Incidence and epidemiology

The incidence of rectal cancer in the European Union is \(\sim 125,000 \) per year, i.e. \(\sim 35\% \) of the total colorectal cancer incidence, reflecting \(15-25 \) cases/100,000 population per year and is predicted to increase further in both genders. The mortality is \(4-10/100,000 \) population per year. Median age at diagnosis is \(\sim 70 \) years, but predictions suggest that this figure will rise in the future.

Evidence is accumulating that rectal cancer is distinct from colon cancer with different aetiologies and risk factors [1–2], possibly reflecting different environmental exposures. High body mass index, body or abdominal fatness and diabetes type II are seen as risk factors. Longstanding ulcerative colitis and Crohn’s disease affecting the rectum, excessive consumption of red or processed meat and tobacco as well as moderate/heavy alcohol use increase the risk.

A healthy lifestyle and exercise can reduce the risk of developing rectal cancer [3, 4]. Consumption of garlic, milk, calcium and high dietary fibre are regarded as protective [5]. Although regular use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence, there may be a protective effect of vitamin D via antitumour immunity, no formal guidelines for pharmacological primary prevention should be advised.

The majority of rectal cancers develop via the chromosomal instability (CIN) pathway. About \(13\% \) are caused by deficient mismatch repair (dMMR). There is a recognised hereditary component, although this is more pronounced for colon than rectal cancer. The most common disorders are Lynch syndrome and familial adenomatous polyposis. Hence, genetic counselling is a critical component of management, driving surveillance and potential interventions for the patient and affected family members [6].

Diagnosis and pathology/molecular biology

Diagnosis is based on a digital rectal examination (DRE) and endoscopy with biopsy for histopathological confirmation (Figure 1). Tumours with distal extension to \(\leq 15 \) cm from the anal margin (as measured by rigid sigmoidoscopy) are classified as rectal and more proximal tumours as colonic. Cancers are categorised as low (up to \(5 \) cm), middle (from \(> 5 \) to \(10 \) cm) or high (from \(> 10 \) up to \(15 \) cm).

The Cancer Genome Atlas Network analysis showed common genomic profiles for non-hypermutated colon and rectal cancers [7]. Unique subtypes are characterised by accumulation of distinct genetic and epigenetic alterations (DNA methylation), differing slightly from colon cancer [8, 9]. A transcriptional subtype with high Wnt signalling, stem cell and mesenchymal signatures occurs in rectal cancer and has a poor prognosis. Such patients may also gain less benefit from adjuvant chemotherapy (ChT) [10].

Staging and risk assessment

A specialised and dedicated multidisciplinary team (MDT) of named radiologists, surgeons, radiation oncologists, medical oncologists and pathologists should attend regular meetings and discuss all (relevant) patients [III, A]. Core members should be
present for the discussion of all cases where their input is needed [11]. There should be a MDT coordinator, and clinical guidelines should be taken into account in decision-making. The MDT should also audit whether their decisions are implemented [12] and review patient outcomes with standardised quality assurance.

A history and physical examination including DRE, full blood count, liver and renal function tests, serum carcinoembryonic antigen (CEA) and computed tomography (CT) scan of thorax and abdomen should be carried out to define functional status and presence of metastases [III, A] (Figure 2). Positron emission tomography (PET) may provide additional information in terms of disease outside the pelvis. However, current evidence is not considered strong enough to recommend the use of PET in all patients [V, C] (Table 1) [13].

Increasing age, comorbidity and decreasing functional reserves are associated with higher early postoperative mortality and worse toxicity from radiotherapy (RT) and ChT in older patients. Hence, for patients over 70 years, formal geriatric assessment or at least screening tools for frailty are recommended before any treatment [III, C] [14].

Rigid rectoscopy and preoperative colonoscopy to the caecal pole are required, or, in the case of obstruction, virtual colonoscopy to exclude synchronous colonic tumours. If no preoperative (virtual) colonoscopy was carried out, completion colonoscopy is recommended within 6 months of surgery [III, A].

Table 1. Diagnostic work-up in primary rectal cancer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (distance from anal verge)</td>
<td>DRE/palpation</td>
</tr>
<tr>
<td></td>
<td>Rigid sigmoidoscopy (flexible endoscopy)</td>
</tr>
<tr>
<td>Morphological verification</td>
<td>Biopsy</td>
</tr>
</tbody>
</table>
| cT stage | Early
| | ERUS |
| | MRI |
| | Intermediate/advanced
| | MRI (ERUS) |
| Spincter infiltration | MRI (ERUS, palpation, EUA) |
| cN stage | MRI (CT, ERUS) |
| M stage | CT, MRI (or US) of the liver/abdomen |
| | CT of the thorax |
| | PET-CT if extensive EMVI for other sites |
| Evaluation for all patients | MDT discussion |

Methods within brackets are less optimal.

CT, computed tomography; DRE, digital rectal examination; EMVI, extramural vascular invasion; ERUS, endorectal ultrasound; EUA, examination under anaesthesia; MDT, multidisciplinary team; MRI, magnetic resonance imaging; PET, positron emission tomography; US, ultrasound.
Endoscopic rectal ultrasound (ERUS) may define treatment for the earliest tumours. T1 tumours appropriate for transanal endoscopic microsurgery (TEM) can be selected by determining whether a lesion is limited to the mucosa or submucosa (sm) [15]. ERUS offers less value in locally advanced rectal cancer (LARC). Pelvic magnetic resonance imaging (MRI) is the most accurate test to define locoregional clinical staging. By detecting extra-mural vascular invasion (EMVI), and determining the T substage and distance to the circumferential resection margin (CRM), MRI can also predict the risks of local recurrence and synchronous/metachronous distant metastases, and should be carried out to select patients for the respective preoperative management and to define the extent of surgery [III, A]. A standard proforma for MRI and pathology ensures a comprehensive report. The version of TNM staging used by the histopathologist and the MDT should be documented, acknowledged by all members of the MDT and regularly updated. The Union for International Cancer Control (UICC) TNM staging classification (8th edition) is shown in Table 2 [16].

High-quality MRI allows further subclassification of cT3, which is recommended as described in Table 3 [17, 18]. Stage grouping is shown in Table 4 [16].

Table 2. UICC TNM staging (8th edition) classification for colon and rectal cancer [16]

<table>
<thead>
<tr>
<th>TNM Clinical Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T — Primary tumour</td>
</tr>
<tr>
<td>TX</td>
</tr>
<tr>
<td>T0</td>
</tr>
<tr>
<td>Tis</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td>T4</td>
</tr>
<tr>
<td>T4a</td>
</tr>
<tr>
<td>T4b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N — Regional lymph nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>N1a</td>
</tr>
<tr>
<td>N1b</td>
</tr>
<tr>
<td>N1c</td>
</tr>
<tr>
<td>N2</td>
</tr>
<tr>
<td>N2a</td>
</tr>
<tr>
<td>N2b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M — Distant metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M1a</td>
</tr>
<tr>
<td>M1b</td>
</tr>
<tr>
<td>M1c</td>
</tr>
</tbody>
</table>

^aTis includes cancer cells confined within the mucosal lamina propria (intramucosal) with no extension through the muscularis mucosae into the submucosa.

^bInvades through to visceral peritoneum to involve the surface.

^cDirect invasion in T4b includes invasion of other organs or segments of the colorectum by way of the serosa, as confirmed on microscopic examination, or for tumours in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria.

^dTumour that is adherent to other organs or structures, macroscopically, is classified cT4b. However, if no tumour is present in the adhesion, macroscopically, the classification should be pT1–3. However, if tumour is present at the adherent site, the classification should be cT4b. The presence of tumour deposits does not change the primary tumour T category, but changes the node status (N) to pN1c if all regional lymph nodes are negative on pathological examination.

^eTumour deposits (satellites) are discrete macroscopic or microscopic nodules of cancer in the pericolic adipose tissue’s lymph drainage area of a primary carcinoma that are discontinuous from the primary and without histological evidence of residual lymph node or identifiable vascular or neural structures. If a vessel wall is identifiable on H&E, elastic or other stains, it should be classified as venous invasion (V1/2) or lymphatic invasion (L1).

Similarly, if neural structures are identifiable, the lesion is classified as perineural invasion (Pn1). The presence of tumour deposits does not change the primary tumour T category, but changes the node status (N) to pN1c if all regional lymph nodes are negative on pathological examination.

H&E, hematoxilin and eosin; UICC, the Union for International Cancer Control; TNM, tumour, node, metastasis.

Reprinted from [16], with permission from John Wiley & Sons, Inc.
imaging should only be carried out if symptoms warrant. though it may assist RT target delineation. Bone scan and brain assessment of primary tumour and nodal status is unproven, al- EMVI on MRI (see above) or high levels of CEA. Its value for as- entation associated with a high risk of metastases, e.g. extensive the thorax, abdomen and pelvis be used to assess features at pres- more crucial to decision-making than lymph node status. in conjunction with liver MRI and contrast enhanced CT of can, in conjunction with liver MRI and contrast enhanced CT of the thorax, abdomen and pelvis be used to assess features at presentation associated with a high risk of metastases, e.g. extensive EMVI on MRI (see above) or high levels of CEA. Its value for as- sessment of primary tumour and nodal status is unproven, although it may assist RT target delineation. Bone scan and brain imaging should only be carried out if symptoms warrant.

Histopathology

T1 tumours can be classified according to Haggitt’s subclassification if the cancer is pedunculated and according to the Kudo/ Kikuchi sm-system if in a sessile adenoma [21, 22]. The two sys- tems overlap. If sessile, the level of infiltration into the sm and the width of invasion compared with the width of the cancer should be assessed [23]. If pedunculated, the grade, lymphovascular invasion (LVI) and presence of budding predict the risk of lymph node metastases, enable a risk/benefit assessment of the require- ment for further surgery and define the method of excision [III, B] [24]. These specimens should be pinned-out on cork before pathology assessment to facilitate this subclassification.

Endoscopic resection for small tumours/polyps can be useful for both diagnosis and treatment, but *en bloc* resection is recom- mended for accurate assessment of invasion in the resection margin and the deepest area [II, B]. Piecemeal resection makes the specimen impossible to assess for the above and should be avoided. However, radical surgery and removal of lymph nodes is rec- ommended for high-risk pathological features according to Japanese guidelines, i.e. poorly differentiated with evidence of vascular or lymphatic invasion, and an invasion depth of > 1000 micrometres [II, A] [25].

For mesorectal resections, histopathological examination should include a photographic record of the surgical specimen and assessment of total mesorectal excision (TME) quality [III, B] [26–28], which is a strong quality control measure (Figure 3). The classification has three grades based on the completeness of the removal of the mesorectum and/or plane of surgical excision (Table 5) and impacts on both local recurrence and survival. Along with the involved CRM rate (i.e. ≤ 1 mm), TME quality represents a surrogate parameter for good oncological outcomes [29]. More advanced T-stage, tumour distance from the anal verge < 8 cm, more advanced age and low surgical case volume have been independently associated with moderate or poor TME quality [30].

At least 12 regional lymph nodes should be examined. Proximal, distal and circumferential margins should be docu- mented in millimetres (separately for tumour and involved lymph nodes). A proforma report such as the one by the Royal College of Pathologists is recommended [IV, B] [31]. Uncertainties in the interpretation of CRM and the residual (R) tumour classification (and the distinction pT4/R1) according to the TNM version can cause confusion. An expanded classification has been suggested [32]. Extramedullary extension (ENE) of nodal metastases, EMVI, perineural invasion (PNI) and tumour

<table>
<thead>
<tr>
<th>Table 3. Subclassification of T3 rectal cancer [18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of invasion beyond the muscularis propria (in mm)</td>
</tr>
<tr>
<td>T3a$</td>
</tr>
<tr>
<td>T3b</td>
</tr>
<tr>
<td>T3c</td>
</tr>
<tr>
<td>T3d</td>
</tr>
</tbody>
</table>

*This sub-classification based upon an evaluation using MRI before treatment decision is clinically valuable, and is used in these recommendations. It can be used also in the histopathological classification but is not validated and not incorporated in any of the TNM versions (5–7).

MRI, magnetic resonance imaging; TNM, tumour, node, metastasis. Reprinted from [18] with permission from Springer.

<table>
<thead>
<tr>
<th>Table 4. Stage grouping of colon and rectal cancer [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Pathological Classification</td>
</tr>
<tr>
<td>The pT and pN categories correspond to the T and N categories.</td>
</tr>
<tr>
<td>pNO Histological examination of a regional lymphadenectomy specimen will ordinarily include 12 or more lymph nodes. If the lymph nodes are negative, but the number ordinarily examined is not met, classify as pN0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage I</td>
<td>T1, T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T3, T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II A</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II B</td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II C</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>Any T</td>
<td>N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III A</td>
<td>T1, T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Stage III B</td>
<td>T1, T2</td>
<td>N2b</td>
</tr>
<tr>
<td></td>
<td>T2, T3</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Stage III C</td>
<td>T3, T4a</td>
<td>N2b</td>
</tr>
<tr>
<td></td>
<td>T4a</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4b</td>
<td>N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
<tr>
<td>Stage IV A</td>
<td>Any T</td>
<td>Any N</td>
<td>M1a</td>
</tr>
<tr>
<td>Stage IV B</td>
<td>Any T</td>
<td>Any N</td>
<td>M1b</td>
</tr>
<tr>
<td>Stage IV C</td>
<td>Any T</td>
<td>Any N</td>
<td>M1c</td>
</tr>
</tbody>
</table>

TNM, tumour, node, metastasis. Reprinted from [16], with permission from John Wiley & Sons, Inc.
Figure 2. Rectal cancer staging.
CEA, carcinoembryonic antigen; CT, computed tomography; DRE, digital rectal examination; EMVI, extramural vascular invasion; ERUS, endorectal ultrasound; MRI, magnetic resonance imaging; PET-CT, positron emission tomography computed tomography; TEM, transanal endoscopic microsurgery.

Figure 3. The definitions for defining quality of mesorectal excision [28].
(A) A complete mesorectal excision—shows good bulk of mesorectum with a smooth surface and no defects. (B) A nearly complete mesorectal excision shows good bulk of mesorectum, but some defects or irregularities in the surface (arrowed) are present. (C) An incomplete mesorectal excision demonstrating a deep defect on the mesorectum below the peritoneal reflection, which allows visualisation of the muscularis propria (arrowed).
Reprinted from [28], with permission from John Wiley & Sons, Inc.
budding should also be evaluated [III, A]. Analysis of the rectal ‘doughnut’ is not required [IV, C] [33].

Management of local/locoregional disease

Risk-adapted treatment

Very early cT1N0, with low grade (G1/G2). Local excisional procedures such as TEM are appropriate as a single modality for early cancers (cT1N0 without adverse features like G3, V1, L1) [III, A] [34, 35]. Only patients with cT1N0 should be considered for such treatment [36], although TEM for more advanced T-stage may be appropriate for patients at high surgical risk after discussion with the patient.

TEM permits more accurate en bloc, full-thickness local excision of rectal tumours than local excision, and can provide similar oncological results in pT1sm1 (clinical cN0) rectal cancers compared with results achieved by TME, without compromising anorectal function.

Local recurrence after local excision often occurs in the tumour bed. If there is an unfavourable pTNM assessment following local excision, the value of adjuvant CRT in preventing local recurrence is unknown, and TME should remain the standard salvage option.

Local RT (brachytherapy or contact therapy—Papillon technique) may also be used as an alternative to local surgery [37], alone or combined with CRT [III, C].

Early rectal cancer not suitable for local excision [cT1–cT2; cT3a/b if middle or high, N0 (or also cN1 if high), MRF clear, no EMVI]. More advanced tumours up to and including cT2c/cT3a/b should be treated by radical TME surgery because of higher risks of recurrence and the higher risk of mesorectal lymph node involvement [36]. The standard of care for surgery is TME, implying that all of the mesorectal fat, including all lymph nodes, should be meticulously excised [III, A]. A partial mesorectal excision with a distal margin of at least 5 cm of mesorectum can be considered in high rectal cancer.

In rare situations, local excision can be an option in patients with a cT1 tumour or in elderly or fragile patients. TEM is then the procedure of choice.

In selecting laparoscopic or open surgery, the surgeon should take into account his/her experience with the technique, the stage and location of the cancer and patient factors such as obesity and previous open abdominal surgery. In the case of low rectal tumours, transanal TME (TaTME) may facilitate pelvic and distal mesorectal dissection, but standardisation and assessment of the technique are necessary [38].

Robotic-assisted rectal cancer surgery provides some technical advantages for surgeons compared with conventional laparoscopy, but is still under evaluation [39]. If an abdominoperineal excision is planned and the tumour extends into the levators, a cylindrical specimen should be achieved, avoiding a ‘waist’ effect and minimising the risk of a positive CRM and/or an R1/2 resection [40]. Selection of patients suitable for extralevator abdominopereineal excision is recommended using MRI [41].

In Japan, lateral node dissection (LND) is practised if the tumour is sited below the peritoneal reflection to reduce the risk of pelvic recurrence and improve overall survival (OS). Lateral pelvic nodes are often invaded if multiple mesorectal nodes are involved [42]. LND is rarely practised in Europe, unless involvement is suspected on imaging with enlarged lateral nodes persisting following chemoradiotherapy (CRT).

For cT2 tumours < 4 cm, local excision after preoperative RT/CRT has been considered as alternative management to abdominal surgery [43–45], with minimal adverse impact on anorectal function 1 year after surgery [45]. More mature data from other studies suggests some compromise to function [46]. This strategy is not routinely recommended outside clinical trials, except for elderly, fragile patients at high surgical risk [47, 48].

These early, favourable cases, which are not suitable for local excision, i.e. cT1–2 but with adverse pathological features (e.g. G3, V1, L1), and some cT3a/b without clear involvement of MRF (MRF-) according to MRI, when located above the levators, may be appropriate for surgery alone with TME [II, A], as the risk of local failure is very low. Although not prospectively assessed, EMVI on MRI, even in the case of cT3a/b tumours, confers a higher risk of local and distant recurrence [49].

Table 5. Grading of quality and completeness of the mesorectum in a total mesorectal excision specimen according to the plane of surgical excision [31]

<table>
<thead>
<tr>
<th>Mesorectal plane (good plane of surgery achieved)</th>
<th>Intact mesorectum with only minor irregularities of a smooth mesorectal surface; no defect deeper than 5 mm; no coning; and smooth circumferential resection margin on slicing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intramesorectal plane (moderate plane of surgery achieved)</td>
<td>Moderate bulk to mesorectum, with irregularities of the mesorectal surface; moderate distal coning; muscularis propria not visible with the exception of levator insertion; and moderate irregularities of circumferential resection margin</td>
</tr>
<tr>
<td>Muscularis propria plane (poor plane of surgery achieved)</td>
<td>Little bulk to mesorectum with defects down onto muscularis propria; very irregular circumferential resection margin; or both</td>
</tr>
</tbody>
</table>

The specimen is examined as a whole (fresh) and as cross-sectional slices (fixed) to make an adequate interpretation. A TME specimen ideally should have a smooth surface, without incisions, defects or cracks, as an indication of successful surgical excision of all mesorectal tissue. ‘Coning’ represents the tendency for the surgeon to cut inwards towards the central tube of the rectum during distal dissection, rather than staying outside the visceral mesorectal fascia. The specimen then shows a tapered, conical appearance representing suboptimal surgical quality.

TME, total mesorectal excision.

Reprinted from [27] with permission from Elsevier.
For complete responders, in patients with cT2-3a tumours, a ‘watch-and-wait’ approach or local excision after neoadjuvant CRT is feasible, but because of limited data about long-term outcomes ised by nodal size alone [19], and the lack of prognostic relevance of the preoperative MRI assessment of involved lymph nodes on the risk of local recurrence. This is particularly valid because data suggest a low risk of local recurrence if the surgeon routinely carries out good-quality TME and removes the mesorectal nodes en bloc [27, 51]. However, it is the responsibility of the surgeon to demonstrate that consistent, good-quality TME is being achieved.

Intermediate/more locally advanced rectal cancers (cT3a/b (very low, levators clear, MRF clear or (cT3a/b in mid- or high rectum, cN1-2 (not extranodal), no EMVI). The routine delivery of preoperative RT, either CRT or short-course preoperative radiotherapy (SCPRT), to all patients with imaging predicted cN+ remains controversial in view of the poor accuracy if categorised by nodal size alone [19], and the lack of prognostic relevance of the preoperative MRI assessment of involved lymph nodes on the risk of local recurrence. This is particularly valid because data suggest a low risk of local recurrence if the surgeon routinely carries out good-quality TME and removes the mesorectal nodes en bloc [27, 51]. However, it is the responsibility of the surgeon to demonstrate that consistent, good-quality TME is being achieved.

Locally advanced rectal cancers (>cT3b, and EMVI+). For patients with LARC, treatment decisions regarding neoadjuvant therapy should be based on preoperative, MRI-predicted CRM (< 1 mm), EMVI and more advanced T3 subcategories (T3c/T3d), which define the risk of both local recurrence and/or synchronous and subsequent metastatic disease [52, 53]. MRI also allows risk stratification in terms of the predicted required extent of surgery [37], and the achievement of a clear CRM (>1 mm).

For resectable cancers, where there is no indication on MRI that surgery is likely to be associated with either an R2 or an R1 resection, standard TME should achieve a curative resection, and downstaging/downsizing is not necessary to achieve this. The use of CRT or SCPRT aims to reduce local recurrence. No differences in oncological outcomes between CRT and SCPRT were reported in two prospective studies offering preoperative therapy in unselected clinically determined T3/T4 or node-positive rectal cancer patients [54, 55]. The latter trial showed that CRT had significantly higher adverse events compared with SCPRT, with no statistically significant differences in postoperative complications [56]. Two phase III trials showed that SCPRT with delayed surgery was a useful alternative to conventional short-course RT with immediate surgery [57, 58], which is associated with significantly lower postoperative complications [57].

Previous recommendations aimed to reduce the overall risk of an involved CRM to < 3% and local recurrence to (preferably) < 5% in the population in whom curative treatment is intended [59]. Evidence from the UK CR07 trial suggests that, without RT, a local recurrence rate of 5% (27/543) can be achieved if a complete mesorectal excision is carried out with a negative CRM [27]. MDTs and surgeons are, therefore, required to audit their local recurrence rates. There are recognised long-term adverse consequences of surgery and RT. Symptoms such as chronic pain, faecal incontinence and sexual difficulties are reported in both sexes. Good communication between surgeons, clinicians and patients will optimise joint decision-making.

Risk of recurrence according to postoperative histology

Historical studies prior to TME suggest that the postoperative histopathological features, which have an impact on the risk of local recurrence, include: pathological TNM stage, T substage (Table 3), CRM status, the number/proportion of involved lymph nodes, extracapsular extension, extranodal deposits, tumour differentiation, LVI, EMVI and PNI. Hence, it is recommended that pathologists review MRI scan reports when assessing EMVI status [61].

Histologically involved nodes have in the past been associated with a high risk of local recurrence. However, the risk of local recurrence is reduced if the quality of the mesorectal excision is good (i.e. with a complete, smooth mesorectum with no defects and no coning), ensuring removal of all mesorectal lymph nodes.

Selection between short-course preoperative radiotherapy and long-course chemoradiotherapy

Two different schedules of preoperative therapy are standards of care:

- SCPRT with a 25 Gy total dose at 5 Gy/fraction during 1 week, followed by immediate surgery (< 10 days from the first radiation fraction) [I, A]; SCPRT with delayed surgery is also a useful alternative to conventional short-course RT, with immediate surgery offering similar oncological outcomes and lower postoperative complications [57].
- CRT with a recommended dose of 45–50 Gy in 25–28 fractions; a boost with a further 5.4 Gy in 3 fractions can be considered for preoperative RT if the CRM is threatened, and for postoperative RT routinely with 5.4–9.0 Gy in 3–5 fractions according to CRM [I, A].

It is not possible to give a rigid definition of which T and N sub-stages require SCPRT or CRT. The selection of preoperative approach in LARC is based more regarding the risk of a CRM+ at TME surgery. If CRM and/or R0 resection status are predicted at risk, CRT is advised [60]. Otherwise, either SCPRT or CRT can be administered [I, A] [54, 55].

However, more recent evidence suggests that even if the predicted resection margin is at risk (CRM ≤ 1 mm, cT4 or fixed cT3 tumours), similar R0 resection rates and disease-free survival
Figure 4. Rectal cancer treatment.
cCR, clinical complete response; CRT, chemoradiotherapy; EMVI, extramural vascular invasion; FOLFOX, leucovorin/fluorouracil/oxaliplatin; MRI, magnetic resonance imaging; RT, radiotherapy; SCPRT, short-course preoperative radiotherapy; TEM, transanal endoscopic microsurgery; TME, total mesorectal excision.
Clinical Practice Guidelines

Table 6. Recommended choice of treatment options within TNM risk category of primary rectal cancer without distant metastases

<table>
<thead>
<tr>
<th>Risk group</th>
<th>TN subclass</th>
<th>Possible therapeutic options</th>
<th>Further considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very early</td>
<td>cT1 sm1 N0 (on ERUS and MRI)</td>
<td>Local excision (TEM)</td>
<td>If pT1 and no adverse features, TEM is sufficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If adverse histopathology (sm ≥ 2, G3, V1, L1), requires radical resection (TME) as standard</td>
<td>Alternatively, in the case of adverse features on pathology, TEM plus salvage (or adjuvant) CRT in perioperative high-risk patients (but unproven benefit—with high risk of local recurrence for pT2)</td>
</tr>
<tr>
<td>Early (Good)</td>
<td>cT1-cT2; cT3a/b if middle or high, N0 (or also cN1 if high), MRF clear, no EMVI</td>
<td>Surgery (TME) alone is standard. If unexpected poor prognostic signs on histopathology (CRM+, extranodal/N2), consider postoperative CRT/CT (see postoperative recommendations in Table 7)</td>
<td>For fragile, high-risk patients or those rejecting radical surgery (CRT with evaluation, local excision or if achieving cCR, 'watch-and-wait', organ preservation)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>cT3a/b very low, levators clear, MRF clear or cT3a/b in mid- or high rectum, cN1-2 (not extranodal), no EMVI</td>
<td>Surgery (TME) alone is a standard only if good-quality mesorectal resection assured (and local recurrence ≤0.5% or, if not, preoperative SCPRT (5×5 Gy) or CRT followed by TME</td>
<td>If CRT is given and cCR is achieved, 'watch-and-wait' in high-risk patients for surgery may be considered</td>
</tr>
<tr>
<td>Bad</td>
<td>cT3c/d or very low localisation levators threatened, MRF clear cT3c/d mid-rectum, cN1–N2 (extranodal), EMVI+, limited cT4aN0</td>
<td>Preoperative SCPRT (5×5cGy) or CRT followed by TME, depending on need for regression</td>
<td>If CRT and cCR achieved, 'watch-and-wait' in high-risk patients may be considered</td>
</tr>
<tr>
<td>Advanced (Ugly)</td>
<td>cT3 with any MRF involved, any cT4a/b, lateral node+</td>
<td>Preoperative CRT followed by surgery (TME and more extended surgery if needed due to tumour overgrowth), or preoperative SCPRT (5×5 Gy) plus FOLFOX and delay to surgery</td>
<td>Alternatively, 5×5 Gy alone with a delay to surgery in fragile/elderly or in patients with severe comorbidity who cannot tolerate CRT</td>
</tr>
</tbody>
</table>

Additional considerations: Other factors besides T and N stages are relevant, such as EMVI, MRF involvement, distance from the anus and sphincters, size of mesorectum and patient characteristics. Patient preferences are also important.

cCR, clinical complete response; CRM, circumferential resection margin; CRT, chemoradiotherapy; CT, computed tomography; EMVI, extramural vascular invasion; ERUS, endoscopic rectal ultrasound; FOLFOX, leucovorin/fluorouracil/oxaliplatin; MRF, mesorectal fascia; MRI, magnetic resonance imaging; SCPRT, short-course preoperative radiotherapy; TEM, transanal endoscopic microsurgery; TME, total mesorectal excision; TNM, tumour, node, metastasis.

Radiotherapy field sizes

It is beyond the scope of these guidelines to present a detailed recommendation of field sizes for each T- and N-stage depending on the location within the rectum. Most current guidelines are based on a consensus of experts rather than being evidence-based. Widely encompassing nodal regions will be more appropriate for patients with advanced tumours for whom radical surgery is not intended, and smaller volumes for early cancers with the same plan.

Preoperative (neoadjuvant) chemotherapy

Strategies using induction ChT before/following CRT or SCPRT and surgery are being investigated in multiple trials.

NACT alone using a fluoropyrimidine and oxaliplatin or combined with targeted agents has been proposed instead of preoperative CRT in cT3 tumours not threatening the CRM and cT4 tumours in the mid- and upper- rectum, with the aim of promptly treating potential micrometastases and individualising treatment options [72]. After NACT, pCR is achieved in some 25% of early stage cases. However, limited long-term oncological outcome data are available for more advanced stages, particularly with CRM

(DFS) are achieved for CRT or SCPRT followed by ChT with oxaliplatin/leucovorin/fluorouracil prior to surgery [58]. Biological molecularly targeted agents have not been successfully integrated into CRT. Several meta-analyses indicated that oxaliplatin added to CRT may slightly increase pathological complete response (pCR) rates in DFC in selected patients, but also enhances acute toxicity [62]. Given the contradictory results and lack of a clear long-term oncological benefit in the seven randomised trials [63–72] testing this combination so far, oxaliplatin as a radiosensitiser is not currently recommended to be routinely added to fluoropyrimidine-based CRT [I, D]. Continuous intravenous infusions of 5-fluorouracil (5-FU) or oral capecitabine during CRT are recommended rather than bolus 5-FU [I, A] [63, 73].

In summary, preoperative RT or CRT reduces the rate of local recurrence without improvement of OS for mid/low stage II/III rectal cancers [I, A], but is associated with significantly worse intestinal and sexual functions after surgery [I, A].

Upper rectal cancers (>12 cm from the anal verge) above the peritoneal reflection do not benefit from preoperative SCPRT or CRT and should be treated as colon cancer [I, A]. Patients with cT4 tumours falling back into the pelvis might benefit from neoadjuvant CRT or neoadjuvant ChT (NACT) alone [IV, D].

(DFS) are achieved for CRT or SCPRT followed by ChT with oxaliplatin/leucovorin/fluorouracil prior to surgery [58]. Biological molecularly targeted agents have not been successfully integrated into CRT. Several meta-analyses indicated that oxaliplatin added to CRT may slightly increase pathological complete response (pCR) rates in DFC in selected patients, but also enhances acute toxicity [62]. Given the contradictory results and lack of a clear long-term oncological benefit in the seven randomised trials [63–72] testing this combination so far, oxaliplatin as a radiosensitiser is not currently recommended to be routinely added to fluoropyrimidine-based CRT [I, D]. Continuous intravenous infusions of 5-fluorouracil (5-FU) or oral capecitabine during CRT are recommended rather than bolus 5-FU [I, A] [63, 73].

In summary, preoperative RT or CRT reduces the rate of local recurrence without improvement of OS for mid/low stage II/III rectal cancers [I, A], but is associated with significantly worse intestinal and sexual functions after surgery [I, A].

Upper rectal cancers (>12 cm from the anal verge) above the peritoneal reflection do not benefit from preoperative SCPRT or CRT and should be treated as colon cancer [I, A]. Patients with cT4 tumours falling back into the pelvis might benefit from neoadjuvant CRT or neoadjuvant ChT (NACT) alone [IV, D].

Radiotherapy field sizes

It is beyond the scope of these guidelines to present a detailed recommendation of field sizes for each T- and N-stage depending on the location within the rectum. Most current guidelines are based on a consensus of experts rather than being evidence-based. Widely encompassing nodal regions will be more appropriate for patients with advanced tumours for whom radical surgery is not intended, and smaller volumes for early cancers with the same plan.

Preoperative (neoadjuvant) chemotherapy

Strategies using induction ChT before/following CRT or SCPRT and surgery are being investigated in multiple trials.

NACT alone using a fluoropyrimidine and oxaliplatin or combined with targeted agents has been proposed instead of preoperative CRT in cT3 tumours not threatening the CRM and cT4 tumours in the mid- and upper- rectum, with the aim of promptly treating potential micrometastases and individualising treatment options [72]. After NACT, pCR is achieved in some 25% of early stage cases. However, limited long-term oncological outcome data are available for more advanced stages, particularly with CRM

(DFS) are achieved for CRT or SCPRT followed by ChT with oxaliplatin/leucovorin/fluorouracil prior to surgery [58]. Biological molecularly targeted agents have not been successfully integrated into CRT. Several meta-analyses indicated that oxaliplatin added to CRT may slightly increase pathological complete response (pCR) rates in DFC in selected patients, but also enhances acute toxicity [62]. Given the contradictory results and lack of a clear long-term oncological benefit in the seven randomised trials [63–72] testing this combination so far, oxaliplatin as a radiosensitiser is not currently recommended to be routinely added to fluoropyrimidine-based CRT [I, D]. Continuous intravenous infusions of 5-fluorouracil (5-FU) or oral capecitabine during CRT are recommended rather than bolus 5-FU [I, A] [63, 73].
involvement; hence, NACT alone is not recommended for the treatment of localised, non-metastatic disease outside clinical trials.

Reassessment/response assessment after preoperative (chemo)radiotherapy

Assessment of the primary tumour response. The standard methods of clinically re-assessing patients following preoperative therapy rely on clinical examination using DRE, proctoscopy, and re-imaging by MRI. These findings direct appropriate surgical strategy, the type of operation intended and the possibility of choosing a ‘watch-and-wait’ strategy.

Clinical complete response and a ‘watch-and-wait’ approach. Following CRT or SCPRT, a clinical complete response (cCR) can be obtained in 10%–40% of patients when assessed after an interval of 12 weeks from the start of treatment. The likelihood of achieving a cCR will depend partly on initial stage and currently unknown molecular factors. cCR has only partial concordance with pCR [74]. Although not universally agreed, a CR is defined as the absence of any palpable tumour or irregularity at DRE, no visible lesion at rectoscopy except a flat scar, telangiectasia or whitening of the mucosa. These minimal criteria can be complemented by absence of any residual tumour in the primary site and draining lymph nodes on imaging with MRI or ERUS, and negative biopsies from the scar. An initially raised CEA level which returns to normal (< 5 ng/ml) after CRT is associated with an increased likelihood of cCR and pCR, and hence supports the opinion that a cCR has been achieved [IV, C].

Dedicated centres have reported encouraging oncological and functional outcome results for selected patients treated with standardised CRT and a non-operative strategy. However, such patients have been subjected to rigorous and meticulous follow-up, where MRI surveillance is available [75], and more frequent than routine surveillance (see below) to ensure that surgical salvage is feasible and timely.

Substantially more follow-up and larger numbers of patients treated within properly controlled prospective studies are needed to validate the ‘watch-and-wait’ approach. Ongoing experiences from large databases, such as the European Registry of Cancer Care (EURECCA) ‘International Watch & Wait Database’ www.iwwd.org [50], will provide more information on its safety and efficacy, and help to select appropriate patients. Patients should be informed that the strategy remains unproven and that a small increased oncological risk of uncontrollable pelvic and metastatic disease exists, although the prognosis of patients with cCR is excellent even without surgery. A standardised protocol for intensive surveillance is, therefore, recommended.

Patients planned for surgery. In LARC, it is recommended to re-evaluate the primary tumour/CRM with MRI after CRT prior to resection to achieve clear margins [41, 76], although re-imaging after CRT may both underestimate (poor discrimination between residual tumour and radiation-induced fibrosis), and overestimate pathological response and T downstaging (tumour fragmentation).

Comparison of sequential MRIs provides MRI tumour regression grading (mriTRG), which can discriminate/determine good and poor responders and predict survival outcomes, even though inter-reader agreement has not been widely tested. mriTRG does not correlate well with histopathological TRG, and there is discordance with RECIST (response evaluation criteria in solid tumours) tumour measurements [77].

The additional value of diffusion-weighted imaging, gadofosveset-enhanced MRI or Apparent Diffusion Coefficient (ADC) measurements have not been validated. The value of CT in assessment of local response is relatively low. PET should not be routinely used as a response tool, although reduction in uptake can be quantified. The relevance of these changes is not understood, and the extent of surgery should not be modified based on these findings [IV, D].

In the case of persistent potential CRM involvement on imaging following CRT, the consensus is that such patients should not undergo trial dissection but rather should be formally referred to a MDT with experience in multivisceral resection, so the treated tumour can be removed en bloc [78]. Further ChT may be useful for some but is unproven [79]. The ultimate decision should be made by the MDT. Difficulty in distinguishing between tumour and fibrosis on restaging MRI may lead to potential discordance between imaging and clinical findings at surgery.

Distant metastases. Routine restaging of chest and abdomen after neoadjuvant CRT is not recommended, but patients with more advanced cT4 cancers, threatened CRM and the presence of EMVI should be re-staged within 3 months of original staging to exclude metastatic disease prior to surgery. If metastatic disease is diagnosed, the patient should be re-evaluated by the MDT to determine appropriate management. Earlier stage tumours do not merit this practice unless clinical progression, including new
Symptoms which may be related to metastasis or dramatically increased serum CEA, is observed.

Pathological assessment of response. A pCR after CRT is associated with low rates of local and distant recurrence. A standardised definition of pCR is recommended [80]. Several tumour regression grades (TRGs) are in use, but interobserver agreement is limited. pCR is classified by Mandar as TRG1 but by Dworak as TRG5 [81, 82]. The optimal system (e.g. reproducibility and prognostic information) remains unclear; as a minimum, tumours should be graded as having either complete response, partial response or no response [IV, B]. Other dynamic histopathological features, i.e. amount of necrosis, regression of EMVI and downstaging of T and N stage, may also define outcomes.

Interval to surgery. The optimal timing of surgical resection of LARC after preoperative CRT or SCPRT remains controversial and is addressed in trials [83–89]. The ideal interval requires a balance between allowing sufficient time for the maximal effects of the RT to be fully expressed (but before tumour repopulation) and for the acute reaction to settle so that surgery can be carried out safely.

In the case of SCPRT in resectable cancers, where downstaging is not required, ‘immediate’ surgery is recommended to take place within 7 days from the end of neoadjuvant treatment, and ideally within 0–3 days if the patient is ≥75 years (<10 days from the first radiation faction) [I, A] [83, 86]. Longer intervals after SCPRT or CRT may enhance pCR rates (with unknown prognostic implications), but risks repopulation delays the use of postoperative systemic adjuvant ChT and risks subsequent metastases. In practice, there is a wide variation in the timing of surgery (4–12 weeks) due to patient/surgeon choice, recovery from treatment and/or waiting list issues. Prospective trials have been carried out, one randomising between 6 and 12 weeks and the other between 7 and 11 weeks after CRT. The latter shows that the longer interval does not increase cCR and is associated with higher surgical morbidity [84]. In contrast, preliminary results from the former suggest a significant increase in pCR [85].

Figure 5. Rectal cancer treatment of local recurrence.
ChT, chemotherapy; CRT, chemoradiotherapy; RT, radiotherapy; SCPRT, short-course preoperative radiotherapy.
Postoperative therapy

Postoperative chemoradiotherapy. Preoperative CRT (i.e. 45–54 Gy, 1.8–2.0 Gy/fraction) or SCPRT has better outcomes than postoperative CRT [87, 88]. Traditionally, postoperative CRT was administered for all patients with pT3-4 or pN+ tumours, and combined with additional 4 months of adjuvant bolus 5-FU ChT, but the routine use of CRT to reduce local recurrence can be questioned if a good-quality TME can be assured [53].

Postoperative CRT could be selectively used in patients with unexpected adverse histopathological features after primary surgery—e.g. positive CRM, perforation in the tumour area, incomplete mesorectal resection, extranodal deposits or nodal deposits with extracapsular spread close to the MRF, or in other cases with high risk of local recurrence if preoperative RT has not been given [I, A] (see Table 7).

Postoperative chemotherapy. In colon cancer, adjuvant ChT has an established role for patients with ‘high-risk’ stage II and stage III disease. Patients with rectal cancer were specifically excluded from most phase III adjuvant studies because of the potential toxicity and confounding impact of RT or CRT. Postoperative pathological staging (ypTNM) can predict a high risk of subsequent local and distant recurrence, but there is no automatic benefit from the use of adjuvant ChT.

After surgery alone for rectal cancer, individual trials and meta-analyses indicate that there is a benefit for adjuvant 5-FU-based ChT in terms of DFS and OS [89, 90], but the magnitude of benefit is smaller than for colon cancer. However, only few studies included in the meta-analysis-mandated TME surgery and/or preoperative RT/CRT. In contrast, following SCPRT or CRT, individual randomised trials [91–93] and meta-analyses [94] have not shown any benefit for 5-FU alone.

The addition of oxaliplatin to 5-FU may improve DFS [70, 95], but results are not consistent [96] and there is no effect on OS. A single randomised, phase II study suggests that adding oxaliplatin to 5-FU/leucovorin in a modified leucovorin/fluorouracil/oxaliplatin regimen (mFOLFOX6) improves relapse-free survival and OS in high-risk rectal cancers without downstaging after preoperative 5-FU-based CRT [97], but this data should not be used to recommend that all patients with ypN+ disease should receive oxaliplatin-based postoperative ChT.

It also remains unclear whether the initial clinical (yc) or pathological (yp) stage should be used to determine the risk/benefit of adjuvant treatment. In general, downgrading in T or N stage has been recognised more as a prognostic factor of favourable outcome rather than predictive biomarker for adjuvant treatment.
Summarising, it is reasonable to consider adjuvant ChT in rectal cancer patients after preoperative CRT/RT with yp stage III (and ‘high-risk’ yp stage II). The level of scientific evidence for sufficient benefit is much lower than in colon cancer and is probably limited to DFS rather than to OS [II, C]. Hence, the decision on postoperative ChT (fluoropyrimidine alone or combined with oxaliplatin) should be risk-balanced, taking into account both the predicted toxicity for a particular patient and the risk of relapse, and should be made jointly by the individual and the clinician.

Management of local recurrence

Local recurrence is less frequent with good-quality TME and preoperative RT/CRT. Recurrent pelvic tumour can cause severe pain, often requiring opiate and non-opiate pain relief with an offensive mucinous discharge and incontinence. Surgical salvage is complicated by the loss of the normal anatomical planes. Hence surgical salvage is recommended to be carried out by specialist teams.

If RT has not already been given, patients should be considered for standard-dose, preoperative CRT (45–50 Gy in 5–6 weeks) [III, A] prior to an attempt at resection [60]. Alternatively, SCPRT followed by a fluoropyrimidine and oxaliplatin-based ChT as used in the Polish-2 study can be also applied [58]. In patients previously irradiated, re-irradiation to lower doses (with concomitant ChT is safe and can be used in selected patients to facilitate a curative resection or per se to palliate symptoms [IV, C] [98]. If salvage surgery is not currently an option, systemic palliative ChT may be used to downstage the tumour, although reports of efficacy are rare [V, C] [99]. Palliative surgical diversion procedures in patients with reasonable life expectancy are also recommended. Brachytherapy can be an effective palliative option [100]. See Figure 5.

Management of advanced/metastatic disease

Metastatic rectal cancer stages are covered already in the ESMO consensus guidelines on metastatic colorectal cancer [13], but, in principle, should reflect the goals of treatment: tumour- and disease-related characteristics, patient-related factors (comorbidity,
Staging and risk assessment

- A history and physical examination including DRE, full blood count, liver and renal function tests, serum CEA and CT scan of thorax and abdomen should be carried out to define functional status and presence of metastases [III, A].
- Rigid rectoscopy and preoperative colonoscopy to the caecal pole are required, or, in the case of obstruction, virtual colonoscopy to exclude synchronous colonic tumours. If no preoperative (virtual) colonoscopy was carried out, completion colonoscopy is recommended within 6 months of surgery [III, A].
- Pelvic MRI is the most accurate test to define locoregional clinical staging. By detecting EMVI, and determining the T substage and distance to the CRM, it can predict the risks of synchronous/metachronous distant metastases, and should be carried out to select patients for the respective preoperative management and to define the extent of surgery [III, A].
- At least 12 regional lymph nodes should be examined. Proximal, distal and circumferential margins should be documented in millimetres (separately for tumour and involved lymph nodes). A proforma report such as the one by the Royal College of Pathologists is recommended [IV, B]. For mesorectal resections, histopathological examination should include a photographic record of the surgical specimen and assessment of TME quality [III, B], which is a strong quality control measure.

Management of local/locoregional disease

- Local excisional procedures such as TEM are appropriate as a single modality for early cancers (cT1N0 without adverse features like G3, V1, L1) [III, A]. Local RT (brachytherapy or contact therapy—Papillon technique) may also be used as an alternative to local surgery, alone or combined with CRT [III, C].
- More advanced tumours up to and including cT2c/T3a/b should be treated by radical TME surgery because of higher risks of recurrence and the higher risk of mesorectal lymph node involvement. The standard of care for surgery is TME, implying that all of the mesorectal fat, including all lymph nodes, should be meticulously excised [III, A].
- For patients with LARC, treatment decisions regarding neoadjuvant therapy should be based on preoperative, MRI-predicted CRM (≤1 mm), EMVI and more advanced T3 substages (T3c/T3d), which define the risk of both local recurrence and/or synchronous and subsequent metastatic disease. For resectable cancers, where there is no indication on MRI that surgery is likely to be associated with either an R2 or an R1 resection, standard TME should achieve a curative resection. The use of CRT or SCPRT aims to reduce local recurrence.
- The selection of preoperative approach in LARC is based more on the MDT decision regarding the risk of a CRM+ at TME surgery. If CRM and/or R0 resection status are predicted at risk, CRT is advised. Otherwise, either SCPRT or CRT can be administered [I, A]. Continuous intravenous infusions of 5-FU or oral capcitabine during CRT are recommended rather than bolus 5-FU [I, A].
- Preoperative RT or CRT reduces the rate of local recurrence without improvement of OS for mid/low stage II/III rectal cancers [I, A], but is associated with significantly worse intestinal and sexual functions after surgery [I, A].
- Upper rectal cancers (>12 cm from the anal verge) above the peritoneal reflection do not benefit from preoperative SCPRT or CRT and should be treated as colon cancer [I, A].
- In the case of SCPRT in resectable cancers, where downstaging is not required, ‘immediate’ surgery is recommended to take place within 7 days from the end of neoadjuvant treatment, and ideally within 0–3 days if the patient is >75 years (>10 days from the first radiation fraction) [I, A].
- Postoperative CRT could be selectively used in patients with unexpected adverse histopathological features after primary surgery—e.g. positive CRM, perforation in the tumour area, incomplete mesorectal resection, extranodal deposits or nodal deposits with extracapsular spread close to the MRF, or in other cases with high risk of local recurrence if preoperative RT has not been given [I, A].

Follow-up, long-term implications and survivorship

- During follow-up, clinical examination, completion colonoscopy and pelvic imaging using MRI and/or CT and for distant metastases CT of the chest, abdomen and pelvis are recommended [V, B].
- A minimum provisional recommendation for average-risk patients is as follows:
 - Clinical assessment: every 6 months for 2 years [V, D].
 - A completion colonoscopy within the first year if not done at the time of diagnostic work-up (e.g. if obstruction was present) [I, A].
 - History and colonoscopy with resection of colonic polyps every 5 years up to the age of 75 years [I, B].
 - It is reasonable to offer a minimum of two CTs of the chest, abdomen and pelvis in the first 3 years and regular serum CEA tests (at least every 6 months in the first 3 years).
- High-risk patients (CRM+) may merit more proactive surveillance for local recurrence.

Table 8. Summary of recommendations

<table>
<thead>
<tr>
<th>Staging and risk assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A history and physical examination including DRE, full blood count, liver and renal function tests, serum CEA and CT scan of thorax and abdomen should be carried out to define functional status and presence of metastases [III, A].</td>
</tr>
<tr>
<td>• Rigid rectoscopy and preoperative colonoscopy to the caecal pole are required, or, in the case of obstruction, virtual colonoscopy to exclude synchronous colonic tumours. If no preoperative (virtual) colonoscopy was carried out, completion colonoscopy is recommended within 6 months of surgery [III, A].</td>
</tr>
<tr>
<td>• Pelvic MRI is the most accurate test to define locoregional clinical staging. By detecting EMVI, and determining the T substage and distance to the CRM, it can predict the risks of synchronous/metachronous distant metastases, and should be carried out to select patients for the respective preoperative management and to define the extent of surgery [III, A].</td>
</tr>
<tr>
<td>• At least 12 regional lymph nodes should be examined. Proximal, distal and circumferential margins should be documented in millimetres (separately for tumour and involved lymph nodes). A proforma report such as the one by the Royal College of Pathologists is recommended [IV, B]. For mesorectal resections, histopathological examination should include a photographic record of the surgical specimen and assessment of TME quality [III, B], which is a strong quality control measure.</td>
</tr>
</tbody>
</table>

Socioeconomic factors and expectations of the patient, and treatment-related factors such as toxicity. See Figure 6.

Whether the primary tumour remains in situ and untreated may impact on the treatment strategy. ChT alone may be insufficient in those cases, and local palliation of rectal symptoms with RT may be required. SCPRT (if feasible) is preferred to CRT since systemic ChT can start within 2 weeks from the start of treatment.

This latter strategy palliates symptoms in ~80% of patients and avoids a salvage stoma for selected patients [101]. If the patient has a chance for cure (oligometastatic disease), the treatment should aim for rapid local control with effective systemic ChT and appropriate sequence/timing of metastasectomy. Single-institution series suggest that SCPRT can be safely combined with triplet ChT (capecitabine, oxaliplatin and bevazicumab) to
facilitate the resection of borderline resectable liver metastasis and the primary tumour [102]. There are no randomised studies, so the MDT should be responsible for critical decisions in patients with potentially curable metastatic disease.

Personalised medicine

There are no molecular markers in rectal cancers available that can evaluate specific situations or treatments (e.g. whether a patient needs preoperative treatment for a localised or locally advanced rectal cancer, indicating that surgery will not be radical). Similarly, there are no known markers that can predict response to RT or CRT. Rectal cancers with distant metastases should be studied for RAS and BRAF mutational status and the other requirements addressed in the ESMO consensus guidelines on metastatic colorectal cancer [13].

Follow-up, long-term implications and survivorship

Follow-up/surveillance with clinical examination, imaging and colonoscopy aims to improve prognosis by early detection and salvage of local recurrence and metastases, and to prevent/detect second colorectal cancers. See Figure 7.

Clinical examination and pelvic imaging using MRI and/or CT and for distant metastases CT of the chest, abdomen and pelvis are recommended [V, B]. Patients with rectal tumours (particularly more advanced stages) have a higher risk of recurrence and benefit more from follow-up [103], although <10% may have salvageable recurrence. Routine use of PET-CT as surveillance is not recommended, although when recurrence is diagnosed, PET-CT may be helpful for defining other unrecognised sites of disease.

CEA screening and CT monitoring increase the rate of surgical resection of recurrence with curative intent, although the optimum modality, intensity and frequency remain undefined [104, 105]. Isolated CEA monitoring is insufficiently sensitive [106]. Routine monitoring of CEA and CT imaging is only recommended up to 5 years following surgery.

Both rectal cancer surgery and the additional pre- or postoperative (C)RT may result in late sequelae, which impact daily function. Long-term side effects of treatment should be monitored. These include assessment of lower genitourinary toxicities (e.g. erectile dysfunction, dyspareunia and urinary incontinence).

An increased risk of developing a second primary cancer following RT for rectal cancer within or outside of the irradiated volume may have been overestimated [107]. However, with better treatments, increasing numbers of patients are living with the long-term consequences of surgery, ChT and RT—such as stomas, poor mobility, and attendant co-morbidity (osteopenia, malabsorption, endocrinology problems and cardiovascular disease). Surveillance should address the social, financial and emotional aspects as well as practical and functional consequences to maximise survivors’ long-term well-being. Important components include guidelines for the proactive detection of likely future effects and an educational program (before and after treatment) to promote engagement with the healthcare system and an appropriate and healthy lifestyle.

Evidence supports late effects/survivorship clinics for patients who have received pelvic RT.

A minimum provisional recommendation for average-risk patients is as follows:

- Clinical assessment: every 6 months for 2 years [V, D].
- A completion colonoscopy within the first year if not done at the time of diagnostic work-up (e.g. if obstruction was present) [I, A].
- History and colonoscopy with resection of colonic polyps every 5 years up to the age of 75 years [I, B].
- A minimum of two CTs of the chest, abdomen and pelvis in the first 3 years and regular serum CEA tests (at least every 6 months in the first 3 years).

High-risk patients (CRM+) may merit more proactive surveillance for local recurrence.
Methodology

These Clinical Practice Guidelines were developed in accordance with the ESMO standard operating procedures for Clinical Practice Guidelines development http://www.esmo.org/Guidelines/ESMO-Guidelines-Methodology. The relevant literature has been selected by the expert authors. A summary of key recommendations is given in Table 8. Levels of evidence and grades of recommendation have been applied using the system shown in Table 9. Statements without grading were considered justified standard clinical practice by the experts and the ESMO Faculty. This manuscript has been subjected to an anonymous peer review process.

Acknowledgements

RG-J would like to acknowledge the advice of Dr Bruce Mcfarlane, Dr Marcia Hall, CNS Angela Wheeler, and Dr Teresa Levertot. LW would like to express his gratitude to Dr Jacek Krynski and Pr Krzysztof Bujko for discussions on multimodality treatment of rectal cancer. AC is a member of CIBERONC, a research network of the Spanish National Institute of Health Charles III.

Disclosure

RG-J has received honoraria for lectures from Roche, Sanofi, Merck Serono and Servier and for attending advisory boards from Eli Lilly, Roche, Servier, Eisai Amgen, Bristol-Myers Squibb and Mundipharma. He has received research funding for investigator-led phase II trials from Merck and Roche. LW has received honoraria for lectures from Amgen, Merck Serono, Roche and Servier and for advisory boards from Halozyme and Eisai. AC has received honoraria for lectures from Amgen, Roche, Merck Serono, Takeda and Servier and for advisory boards from Eli Lilly, Bayer, Roche, Merck Serono, Servier and Amgen; he has received research funding from Merck Serono, Eli Lilly, Bayer, Genentech and Roche. DA has reported research grants from Roche and Sanofi and has received honoraria for lectures from Roche, Merck Serono, Bayer and Servier and for advisory boards from Eli Lilly, Bayer, Roche, Merck Serono and Servier. ET, GB and CR have reported no potential conflicts of interest.

References

102. van Dijk TH, Tamas K, Beukema JC et al. Evaluation of short-course radiotherapy followed by neoadjuvant bevacizumab, capcitabine, and...

