SELECT-2: a Phase II, double-blind, randomised, placebo-controlled study to assess the efficacy of selumetinib plus docetaxel as a second-line treatment for patients with advanced or metastatic non-small cell lung cancer

¹Department Medical Oncology, Gustave Roussy, Villejuif, France; ²Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany (M.R.); ³Department of Electrical Engineering, University of São Paulo, São Carlos, São Paulo, Brazil; ⁴Department of Internal Medicine II, Lungenklinik Löwenstein GmbH, Löwenstein, Germany; ⁵Medical Oncology, Centro Integrado de Pesquisa, Fundação Faculdade Regional de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil; ⁶Oncology, Serviço de Oncologia do Hospital São Lucas da PUCRS, Porto Alegre, Brazil; ⁷Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands; ⁸Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary; ⁹Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Ruhrlandklinik, University Duisburg-Essen, 45122, Essen, Germany; ¹⁰Medical Oncology, Individualna Praktika Za Spetsializirana Meditsinska Pomosht, Vratsa, 3000 Bulgaria; ¹¹AstraZeneca, Macclesfield, UK; ¹²AstraZeneca, Cambridge, UK; ¹³Novartis, Uxbridge, UK; ¹⁴Lowe Center for Thoracic Oncology and the Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston MA, USA

*At time of study. Current affiliation: Phastar, Macclesfield, UK

Corresponding author:
Name: Prof. Jean-Charles Soria
Email: Jean-Charles.Soria@gustaveroussy.fr
Phone: +33 (0)1 42 11 42 96

Address: Department Medical Oncology, Gustave Roussy, 114 rue Édouard-Vaillant, 94805 Villejuif Cedex, France

Article type: Original article

© The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Background: Combination of selumetinib plus docetaxel provided clinical benefit in a previous Phase II trial for patients with KRAS-mutant advanced non-small cell lung cancer (NSCLC). The Phase II SELECT-2 trial investigated safety and efficacy of selumetinib plus docetaxel for patients with advanced or metastatic NSCLC.

Patients and methods: Patients who had disease progression after first-line anti-cancer therapy were randomised (2:2:1) to selumetinib 75 mg BID plus docetaxel 60 mg/m² or 75 mg/m² (SEL+DOC 60; SEL+DOC 75), or placebo plus docetaxel 75 mg/m² (PBO+DOC 75). Patients were initially enrolled independently of KRAS mutation status, but the protocol was amended to include only patients with centrally confirmed KRAS wild-type NSCLC. Primary endpoint was progression-free survival (PFS; RECIST 1.1); statistical analyses compared each selumetinib group with PBO+DOC 75 for KRAS wild-type and overall (KRAS mutant or wild-type) populations.

Results: 212 patients were randomised; 69% were KRAS wild-type. There were no statistically significant improvements in PFS or overall survival (OS) for overall or KRAS wild-type populations in either selumetinib group compared with PBO+DOC 75. Overall population median PFS for SEL+DOC 60, SEL+DOC 75 compared with PBO+DOC 75 was 3.0, 4.2 and 4.3 months, HRs: 1.12 (90% CI: 0.8, 1.61) and 0.92 (90% CI: 0.65, 1.31), respectively. In the overall population, a higher objective response rate (ORR; investigator assessed) was observed for SEL+DOC 75 (33%) compared with PBO+DOC 75 (14%); odds ratio: 3.26 (90% CI: 1.47, 7.95). Overall the tolerability profile of SEL+DOC was consistent with historical data, without new or unexpected safety concerns identified.

Conclusion: The primary endpoint (PFS) was not met. The higher ORR with SEL+DOC 75 did not translating into prolonged PFS for the overall or KRAS wild-type patient populations. No clinical benefit was observed with SEL+DOC in KRAS wild-type patients compared with docetaxel alone. No unexpected safety concerns were reported.

Trial identifier: clinicaltrials.gov NCT01750281

Key words [maximum 6]:
Advanced non-small cell lung cancer (NSCLC), metastatic disease, MEK1/2, KRAS, selumetinib, docetaxel
Key message [397/400 character limit including spaces]

SELECT-2 compared the safety and efficacy of selumetinib 75 mg plus docetaxel (60 or 75 mg/m²) with placebo plus docetaxel 75 mg/m² in patients with advanced or metastatic NSCLC. The primary endpoint, PFS, was not met and there was no evidence of clinical benefit with selumetinib plus docetaxel in the overall population or patients with KRAS wild-type tumours. There were no unexpected safety concerns.
Introduction

Selumetinib (AZD6244, ARRY-142886) is an oral, potent and highly selective, allosteric MEK1/2 inhibitor [1] with a short half-life [2, 3]. The RAS/RAF/MEK/ERK (RAS-ERK) pathway converges at MEK1/2, whose only known substrates are ERK1/2 [4, 5]. This pathway is implicated in growth and progression of various cancers, and can be activated by mutations in several components, such as RAS, BRAF or NF1 [4, 6, 7].

Results of a Phase II trial demonstrated that selumetinib in combination with docetaxel (SEL+DOC) improved clinical outcomes for patients with KRAS-mutant (KRASm) advanced non-small cell lung cancer (NSCLC) [8]. Selumetinib has also demonstrated activity in pre-clinical KRAS wild-type models, which suggested that SEL+DOC may provide clinical benefit to patients with NSCLC with activation of the RAS-ERK pathway, independent of a KRAS mutation [5]. Moreover, clinical responses to selumetinib have been reported in patients whose tumours do not harbour KRAS mutations [9], and at the time of initiation of the present trial, emerging data suggested that combining MEK inhibitors with docetaxel may provide clinical benefit to patients with KRAS wild-type NSCLC [10, 11]. Based on these promising pre-clinical and clinical data, the Phase II SELECT-2 trial (NCT01750281) was initiated to compare the clinical benefit of SEL+DOC with docetaxel monotherapy, in patients with advanced or metastatic NSCLC. The SELECT-2 trial was performed in parallel to the Phase III SELECT-1 trial which failed to show benefit of adding selumetinib to docetaxel for treating patients with advanced KRASm NSCLC [12]. Two patient populations were investigated in SELECT-2: those with KRAS wild-type tumours, and the overall population, including patients with KRAS mutations or wild-type tumours, allowing comparison of effects of the combination and monotherapy between populations.
Patients and methods

Patients

Eligible patients were aged ≥18 years, with a World Health Organization (WHO) performance status (PS) 0/1, who had disease progression after first-line treatment for locally advanced or metastatic NSCLC due to progression of disease while on first-line therapy or relapse of disease following remission from first-line therapy. Patients were excluded if they had mixed small and non-small cell lung cancer histology, had received >1 prior anti-cancer drug regimen for advanced or metastatic NSCLC (platinum-based doublet chemotherapy, other single agent anti-cancer therapy, or combination regimen), or had received prior treatment with a MEK inhibitor or any docetaxel containing regimen. Patients were initially enrolled regardless of KRAS mutation status with no testing for mutation status required. However, in September 2013, after trial initiation, a protocol amendment required patients to have a prospectively, centrally confirmed absence of a KRAS mutation (no mutation detected; referred to as KRAS wild-type) using the cobas® KRAS Mutation Test (Roche Molecular Systems). The amendment was introduced to investigate a population enriched with patients with KRAS wild-type tumours in order to characterise the activity of selumetinib in a robustly defined KRAS wild-type population, in parallel to the SELECT-1 trial exploring the activity of selumetinib in patients with KRAS-mutant NSCLC [12].

All patients provided written informed consent prior to any study specific procedures. The study was performed in accordance with the ethical principles of the Declaration of Helsinki, and the International Conference on Harmonisation Good Clinical Practice Guidelines.

Study design

Patients were randomised using an interactive voice/web response system in a 2:2:1 ratio (Figure 1) to selumetinib 75 mg twice daily (BID) plus docetaxel 75 mg/m² (SEL+DOC 75), selumetinib 75 mg BID plus docetaxel 60 mg/m² (SEL+DOC 60), or matched placebo plus docetaxel 75 mg/m² (PBO+DOC 75). Docetaxel was administered intravenously on day one of every 21-day cycle.

A protocol amendment (December 2013) required patients to receive pegylated Granulocyte-Colony Stimulating Factor (G-CSF; pegfilgrastim 6 mg) as a single injection within 24 hours following each docetaxel administration, and not within 14 days of the next dose in accordance with local prescribing information. The amendment was introduced in order to reduce the rate of neutropenia and febrile neutropenia observed in the Phase II study of SEL+DOC [8]. Prior to this, G-CSF could be administered but was not mandated.
Due to protocol amendments (September 2013) regarding KRAS status and patient selection, there were three patient subgroups: KRAS wild-type, KRAS-mutant, and KRAS unknown. All patients were expected to receive up to six docetaxel cycles. The Investigator could reduce the number of cycles if significant toxicity developed. If docetaxel was discontinued, patients continued to receive selumetinib/placebo until objective disease progression, intolerable toxicity, or occurrence of another discontinuation criterion. Patients could continue to receive selumetinib/placebo treatment as long as the investigator considered them as continuing to derive clinical benefit in the absence of significant toxicity, and if it did not contravene local practice. Patients experiencing toxicity considered treatment related had a dose reduction or were withheld from further treatment until resolution of the toxicity. Patients initially on docetaxel 75 mg/m² were reduced to 55 mg/m², and for initial dose 60 mg/m² the dose reduction was to 45 mg/m².

Endpoints and study assessments

The primary objective was to assess efficacy in terms of PFS by investigative site review of computed tomography (CT) or magnetic resonance imaging (MRI) scans, according to RECIST 1.1. Secondary objectives were to further assess efficacy in terms of overall survival (OS), objective response rate (ORR), duration of response (DoR), safety and tolerability. Tumour evaluations were performed for all randomised patients at screening and every 6 weeks thereafter until evidence of disease progression by RECIST 1.1, withdrawal of consent, or death. Patients were followed-up for survival status every 8 weeks after treatment discontinuation until withdrawal of consent, death, or the end of the trial. Adverse events (AEs) were recorded as MedDRA (version 18.1) preferred terms and according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE; version 4.0) from the time of informed consent until 30 (±7) days after the last treatment dose.

Sample size and statistical analysis

Statistical analyses were performed using SAS® Version 9.2, where SEL+DOC 60 and SEL+DOC 75 groups were each compared with the PBO+DOC 75 group. Approximately 225 patients were planned to be randomised between treatment groups to obtain approximately 107 progression events for each treatment comparison (174 events across all treatment groups). In the analyses, a hazard ratio (HR) <1.0 favours SEL+DOC, and >1.0 favours PBO+DOC. If the true PFS HR was 0.6 (corresponding to a 1.7 month improvement in median PFS over an estimate of 2.5 months for PBO+DOC 75), then 174 events would provide 80% power to demonstrate a statistically significant difference for PFS, assuming a
10% 2-sided significance level. Assuming that all patients recruited before the protocol amendment to enrol only patients with KRAS wild-type tumours progressed before data cut-off, then 109 out of the 174 events observed at the time of data cut-off will be within the KRAS wild-type subgroup. If the true HR for both comparisons versus placebo is 0.6, this number of events will provide approximately 62.5% power to demonstrate a statistically significant difference for PFS within the KRAS wild-type subgroup, assuming a 10% 2-sided significance level.

Efficacy endpoints were analysed for all patient populations. PFS and OS were analysed using a Cox proportional hazards model. ORR was assessed by investigator assessment and analysed using a standard logistic regression model. DoR and percentage change in tumour size from baseline to Week 6 were summarised.

Results
Patient disposition

Between 18 December 2012 and 6 November 2015, 337 patients were enrolled at 55 centres across 8 countries. In total, 212 patients were randomised to SEL+DOC 75 (n=84), SEL+DOC 60 (n=85), or PBO+DOC 75 (n=43), and 211 patients received at least one dose of treatment (Figure 1). At the time of data cut-off (27 January 2016) 189 patients (89%) had discontinued selumetinib/placebo.

Patient demographics were well balanced between treatment groups (Table 1: baseline characteristics). The majority of patients (146/212 [69%]) were centrally confirmed KRAS wild-type, with the proportion of these patients balanced between treatment groups. Of the remaining patients, 44 (21%) were KRASm and 22 (10%) had an unknown KRAS mutation status. Previous anti-cancer therapies were balanced between treatment groups. The majority of patients (187/212 [89%]) had received first-line doublet platinum therapies.

Efficacy

At data cut-off, 180 patients had experienced a progression event (85% maturity): 75 (88%) patients receiving SEL+DOC 60, 69 (82%) patients receiving SEL+DOC 75, and 36 (84%) receiving PBO+DOC 75. There was no statistically significant or clinically meaningful improvement in PFS in either the SEL+DOC 60 group (HR 1.12, 90% confidence interval [CI] 0.8, 1.61; 2-sided P=0.584), or the SEL+DOC 75 group (HR 0.92; 90% CI 0.65, 1.31 2-sided P=0.690), compared with the PBO+DOC 75 group in the overall population (Figure 2). Median PFS was 3.0 months with SEL+DOC 60 (95% CI: 0.75, 1.72), 4.2 months with
SEL+DOC 75 (95% CI: 0.61, 1.40), and 4.3 months with PBO+DOC 75. The subgroup analyses for PFS in the overall population were broadly consistent with results from the primary analysis of PFS, except World Health Organisation (WHO) PS (Supplementary Figure S1). KRAS wild-type patients had similar progression status to the overall population, with no improvement in PFS over the PBO+DOC 75 group with SEL+DOC 60 (HR: 1.37; 90% CI: 0.89, 2.14; 2-sided \(P=0.228 \)) or SEL+DOC 75 (HR: 1.00; 90% CI: 0.65, 1.55; 2-sided \(P=0.994 \)). Due to the small number of patients with KRASm NSCLC, efficacy endpoints were not analysed for this subgroup.

At data cut-off, 147 deaths had occurred (69% maturity). In the overall population, there was no difference in OS between the PBO+DOC 75 and SEL+DOC 60 (HR 1.43, 90% CI: 0.97, 2.13), or SEL+DOC 75 groups (HR 1.18, 90% CI: 0.8, 1.78) (Figure 3). Median OS was 5.7 months with SEL+DOC 60, 7.7 months with SEL+DOC 75, and 11.5 months with PBO+DOC 75, with hazard ratios for OS favouring the control arm. OS in the KRAS wild-type subgroup was similar to the overall population when comparing treatment groups between the two populations.

ORR in the overall population was 33% with SEL+DOC 75, 18% with SEL+DOC 60, and 14% with PBO+DOC 75, with a similar trend observed in the KRAS wild-type population. The improvement in ORR with SEL+DOC 75 was numerically higher when compared with PBO+DOC 75 in both the overall population and KRAS wild-type patients, however, responses were not durable (Overall population OR: 3.26, 90% CI: 1.47, 7.95, \(P=0.020 \); KRAS wild-type OR: 3.21, 90% CI: 1.22, 9.73, \(P=0.061 \)).

Median DoR for the SEL+DOC 60, SEL+DOC 75, and PBO+DOC 75 groups was 108, 136 and 183 days in the overall population, and 133, 127, and 87 days in KRAS wild-type patients, respectively. Percentage change in target lesion size at week 6 from baseline was significantly improved in the SEL+DOC 75 group compared with the PBO+DOC 75 group in the overall population (\(P=0.02 \)), however the median DoR was shorter at 136 and 183 days, respectively (Figure 4). No difference was observed between the SEL+DOC 60 and the PBO+DOC 75 groups (\(P=0.21 \)). There was no difference in percentage change in target lesion size in the KRAS wild-type subgroup for either of these comparisons. The DoR between SEL+DOC 75 and PBO+DOC 75 was comparable (133 and 127 days, respectively), but a lower DoR was observed for the SEL+DOC 60 group (87 days).

Safety and tolerability

The majority of patients experienced at least one AE (Table 2), and the frequency of AEs was similar between KRAS mutation subgroups (not shown). The most frequent AEs across
treatment groups (Supplementary Table S1) were diarrhoea (41 [49%] patients in the SEL+DOC 60 group; 38 [45%] in the SEL+DOC 75 group; 13 [30%] in the PBO+DOC 75 group), rash (23 [27%], 29 [35%] and 9 [21%] patients, respectively), and oedema peripheral (17 [20%], 29 [35%], and 8 [19%] patients, respectively). The most commonly reported Grade ≥3 AE was neutropenia (Supplementary Table S1). Serious AEs (SAEs) of pneumonia and neutropenia were reported in each treatment group, with pneumonia reported in ten (12%), four (5%), and one (2%) patients and neutropenia reported in one (1%), four (5%), and three (7%) patients in the SEL+DOC 60, SEL+DOC 75, and PBO+DOC 75 groups, respectively. Thirteen patients had a SAE with an outcome of death, five of which were potentially related to selumetinib and docetaxel (SEL+DOC 60 [n=2] haematemesis and haemoptysis; SEL+DOC 75 [n=3] chemical peritonitis and two sepsis events). The mean actual treatment durations in the SEL+DOC 60, SEL+DOC 75, and PBO+DOC 75 groups were 91.1 days, 126.7 days and 131.3 days, respectively. There was a similar pattern observed in the KRAS wild-type subgroup.
Discussion

The Phase II SELECT-2 trial explored the efficacy and safety of selumetinib in combination with two different docetaxel doses. The primary endpoint of PFS was not met, therefore the hypothesis based on preclinical and clinical evidence that SEL+DOC provides a clinical benefit in patients with KRAS wild-type advanced NSCLC was not confirmed.

Addition of selumetinib to docetaxel treatment did not improve efficacy, which could be due to a large number of deaths in the absence of disease progression in the combination cohorts. This indicates the rapid progression of disease, which prevents imaging and documentation of the disease, or the patient being unable to undergo analytic procedures. Overall outcomes of this trial were broadly similar to those observed in the Phase III SELECT-1 trial, in which patients received selumetinib 75 mg BID or placebo plus docetaxel 75 mg/m² on day 1 of every 21 day cycle, which was conducted in parallel with a larger KRASm NSCLC population [12]. The MEK inhibitor trametinib in combination with docetaxel (75 mg/m²) in a Phase I/ib trial for patients with advanced NSCLC (n=46), had preliminary efficacy in terms of ORR in both KRASm and KRAS wild-type NSCLC, exceeding expectations for either agent alone [13]. There was an indication of cardiac toxicity in the trametinib plus docetaxel combination, with two patients with a history of cardiovascular conditions experiencing Grade 5 AEs of cardiac arrest (n=1) and cerebrovascular accident (n=1) [13].

Safety data in the SELECT-2 trial were consistent with historical data for docetaxel, and the emerging safety profile of selumetinib [12]. To compensate for any potential selumetinib augmented toxicity of docetaxel, as observed in the Phase II trial of the combination [8], one group received a lower dose of docetaxel (60 mg/m²). Safety findings were generally similar between the selumetinib-containing treatment groups, and the administration of prophylactic G-CSF resulted in a lower rate of neutropenia, severe neutropenia and febrile neutropenia compared with the Phase II combination trial [8]. Although SELECT-2 was not powered for a comparison between the combination arms, data suggest SEL+DOC 60 did not improve tolerability of the combination and patients may have derived less clinical benefit compared to those receiving SEL+DOC 75. This is consistent with a study for second-line advanced breast cancer that reported a correlation between the dose of docetaxel and tumour response [14].

As this trial took place during the period in which anti-cancer immunotherapies were still in development, only three patients had previously received immunotherapy; the majority had received a first-line platinum-based chemotherapy regimen. As the treatment landscape is changing, the emergence of immunotherapy means a limitation of the SELECT-2 trial is that
the efficacy and safety of SEL+DOC following first-line immunotherapy has not been assessed.

KRAS mutations are the most common oncogenic driver in lung cancer, however effective therapies have yet to be developed. Various mechanisms of RAS-ERK pathway activation, independent of KRAS, could be potential novel targets for therapeutic development including NF1, B-RAF and receptor tyrosine kinases [7, 15]. A preclinical study using various model cell-lines identified a MEK transcriptome signature [16], also found expressed in NSCLC tumour tissue samples, which is predictive of sensitivity to selumetinib for an overlapping but distinct population to that identified by KRASm testing [17]. This suggests there could be KRAS wild-type subpopulations that may benefit from MEK inhibitor treatment. BRAF inhibitors decrease activation of the MEK-ERK pathway independently of RAS, and have been investigated in BRAF mutant melanoma [18]. However, BRAF inhibitors paradoxically cause activation of the MEK/ERK pathway, primarily through CRAF activation, which consequently diminishes the therapeutic efficacy [6]. Efficacy of MEK inhibition may be compromised by relief of feedback inhibition that occurs when the pathway is inhibited, and may result in reactivation of the pathway [19].

SELECT-2 did not demonstrate improved PFS in KRAS wild-type patients, however, there were some patients with a long DoR and ≥30% decrease baseline tumour size, for which there was no common factor identified. Therefore, along with the outcomes of the SELECT-1 trial in patients with KRASm NSCLC, the importance of assessing novel biomarkers to identify patient subgroups that may benefit from treatment with MEK inhibitors is highlighted. The combined outcome of the SELECT-1 and SELECT-2 trials demonstrates that selumetinib currently does not have a role as a second-line treatment for patients with advanced NSCLC.
Acknowledgements

The authors thank all of the patients, investigators, and institutions that were involved in this study. We also thank James L Sherwood of Personalised Healthcare and Biomarkers, AstraZeneca, for supporting KRAS testing at the central laboratory during this trial. This study was funded by AstraZeneca. Medical writing services were provided by Natalie Griffiths PhD, of iMed Comms, an Ashfield Company, Part of UDG Healthcare plc, and were funded by AstraZeneca.

Funding

This work was supported by AstraZeneca, no funding to declare.

Disclosure

Disclosure of potential conflicts of interest: AK, AM, EK, KB, GM, PS and SL are employees of and have stocks/options in AstraZeneca. PJ has received personal fees from AstraZeneca for the work under consideration for publication, and has also received personal fees for activities outside the submitted work from Boehringer Ingelheim, Pfizer, Merrimack Pharmaceuticals, Genentech/Roche, Ariad Pharmaceuticals, Chugai Pharmaceuticals, Ignyta, Loxo, PUMA, Daiichi Sankyo and Astellas Pharmaceuticals. WE has received personal fees for activities outside the submitted work from Boehringer Ingelheim, Novartis, Merck/MSD, Pfizer, Bayer, Celgene, Eli Lilly and Hexal. GG has received personal fees for activities outside the submitted work from AstraZeneca, BMS, Roche, Boehringer Ingelheim, Novartis, Merck/MSD, Pfizer, Bayer, Celgene, Eli Lilly and Hexal. AF, CS, DC, ES, GO, JF, PL, SL have nothing to disclose.

Compliance with ethical standards

All patients provided written informed consent prior to any study specific procedures. The study was performed in accordance with the ethical principles of the Declaration of Helsinki, and the International Conference on Harmonisation Good Clinical Practice Guidelines.
References

Figures

Figure 1. Randomisation and treatment

Data cut-off 27 January 2016
aInformed consent received
bAny reason not specifically recorded

Figure 2. Kaplan-Meier estimates of progression-free survival for the overall population (A) and the KRAS wild-type population (B)

Figure 3. Kaplan-Meier estimates of overall survival for the overall population (A) and the KRAS wild-type population (B)

Figure 4. Best change in tumour size and associated duration of response for the SEL+DOC 60 (A), SEL+DOC 75 (B) and PBO+DOC 75 (C) cohorts
Figure 1

157x155mm (300 x 300 DPI)
Figure 2

178x253mm (300 x 300 DPI)
Figure 3

162x223mm (300 x 300 DPI)
Figure 4a

Best percentage change in tumour size (%) vs. Duration of response (days) for KRAS wild-type, KRASm, and KRAS mutation unknown.
Figure 4b

223x112mm (300 x 300 DPI)
Figure 4c

222x107mm (300 x 300 DPI)
Table 1. Baseline patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SEL+DOC 60 n=85</th>
<th>SEL+DOC 75 n=84</th>
<th>PBO+DOC n=43</th>
<th>Total n=212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years Mean (SD)</td>
<td>62.4 (8.5)</td>
<td>60.4 (9.4)</td>
<td>63.6 (7.8)</td>
<td>61.8 (8.8)</td>
</tr>
<tr>
<td>Age, years Median (range)</td>
<td>62 (41–84)</td>
<td>61 (38–79)</td>
<td>62 (47–76)</td>
<td>62 (38–84)</td>
</tr>
<tr>
<td>Age group (years), n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>5 (6)</td>
<td>11 (13)</td>
<td>2 (5)</td>
<td>18 (9)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>19 (22)</td>
<td>26 (31)</td>
<td>16 (37)</td>
<td>61 (29)</td>
</tr>
<tr>
<td>Male</td>
<td>66 (78)</td>
<td>58 (69)</td>
<td>27 (63)</td>
<td>151 (71)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>80 (94)</td>
<td>78 (93)</td>
<td>41 (95)</td>
<td>199 (94)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>5 (6)</td>
<td>5 (6)</td>
<td>0</td>
<td>10 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1 (1)</td>
<td>2 (5)</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>20 (24)</td>
<td>16 (19)</td>
<td>8 (19)</td>
<td>44 (21)</td>
</tr>
<tr>
<td>Non-Hispanic or Latino</td>
<td>26 (31)</td>
<td>29 (35)</td>
<td>19 (44)</td>
<td>74 (35)</td>
</tr>
<tr>
<td>Unknown<sup>a</sup></td>
<td>39 (46)</td>
<td>39 (46)</td>
<td>16 (37)</td>
<td>94 (44)</td>
</tr>
<tr>
<td>WHO PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>40 (47)</td>
<td>39 (46)</td>
<td>25 (58)</td>
<td>104 (49)</td>
</tr>
<tr>
<td>1</td>
<td>45 (53)</td>
<td>45 (54)</td>
<td>18 (42)</td>
<td>108 (51)</td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>8 (9)</td>
<td>9 (11)</td>
<td>3 (7)</td>
<td>20 (9)</td>
</tr>
<tr>
<td>Current</td>
<td>24 (28)</td>
<td>20 (24)</td>
<td>11 (26)</td>
<td>55 (26)</td>
</tr>
<tr>
<td>Former</td>
<td>53 (62)</td>
<td>55 (66)</td>
<td>29 (67)</td>
<td>137 (65)</td>
</tr>
<tr>
<td>KRAS mutation status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>15 (18)</td>
<td>19 (23)</td>
<td>10 (23)</td>
<td>44 (21)</td>
</tr>
<tr>
<td>No mutation detected</td>
<td>62 (73)</td>
<td>54 (64)</td>
<td>30 (70)</td>
<td>146 (69)</td>
</tr>
<tr>
<td>Unknown</td>
<td>8 (9)</td>
<td>11 (13)</td>
<td>3 (7)</td>
<td>22 (10)</td>
</tr>
</tbody>
</table>

^aPatient did not consider themselves to belong to a specific ethnic group

DOC, docetaxel; PBO, placebo; SD, standard deviation; SEL, selumetinib; WHO PS, World Health Organisation Performance Status.
Table 2. Summary of adverse events

<table>
<thead>
<tr>
<th>AE category, n (%)</th>
<th>SEL+DOC 60 (n=84)</th>
<th>PBO+DOC 75 (n=43)</th>
<th>SEL+DOC 75 (n=61)</th>
<th>KRAS wild-type 60 (n=54)</th>
<th>KRAS wild-type 75 (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any AE</td>
<td>81 (96)</td>
<td>83 (99)</td>
<td>39 (91)</td>
<td>59 (97)</td>
<td>53 (98)</td>
</tr>
<tr>
<td>Any AE ≥CTCAE Grade 3</td>
<td>50 (60)</td>
<td>53 (63)</td>
<td>23 (54)</td>
<td>37 (61)</td>
<td>30 (56)</td>
</tr>
<tr>
<td>Any SAE*</td>
<td>40 (48)</td>
<td>38 (45)</td>
<td>16 (37)</td>
<td>27 (44)</td>
<td>23 (43)</td>
</tr>
<tr>
<td>Any SAE causally related to SEL/PBO^</td>
<td>19 (23)</td>
<td>18 (21)</td>
<td>7 (16)</td>
<td>12 (20)</td>
<td>14 (26)</td>
</tr>
<tr>
<td>Any SAE causally related to DOC^</td>
<td>15 (18)</td>
<td>19 (23)</td>
<td>9 (21)</td>
<td>11 (18)</td>
<td>13 (24)</td>
</tr>
<tr>
<td>Any AE leading to hospitalisation</td>
<td>36 (43)</td>
<td>36 (43)</td>
<td>14 (33)</td>
<td>23 (38)</td>
<td>23 (43)</td>
</tr>
<tr>
<td>Any AE with outcome of death</td>
<td>5 (6)</td>
<td>7 (8)</td>
<td>1 (2)</td>
<td>5 (8)</td>
<td>5 (9)</td>
</tr>
<tr>
<td>Any AE leading to discontinuation of SEL/PBO</td>
<td>16 (19)</td>
<td>21 (25)</td>
<td>3 (7)</td>
<td>12 (20)</td>
<td>14 (26)</td>
</tr>
<tr>
<td>Causally-related to SEL/PBO^</td>
<td>12 (14)</td>
<td>15 (18)</td>
<td>2 (5)</td>
<td>8 (13)</td>
<td>12 (22)</td>
</tr>
<tr>
<td>Any AE leading to dose interruption of SEL/PBO</td>
<td>29 (35)</td>
<td>24 (29)</td>
<td>8 (19)</td>
<td>16 (26)</td>
<td>11 (20)</td>
</tr>
<tr>
<td>Any AE leading to dose reduction of SEL/PBO</td>
<td>16 (19)</td>
<td>19 (23)</td>
<td>2 (5)</td>
<td>11 (18)</td>
<td>11 (20)</td>
</tr>
<tr>
<td>Any AE leading to discontinuation of DOC</td>
<td>14 (17)</td>
<td>19 (23)</td>
<td>6 (14)</td>
<td>10 (16)</td>
<td>11 (20)</td>
</tr>
<tr>
<td>Causally related to DOC</td>
<td>10 (12)</td>
<td>16 (19)</td>
<td>5 (12)</td>
<td>6 (10)</td>
<td>9 (17)</td>
</tr>
<tr>
<td>Any AE leading to dose delay of DOC</td>
<td>15 (18)</td>
<td>10 (12)</td>
<td>5 (12)</td>
<td>10 (16)</td>
<td>6 (11)</td>
</tr>
<tr>
<td>Any AE leading to dose reduction of DOC</td>
<td>7 (8)</td>
<td>6 (7)</td>
<td>3 (7)</td>
<td>4 (7)</td>
<td>3 (6)</td>
</tr>
</tbody>
</table>

^Assessed by investigator

AE, adverse event; CTCAE, Common Terminology Criteria for Adverse Events; DOC, docetaxel; PBO, placebo; SAE, serious adverse event; SEL, selumetinib