the 6.4 keV line in the GC as observed by Suzaku. The data-points taken from Uchiyama et al. (2011).
Fig. 2. Geometry of the GC reflection process. The source Sgr A* in the coordinate center. Two parabolas shown by solid lines denote the reflection positions of emission emitted in the time interval \(\{t_1, t_2\} \) which can be observed by an observer at present. Two circles (thin lines) denote a schematic position of the front of primary X-ray photons emitted by Sgr A* for the period \(T_1 \) which stopped its activity \(T \) years ago. The dashed line is the line of view of the observer. Two thin arrow lines show the path of a primary photon before and after reflection.

For the delay time \(T \) we can observe at present irradiated emission of the diffuse gas which is on surface of the parabola (see e.g., Sunyaev & Churazov 1998),

\[
\frac{z}{c} = \frac{1}{2T} \left[T^2 - \left(\frac{x}{c} \right)^2 \right],
\]

where the coordinates \(x \) and \(z \) are shown in figure 2.

Unlike the line emission from compact molecular clouds, which can be observed for a relatively short period of time when the X-ray front is crossing a cloud (~10 yr), the diffuse 6.4 keV emission produced by primary X-ray photons should be permanently observed from the GC as the front of primary X-ray photons is propagating through the diffuse molecular gas in the GC.

The region emitting the 6.4 keV line by the diffuse gas — X-ray photon interactions is enclosed between the two surfaces

\(\Delta z \)

\(cT \)

\(c(T + T_1) \)
If the central source was active for the period between time momenta \(t_2 \) and \(t_1 \), then the limits of integration are

\[
z_1 = \frac{1}{2} \left(c t_1 - \frac{x^2}{c t_1} \right)
\]

and

\[
z_2 = \frac{1}{2} \left(c t_2 - \frac{x^2}{c t_2} \right).
\]

Below we define \(E_{\text{min}}^x = 2 \) keV and \(E_{\text{max}}^x = 10 \) keV, which correspond to the value of \(L_{\text{fl}} \) that was derived for this energy range; then,

\[
I_{6.4}(x,t) = \frac{4.62 \times 10^{13} \text{ photons s}^{-1} \text{ cm}^{-2} \text{ arcmin}^{-2}}{\frac{\eta}{2\eta_{\odot}} \left(\frac{\eta_{\odot}}{10 \text{ cm}^{-3}} \right) \left(\frac{L_{\text{fl}}}{10^{39} \text{ erg s}^{-1}} \right) \sqrt{\frac{1}{2} \left(\frac{c t_2 - \frac{x^2}{c t_2}}{\frac{c t_1 - \frac{x^2}{c t_1}}{x}} \right) \left(\frac{1}{x} \left(\arctan \left(\frac{1}{2} \frac{c t_2 - \frac{x^2}{c t_2}}{\frac{c t_1 - \frac{x^2}{c t_1}}{x}} \right) \right) - \arctan \left(\frac{1}{2} \frac{c t_1 - \frac{x^2}{c t_1}}{\frac{c t_2 - \frac{x^2}{c t_2}}{x}} \right) \right) \}}.
\]

As an example, we show in figure 3 the spatial and time variations of the 6.4 keV line intensity in the direction of the Galactic latitude, \(\theta \) (x = \(R_0 \), \(\theta \)), calculated from equation (16) when a central sources starts its activity at \(t = 0 \), and this activity drops to zero at \(t = 300 \) yr.

From this figure one can see that unlike emission from molecular clouds, which can be observed for short periods of their irradiation (\(\sim 100 \) yr), the diffuse emission of 6.4 keV line from the GC can be permanently seen for \(\sim 10^2 - 10^3 \) yr, even when the period of X-ray proton injection by Sgr A* is quite short.

Ponti et al. (2010) estimated the following parameters of the primary flare: \(T = 100 \) yr and \(T_1 = 300 \) yr. The expected distribution of the diffuse X-ray emission in the XRN model is shown in figure 4 by the solid line. To reproduce the observed intensity distribution of the diffuse 6.4 keV line in the GC, the power of the central source of primary photons should be

\[
L_{\text{fl}} = 1.6 \times 10^{39} \left(\frac{n_{\odot}}{10 \text{ cm}^{-3}} \right)^{-1} \left(\frac{\eta}{2\eta_{\odot}} \right)^{-1} \text{ erg s}^{-1},
\]

which is compatible with \(L_{\text{fl}} \) derived for the case of Sgr B2 by Murakami et al. (2000).

We notice, however, that the X-ray flare duration from Sgr A* may be much shorter that estimated by Ponti et al. (2010). Thus, from 6.4 keV flux variations in the direction of Sgr B2 presented in Inui et al. (2009), the total duration of the flare may be about \(T_1 \sim 10 \) yr only (see also in this respect Yu et al. 2011). In figure 4 the emission distribution for this duration of the flare is shown by the dashed line. The required luminosity of the flare in this case should be about \(L_{\text{fl}} \sim 2.9 \times 10^{40} \) erg s\(^{-1}\), which is still compatible with the estimate of Murakami et al. (2000), because the real distance from Sgr A* to Sgr B2 may be longer than the projection distance of 100 pc.

If, however, the flare of Sgr A* occurred 300 years ago, then the required luminosity is \(L_{\text{fl}} \sim 7.8 \times 10^{40} \) erg s\(^{-1}\).
As shown in Nobukawa et al. (2010) and Dogiel et al. (2011), the equivalent width of the iron line was generated by the same primary particles (photons or subrelativistic charged particles). The continuum emission in the XRN model is caused by Thomson scattering of primary photons, and it should correlate with the 6.4 keV line emission. The continuum emission due to the Compton echo from molecular clouds was analysed in detail by Sunyaev and Churazov (1998). The intensity of photons due to the Compton scattering of primary photons on the diffuse molecular gas can be estimated as

\[
\left(\frac{dI}{dE} \right)_c(x) = n_H n_{ph} \int_{z_1}^{z_2} F_x \sigma_T(\phi) dz = 0.5 n_H \frac{L_H}{4\pi z_1^2 E_x^4 \ln(E_x^\text{max}/E_x^\text{min})} \int_{z_1}^{z_2} \frac{(1 + \cos^2 \phi) dz}{x^2 + z^2}. \]

Here, \(\sigma_T \) is the Thomson cross-section, \(r_e \) is the classical radius of electron and \(\phi \) is the scattering angle. Taking into account that \(\cos \phi = z/r \), we obtain

\[
\left(\frac{dI}{dE} \right)_c(x) = \frac{n_H n_{ph} L_H}{8\pi z_1^2 E_x^4 \ln(E_x^\text{max}/E_x^\text{min})} \left[\frac{3}{x} \left(\arctan \frac{z_2}{x} - \arctan \frac{z_1}{x} \right) \right. \\
\left. + \frac{z_1}{x^2 + z_1^2} - \frac{z_2}{x^2 + z_2^2} \right].
\]

The distribution of the equivalent width along the Galactic longitude expected in the framework of XRN model is shown in figure 5. The spatial variations of \(eW \) for the XRN model are due to the cross-section dependence on the angle scattering.

We notice, however, that it is not easy to compare this distribution of \(eW \) with that derived from observations, because it is not easy to subtract a component of diffuse X-ray emission produced by Compton scattering from the total flux of X-ray in the direction of GC: a significant contribution of thermal emission is expected from there. Therefore, a special procedure to subtract a Compton component of continuum emission is necessary, as it was done e.g., in Koyama et al. (2009).

4. Spatial Distribution of the 6.4 keV Line in the LECRp Model

Another mechanism that can generate a diffuse component of 6.4 keV emission in the GC is bombardment of the interstellar molecular gas by subrelativistic protons, whose lifetime is long enough to fill an extended region around the GC. As follows from Dogiel et al. (2009a, 2011), these protons may be generated by accretion processes onto the central black hole. The time-dependent spectrum of subrelativistic protons, \(N(r, E, t) \), can be calculated from the equation (see for details Dogiel et al. 2009b, 2009c)

\[
\frac{\partial N}{\partial t} - \nabla D \nabla N + \frac{\partial}{\partial E} [b(E)N] = Q(E, r, t), \quad (20)
\]

where \(D \) is the spatial diffusion coefficient of cosmic-ray protons, \(dE/dt \equiv b(E) \) is the rate of proton energy losses, and \(Q(E, r, t) \) is the rate of proton production by accretion, which can be presented in the form

\[
Q(E, r, t) = \sum_{k=0} Q_k(E) \delta(t - t_k) \delta(r), \quad (21)
\]

where \(t_k \) is the injection time. The average time of star capture in the Galaxy was taken to be \(T \approx 10^7 \text{yr} \), then \(t_k = k \times T \), where \(k \) is the number of a capture event.

The energy distribution of erupted nuclei, \(Q_k(E) \), is taken as a simple Gaussian,

\[
Q_k(E) = \frac{N_k}{\sigma \sqrt{2\pi}} \exp \left[- \frac{(E - E_{\text{esc}})^2}{2\sigma^2} \right], \quad (22)
\]

where we take the width \(\sigma = 0.03 E_{\text{esc}} \) with \(E_{\text{esc}} \approx 100 \text{MeV} \), and \(N_k \) is the total amount of particles ejected by each event of stellar capture.

In the nonrelativistic case the rate of energy losses of protons due to Coulomb collisions can be approximated as (see e.g., Hayakawa 1969)

\[
\left(\frac{dE}{dt} \right)_i \approx \frac{4\pi n_{H} e^4 \ln \Lambda}{m_e v} \approx \frac{a}{\sqrt{E}}, \quad (23)
\]

where \(\ln \Lambda \) is the Coulomb logarithm, \(v \) is the proton velocity, \(m_e \) is the electron rest mass and \(a \) is a constant if we neglect a weak dependence of the Coulomb logarithm on the particle kinetic energy, \(E \). Then the solution of equation (20) is

\[
N(r, E, t) = \sum_{k=0} \frac{N_k \sqrt{E}}{\sigma \sqrt{2\pi Y_k^{1/3}}} \begin{cases} \\
\exp \left[- \frac{(E - E_{\text{esc}})^2}{2\sigma^2} \right] \\
\left[4\pi D(t - t_k) \right]^{3/2} \end{cases}, \quad (24)
\]
where
\[Y_k(t, E) = \frac{3a}{2} \left(t - t_k\right) + E^{3/2}. \]
(25)

\(N_k \) is the total number of subrelativistic protons emitted in each star capture event, and \(T \) is the average time of star capture.

The intensity \(I \) of the 6.4 keV line emission in any direction, \(s \), produced by subrelativistic protons is calculated in the same way as in Dogiel et al. (2009b),

\[I_{6.4}(s) = \omega_K \eta n_H \int ds \int N(E, r) \nu \sigma_{IB} dE, \]
(26)

where the integration is along the line of sight, \(s \). Here, the cross-section, \(\sigma_{IB} \), for subrelativistic protons was taken from Tatischeff (2003).

The result of calculation for the LECRp model for the average gas density \(n_H = 10 \text{cm}^{-3} \) is shown in figure 6 for different values of the diffusion coefficient in the GC. For calculations we used the following extreme parameters of the proton injection: each star capture ejects \(N_k = 6 \times 10^{36} \) subrelativistic protons; the capture frequency is \(T_c = 10^4 \text{yr} \) (see Dogiel et al. 2009c). From the figure 6 one can see that the LECRp model can also reproduce the observed diffuse 6.4 keV emission in the GC for this set of the parameters.

In figure 7 we show the expected time variations of the 6.4 keV line emission in the XRN model and the quasi-stationary component of 6.4 keV emission produced by subrelativistic protons. For both cases the gas density was taken as \(n_H = 10 \text{cm}^{-3} \). From the figure we can see that the 6.4 keV emission produced by protons may exceed that of the primary XRN photons from Sgr A* in 100 years from now if the parameters of these models were chosen correctly. In this case, it is highly improbable to observe the stationary component of this line produced by protons from the diffuse molecular gas in the foreseeable future.

However, we notice that if the parameters of the XRN model, like the energy flux of primary photons from Sgr A*, \(L_{\text{diff}} \sim (3-10) \times 10^{39} \text{erg s}^{-1} \) and the delay time \(T \sim 100-300 \text{yr} \) and the flare duration \(T_1 \sim 10-300 \text{yr} \) for Sgr B2, are more or less correctly estimated, this makes the derived values of the 6.4 keV emission from the GC generated by primary photons relatively reliable, and the parameters of the LECRp model are highly uncertain. We do not know exactly which sort of stars and when they were captured by the central black hole, or how many protons escaped into the GC medium, or what is the diffusion coefficient there etc.

The continuum emission in LECRp model is caused by the inverse bremsstrahlung process (see Hayakawa 1969). Its intensity is

\[\left(\frac{dI}{dE}\right)_c(s) = \omega_K \eta n_H \int ds \int N(E, r) \nu \frac{d\sigma_{IB}}{dE} dE, \]
(27)

where
\[\frac{d\sigma_{IB}}{dE} = \frac{8}{3} Z^2 e^2 \left(\frac{e}{m c^2} \right)^2 m c^2 \left(\frac{\sqrt{E^2 + \sqrt{E^2 - E_x^2}}}{E_x} \right) \ln \left(\frac{\sqrt{E^2 + \sqrt{E^2 - E_x^2}}}{E_x} \right) \]
(28)
is the cross-section of the inverse bremsstrahlung process, \(E \) is the energy of proton, \(E' = (m/M)E \), \(m \) is the mass of the electron and \(M \) is the mass of the proton. The corresponding equivalent width in the frame of the LECRp model is shown in figure 5 by the dashed line.

5. Discussion and Conclusion

The diffuse emission of the 6.4 keV line in the GC region was recently observed with Suzaku. Only two components can generate ionization of the molecular gas in this extended region, namely, hard X-ray photons or subrelativistic protons with energies of about 100 MeV. Because of their long lifetime, hard X-ray photons and subrelativistic protons can propagate over large distances.

The temporal characteristics of the diffuse line emission differ from that of compact clouds. Emission produced by photoionization in the clouds shows temporal variations with
the characteristic time of about several years, which corresponds to the time in which a photon crosses the cloud. On the other hand, the diffuse emission generated by photonization changes with the characteristic time of about $\lesssim 10^3$ yr. Protons in both cases generate a stationary flux of the line emission.

We conclude that the diffuse emission of the 6.4 keV line observed at present is probably due to 6.4 keV vacancy production by primary photons. This model describes nicely the observed intensity and the spatial distribution of the 6.4 keV line emission around the GC. We notice, however, that the luminosity of Sgr A* required to produce the intensity of the observed diffuse emission depends strongly on the duration of the Sgr A* X-ray flare. For a delay time of $T \sim 100$ yr and a flare duration, T_1, of 10 to 300 yr, this luminosity is about $L_X \sim 10^{39} - 10^{40}$ erg s$^{-1}$, which is compatible to the value derived by Murakami et al. (2000) from the observed 6.4 keV flux from the cloud Sgr B2. If, however, the duration is about $T_1 \sim 10$ yr, and the delay time is $T \sim 300$ yr, then the required luminosity should be as high as $\sim 10^{41}$ erg s$^{-1}$, which significantly exceeds the estimate of Murakami et al. (2000) derived from the Sgr B2 data.

In principle, these emissions can also be described within the framework of the LECRp model when the continuum and the line emission is generated by protons, but in this case extreme parameters of the LECRp model are necessary. The main problem of the LECRp model is that we don’t know reliable estimates of proton injection by the accretion processes, the proton spectrum, the characteristics of proton propagation in the central region (diffusion coefficient) etc. With all of these uncertainties we can conclude that at present the XRN model seems to be more attractive for interpreting the diffuse line emission in the GC than the LECRp model, though we cannot exclude that protons may contribute to a significant part of the diffuse flux.

We hope that more reliable conclusions can be obtained in the near future. The first key results would be if observations find a stationary component of the 6.4 keV line emission from molecular clouds. In this case, the density of subrelativistic photons and the flux of diffuse line emission generated by protons can be estimated for the GC region.

Another very important parameter of the emission can be obtained with the planned Astro-H mission. The point is that the width of the 6.4 keV line produced by protons is about several tens of eV, which is about one order of magnitude wider than the width expected from that generated by X-ray reflection. Future observations by Astro-H SXS, whose energy resolution is supposed to be only 7 eV (see Takahashi et al. 2010), will be able to measure this parameter.

The authors are grateful to an unknown referee for careful reading of the manuscript and useful corrections. DOC and VAD are partly supported by the NSC-RFBR Joint Research Project RP09N04 and 09-02-92000-HHC-a. This work is supported by Grant-in-Aids from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Scientific Research A, No. 18204015 (KK), and Scientific Research B, No. 20340043 (TT). This work was also supported by the Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

Fukuoka, R., Koyama, K., Ryu, S. G., & Tsuru, T. G. 2009, PASJ, 61, 593
Inui, T., Koyama, K., Matsumoto, H., & Tsuru, T. G. 2009, PASJ, 61, S241
Koyama, K., Inui, T., Matsumoto, H., & Tsuru, T. G. 2008, PASJ, 60, S201
Tatischeff, V. 2003, EAS, Publications Ser., 7, 79