Standardizing the gamma-ray bursts with the Amati $E_{p,i}-E_{iso}$ relation: the updated Hubble diagram and implications for cosmography

Marek Demianski1,2 and Ester Piedipalumbo3,4

1Institute for Theoretical Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
2Department of Astronomy, Williams College, Williamstown, MA 01267, USA
3Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Compl. Univ. Monte S. Angelo, 80126 Naples, Italy
4INFN, Sez. di Napoli, Complesso Universitario di Monte Sant’Angelo, Edificio G, via Cinthia, 80126 Napoli, Italy

Accepted 2011 April 28. Received 2011 April 20; in original form 2011 February 2

ABSTRACT

The correlation between the peak photon energy of the internal spectrum $E_{p,i}$ and isotropic equivalent radiated energy E_{iso} (the Amati relation) is explored in a scalar field model of dark energy. Using an updated data set of 109 high-redshift gamma-ray bursts (GRBs), we show that the correlation parameters only weakly depend on the cosmological model. Once the parameters of the Amati relation have been determined, we use this relation to construct a fiducial GRB Hubble diagram (HD) that extends up to redshifts ~ 8. Moreover, we apply a local regression technique to estimate, in a model-independent way, the distance modulus from the recently updated Union Type Ia supernova (SNIa) sample, containing 557 SNIa spanning the redshift range of $0.015 \leq z \leq 1.55$. The derived calibration parameters are used to construct an updated GRB HD, which we call the calibrated GRB HD. We also compare the fiducial and calibrated GRB HDs, which turned out to be fully statistically consistent, thus indicating that they are not affected by any systematic bias induced by the different calibration procedures. This means that the high-redshift GRBs can be used to test different models of dark energy settling the circularity problem. Furthermore, we investigate possible evolutionary effects that might have important influence on our results. Our analysis indicates that the presently available GRB data sets do not show statistically unambiguous evolutionary effect with the cosmological redshift. Finally, we propose another approach to calibrate the GRB relations, by using an approximate luminosity–distance relation, which holds in any cosmological model. We use this calibration of the Amati relation to construct an empirical approximate HD, which we compare with the calibrated GRB HD. We finally investigate the implications of this approach for the high-redshift cosmography.

Key words: gamma-ray burst: general – cosmological parameters – distance scale.

1 INTRODUCTION

At the end of the 1990s observations of high-redshift supernovae of Type Ia (SNIa) revealed that the Universe is now expanding at an accelerated rate. This surprising result has been independently confirmed by observations of small-scale temperature anisotropies of the cosmic microwave background (CMB) radiation (Astier et al. 2006; Riess et al. 2007; Spergel et al. 2007; Kowalski et al. 2008). It is usually assumed that the observed accelerated expansion is caused by a so-called dark energy with unusual properties. The pressure of dark energy p_{de} is negative, and it is related to the positive energy density of dark energy ϵ_{de} by $p_{de} = w\epsilon_{de}$, where the proportionality coefficient $w < 0$. According to the present day estimates, about 75 per cent of matter energy in the Universe is in the form of dark energy, so that now the dark energy is the dominating component in the Universe. The nature of dark energy is not known. Proposed so far models of dark energy can be divided, at least, into three groups: (a) a non-zero cosmological constant, in this case $w = -1$, (b) a potential energy of some not yet discovered scalar field or (c) effects connected with non-homogeneous distribution of matter and averaging procedures. In the last two possibilities, in general, w is not a constant and it depends on the redshift z. Observations of SNIa and small-scale anisotropies of the CMB radiation are consistent with the assumption that the observed accelerated expansion is due to the non-zero cosmological constant. However, so far the SNIa have been observed only at redshifts $z < 2$, while in order to test if w is changing with redshift it is necessary to use more distant...
objects. New possibilities opened up when the gamma ray bursts (GRBs) have been discovered at higher redshifts, the present record is at \(z = 8.26\) (Greiner et al. 2009). GRBs are however enigmatic objects. First of all the mechanism that is responsible for releasing the incredible amounts of energy that a typical GRB emits is not yet known (see e.g. Meszaros 2006, for a recent review). It is also not yet definitely known if the energy is emitted isotropically or is beamed. Despite these difficulties, GRBs are promising objects that can be used to study the expansion rate of the Universe at high redshifts (Bloom, Frail & Kulkarni 2003; Bradley 2003; Schaefer 2003; Dai, Liang & Xu 2004; Firmani et al. 2005; Schaefer 2007; Amati et al. 2008; Li et al. 2008; Tsutsui et al. 2009). Using the observed spectrum and light curves it is possible to derive additional parameters, for example the peak photon energy \(E_{\text{p,i}}\), at which the burst is the brightest, and the variability parameter \(V\) which measures the smoothness of the light curve (for definitions of these and other parameters mentioned below, see Schaefer 2007). From observations of the afterglow, it is possible to derive another set of parameters; redshift is the most important, and also the jet opening angle \(\Theta_{\text{jet}}\) inferred from the achromatic break in the light curve of the afterglow, the time lag \(\tau_{\text{lag}}\) which measures the time offset between high- and low-energy GRB photons arriving at the detector, and \(\tau_{\text{egr}}\) – the shortest time over which the light curve increases by half of the peak flux of the burst. Moreover, even though the most important parameters – the intrinsic luminosity \(L\) and the total (isotropic) radiated energy \(E_{\text{iso}}\) – are not directly observable, several correlations have been found between the additional parameters, such as the peak photon energy \(E_{\text{p,i}}\), the variability \(V\), the time lag \(\tau_{\text{lag}}\), etc., and the GRBs radiated energy or luminosity. Assuming that GRBs emit radiation isotropically, it is possible to relate \(L\) to the observed bolometric peak flux \(P_{\text{bolo}}\) and the bolometric fluence \(S_{\text{bolo}}\), respectively, by

\[
L = 4\pi d_{\text{L}}^2(z, \text{cp})P_{\text{bolo}}
\]

and

\[
E_{\text{iso}} = 4\pi d_{\text{L}}^2(z, \text{cp})S_{\text{bolo}}(1 + z)^{-1},
\]

where \(d_{\text{L}}\) is the luminosity distance and \(\text{cp}\) denotes the set of cosmological parameters that specify the background cosmological model. Equivalently, one can use the total collimation corrected energy. It is clear from these relations that, in order to get the intrinsic luminosity, it is necessary to specify the fiducial cosmological model and its basic parameters. But we want to use the observed properties of GRBs to derive the cosmological parameters. Several procedures to overcome this complicated circular situation have been proposed (see e.g. Schaefer 2007; Basilakos & Perivolaropoulos 2008; Cardone, Capozziello & Dainotti 2008; Demianski, Pedipalumbo & Rubano 2011). In this paper we apply a Bayesian-motivated technique, already implemented in Demianski et al. (2011) to standardize 109 long GRBs with the well-known Amati relation, i.e. to find the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation parameters, where \(E_{\text{p,i}}\) is the peak photon energy of the intrinsic spectrum and \(E_{\text{iso}}\) is the isotropic equivalent radiated energy, in order to construct an estimated fiducial Hubble diagram (HD) that extends to redshifts \(z \sim 8\), assuming that radiation propagates in a quintessential cosmological model. We begin our analysis using a minimally coupled self-interacting scalar field quintessence model, with an exponential potential. Parameters of this model are fixed by fitting appropriate estimates to the set of SNIa data, the power spectrum of CMB temperature anisotropies and parameters of the observed large-scale structure (see Demianski et al. 2005), which has been recently referred to as the fiducial model to standardize the GRBs and to construct the HD using previous samples of GRBs compiled by Schaefer (2007), Amati et al. (2008, 2009) and Demianski et al. (2011). Here we are extending this analysis by considering new updated data set. Moreover, we apply a local regression technique to estimate, in a model-independent way, the distance modulus from the recently updated SNIa sample, referred to as Union (Amanullah et al. 2010), containing 557 SNIa spanning the redshift range 0.015 \(\leq z \leq 1.55\). The derived calibration parameters are used to construct a new calibrated GRB HD. We also compare the estimated and calibrated GRB HDs. The scheme of the paper is as follows. In Section 2, we describe our statistical method to fit the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation, to estimate the normalization and the slope of such a relation, and then construct the estimated and calibrated GRB HD. In Section 3, we present an alternative procedure to calibrate the Amati relation in a cosmological-independent way and explore their implications for cosmography. Section 4 is devoted to discussion and conclusions.

2 STANDARDIZING THE GRBs AND CONSTRUCTING THE HUBBLE DIAGRAM

In this section, we investigate the possibility of constructing the HD from the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation; here \(E_{\text{p,i}}\) is the peak photon energy of the intrinsic spectrum and \(E_{\text{iso}}\) is the isotropic equivalent radiated energy. \(E_{\text{iso}}\) is defined by equation (2). This correlation was initially discovered in a small sample of BeppoSAX GRBs with known redshifts (Amati et al. 2002) and confirmed afterwards by HETE-2 and Swift observations (Lamb, Donaghy & Graziani 2005; Amati 2006). Although it was the first correlation discovered for GRB observables, it was never used for cosmology because of its significant ‘extrinsic’ scatter. However, the recent increase in the efficiency of GRB discoveries combined with the fact that \(E_{\text{p,i}}-E_{\text{iso}}\) correlation needs only two parameters that are directly inferred from observations (this fact minimizes the effects of systematics and increases the number of GRBs that can be used by a factor of \(~3\)) makes this correlation an interesting tool for cosmology. Previous analyses of the \(E_{\text{p,i}}-E_{\text{iso}}\) plane of GRB parameters showed that different classes of GRBs exhibit different behaviours, and while normal long GRBs and X-ray flashes (XRFs, i.e. particularly soft bursts) follow the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation, short GRBs and the peculiar very near and subenergetic GRBs do not (Amati et al. 2008). This fact may depend on the different emission mechanisms involved in different classes of GRBs and makes the \(E_{\text{p,i}}-E_{\text{iso}}\) relation a useful tool to distinguish between them (Antonelli 2009). The impact of selection and instrumental effects on the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation of long GRBs were investigated since 2005, mainly based on the large sample of Burst and Transient Source Experiment (BATSE) GRBs with unknown redshifts. Different authors came to different conclusions (see e.g. Ghirlanda, Ghisellini & Firmani 2005). In particular, Ghirlanda at al. (2005) showed that BATSE events potentially follow the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation and that the question to clarify is if, and how much, its measured dispersion is biased. There were also claims that a significant fraction of Swift GRBs is inconsistent with this correlation (Butler et al. 2007). However, when considering those Swift events with peak energy measured by broad-band instruments like, e.g. Konus–WIND or the Fermi/Gamma-ray Burst Monitor or reported by the Burst Alarm Telescope (BAT) team in their catalog (Sakamoto et al. 2008), it is found that they are all consistent with the \(E_{\text{p,i}}-E_{\text{iso}}\) correlation as determined with previous/other instruments (Amati, Frontera & Guidorzi 2009). In addition, it turns out that the slope and normalization of the correlation based on the data sets provided by GRB detectors with different sensitivities and energy bands are very similar. These facts further support the
reliability of the Amati correlation (Amati et al. 2009). It is clear from equation (2) that, in order to get \(E_{\text{iso}}\), it is necessary to specify the fiducial cosmological model. In Demianski et al. (2011), we fitted the Amati relation in a quintessence cosmological model, where the dark energy is described by the exponential potential of the scalar field discussed in Demianski et al. (2005). In our analysis, we consider a sample of 109 long GRBs/XRFs, adding to the sample of 95 long GRBs/XRFs compiled by Amati et al. (2008, 2009) data of 14 unpublished GRBs, kindly provided by Amati (private communication). Their redshift distribution covers a broad range of \(z\) from 0.033 to 8.23, thus extending far beyond that of SNIa \((z < \sim 1.7)\), and including GRB 092304, the new high-\(z\) record holder of GRBs.

2.1 Fitting the \(E_{\text{p, i}}-E_{\text{iso}}\) relation and estimating its parameters

In this section, we present results of our analysis of the Amati correlation performed on a new updated data set, assuming that the background cosmological model is one of the quintessence models that we have studied some time ago (Demianski et al. 2005), and show that it is consistent with the basic cosmological tests, and which has been recently referred to as the fiducial model to standardize the GRBs and to construct the HD using previous samples of GRBs. First of all, we consider the \(E_{\text{p, i}}-E_{\text{iso}}\) relation in the form

\[
\log \left(\frac{E_{\text{iso}}}{1 \text{ erg}} \right) = b + a \log \left(\frac{E_{\text{p, i}}}{300 \text{ keV}} \right),
\]

where \(a\) and \(b\) are constants. In fitting this relation, we need to fit a data array \(\{x_i, y_i\}\) with uncertainties \(\{\sigma_{x,i}, \sigma_{y,i}\}\) to a straight line

\[
y = b + ax,
\]

in order to determine the two fit parameters \((a, b)\). Actually, the situation is not so simple since both the \((y, x)\) variables are affected by measurement uncertainties \((\sigma_y, \sigma_x)\) which cannot be neglected. Moreover, \(\sigma_y \sim \sigma_x/\sqrt{x}\) so that it is impossible to choose as independent variable in the fit the one with the smallest relative error. Finally, the correlation we are fitting is not of theoretical nature, i.e., it is not (yet) derived from an underlying theoretical model determining the detailed features of the GRB explosion and afterglow phenomenology. Indeed, we do expect a certain amount of intrinsic scatter, \(\sigma_{\text{int}}\), around the best-fitting line that has to be taken into account and determined together with \((a, b)\) by the fitting procedure. Different statistical recipes are available to cope with these problems. As in Demianski et al. (2011), we apply a Bayesian-motivated technique (D’Agostini 2005) maximizing the likelihood function \(\mathcal{L}(a, b, \sigma_{\text{int}}) = \exp \left[-L(a, b, \sigma_{\text{int}})\right]\) with

\[
L(a, b, \sigma_{\text{int}}) = \frac{1}{2} \sum \ln \left(\sigma_{\text{int}}^2 + \sigma_y^2 + \sigma_x^2 \right) + \frac{1}{2} \sum \frac{(y_i - ax_i - b)^2}{\sigma_{x,i}^2 + \sigma_{y,i}^2 + \sigma_{\text{int}}^2},
\]

where the sum is over the \(N\) objects in the sample. Note that, actually, this maximization is performed in the two-parameter space \((a, \sigma_{\text{int}})\) since \(b\) may be estimated analytically by solving the equation \(\frac{\partial}{\partial b} \mathcal{L}(a, b, \sigma_{\text{int}}) = 0\), as

\[
b = \left[\sum \frac{y_i - ax_i}{\sigma_{x,i}^2 + \sigma_{y,i}^2 + \sigma_{\text{int}}^2} \right] \left[\sum \frac{1}{\sigma_{x,i}^2 + \sigma_{y,i}^2 + \sigma_{\text{int}}^2} \right]^{-1}.
\]

To quantitatively estimate the goodness of this fit, we use the median and root mean square of the best-fitting residuals, defined as \(\delta = y_{\text{obs}} - y_{\text{mod}}\). To quantify the uncertainties of some fit parameter \(p_i\), we evaluate the marginalized likelihood \(\mathcal{L}(p_i)\) by integrating over the other parameter. The median value for the parameter \(p_i\) is then found by solving

\[
\int_{p_i}^{p_i\text{med}} \mathcal{L}(p_i) \, dp_i = \frac{1}{2} \int_{p_i\text{min}}^{p_i\text{max}} \mathcal{L}(p_i) \, dp_i.
\]

The 68 per cent (95 per cent) confidence range \((p_{i, l}, p_{i, h})\) are then found by solving (D’Agostini 2005)

\[
\int_{p_{i,l}}^{p_{i,med}} \mathcal{L}(p_i) \, dp_i = \frac{1 - \epsilon}{2} \int_{p_{i,min}}^{p_{i,med}} \mathcal{L}(p_i) \, dp_i,
\]

\[
\int_{p_{i,med}}^{p_{i,h}} \mathcal{L}(p_i) \, dp_i = \frac{1 - \epsilon}{2} \int_{p_{i,med}}^{p_{i,max}} \mathcal{L}(p_i) \, dp_i,
\]

with \(\epsilon = 0.68\) and 0.95 for the 68 and 95 per cent confidence levels, respectively. Just considering our correlation in equation (3) we find that the likelihood method gives \(a = 1.52\), \(b = 52.67\) and \(\sigma_{\text{int}} = 0.41\). The marginalized likelihood functions are shown in Fig. 1. In Fig. 2, we show the likelihood contours in the \((a, \sigma_{\text{int}})\) plane and in Fig. 3 we show the correlation between the observed \(\log E_{\text{p, i}}\) and derived \(\log E_{\text{iso}}\) with our assumed background cosmological model. The solid line is the best fit obtained using the D’Agostini’s method (D’Agostini 2005) and the dashed line is the best fit obtained by the weighted \(\chi^2\) method. If one marginalizes\(^1\) with respect to \(b\), then the likelihood values of \(a\) and \(\sigma_{\text{int}}\) are \(a = 1.52^{+0.13}_{-0.12}\) and \(\sigma_{\text{int}} = 0.45 \pm 0.05\). The performed statistical analysis shows that

\(^1\) It is worth noting that in the marginalization procedure we have to take into account also equation (6).
relation (3) has a statistical weight similar to the one exhibited by the other relations previously studied in Demianski et al. (2011), since both δ_{med} and δ_{rms} have almost the same values over the full set (of relations), where $\delta = y_{\text{obs}} - y_{\text{fit}}$. In our analysis, we have assumed that the fit parameters do not change with the redshift, which indeed spans a quite large range (from $z = 0.0331$ up to $z \simeq 8$). The limited number of GRBs prevents detailed exploration of the validity of this usually adopted working hypothesis, which we tested somewhat investigating if the residuals correlate with the redshift. We have not found any significant correlation, as shown in Fig. 4. Moreover, we tested the fit of the $E_{p,i} - E_{\text{iso}}$ correlation with respect to the evolution with redshift, separating the GRB samples into four groups corresponding to the following redshift bins: $z \in [0, 1]$, $z \in (1, 2]$, $z \in (2, 3]$ and $z > 3$. We thus maximized the likelihood in each group of redshifts and determined the best-fitting parameters a, b at the 65 per cent confidence level, and the intrinsic dispersion σ_{int}, as summarized in Table 1. It turns out that no statistical evidence of a dependence of the (a, b, σ_{int}) parameters on the redshift exists. This is in agreement with what has recently been found by Ghirlanda et al. (2008) and Wang, Deng & Qiu (2008), or, as regards to other correlations, by Cardone et al. (2008) and Basilakos & Perivolaropoulos (2008), and also confirmed in our previous paper (Demianski et al. 2011).

2.2 Constructing the Hubble diagram

Once the Amati correlation has been fitted, and its parameters have been estimated, we can now use them to construct the estimated fiducial GRB HD. Actually, let us remind that the luminosity distance of a GRB with the redshift z may be computed as

$$d_L(z)^2 = \frac{E_{\text{iso}}(1 + z)}{4\pi S_{\text{bol}}}.$$ (10)

The uncertainty of $d_L(z)$ is then estimated through the propagation of the measurement errors on the involved quantities. In particular, recalling that our correlation can be written as a linear relation, as in equation (4), where y is the distance-dependent quantity, while x is not, the error on the distance-dependent quantity y is estimated as

$$\sigma(y) = \sqrt{\sigma_x^2 \sigma_y^2 + \sigma_{int}^2},$$ (11)

and is then added in quadrature to the uncertainties of the other terms entering equation (10) to get the total uncertainty. The distance modulus $\mu(z)$ is easily obtained from its definition:

$$\mu(z) = 25 + 5 \log d_L(z),$$ (12)

with its uncertainty obtained again by error propagation. We finally estimate the distance modulus for each ith GRB in our sample at redshift z_i to build the HD plotted in Fig. 5. In what follows, we will refer to this data set as the fiducial GRB HD since to compute the distances it relies on the calibration based on the fiducial quintessential model. We also investigated the impact of varying the parameters of our fiducial cosmological model, fitting the Amati correlation on a regular grid in the space of parameters of our quintessential model, and also confirmed in our previous paper (Demianski et al. 2011).
2.2.1 Cosmological-independent calibration: local regression on SNIa

Although the above analysis has shown that the choice of the underlying cosmological model has only a modest impact on the final estimate of the distance modulus, we compared our estimated fiducial HD with a model-independent calibrated HD, carried out using SNIa as distance indicators. We apply local regression to estimate the distance modulus $\mu(z)$ from the recently updated SNIa sample, the Supernova Cosmology Project (SCP) Union2 compilation (Amanullah et al. 2010), which is an update of the original Union compilation, now bringing together data for 719 SNe, drawn from 17 data sets. Of these, 557 SNe, spanning the range $0.015 < z < 1.55$, form the final sample considered in our analysis. To use this large data set as an input to the local regression estimate of $\mu(z)$, we have firstly to set a redshift z_u where $\mu(z_u)$ has to be recovered, order the SNIa data set according to the increasing value of $|z - z_u|$ and select the first $n = aN_{\text{SNIa}}$, where a is a user-selected value and N_{SNIa} is the total number of SNIa. Then we can fit a first-order polynomial to the previously selected data, weighting each SNIa with the corresponding value of an appropriate weight function, like, for instance

$$W(\alpha) = \begin{cases}
(1 - |\alpha|^2)^2 & |\alpha| \leq 1, \\
0 & |\alpha| > 1,
\end{cases}$$

and take the zeroth-order term as the best estimate of $\mu(z)$. Here, $u = |z - z_u|/\Delta$ and Δ is the maximum value of the $|z - z_u|$ over the subset chosen before. To estimate the error on $\mu(z)$, we use the root mean square of the weighted residuals with respect to the best-fitting zeroth-order term.²

Figure 5. The estimated quintessential HD, with the superimposed (solid line) theoretical curve.

Figure 6. Regions of 68, 95 and 99 per cent confidence in the space of parameters a, σ_{int} obtained by the local regression on SNeIa.

Table 1. Calibration parameters (a, b), intrinsic scatter σ_{int}, median, δ_{med} and root mean square of the best-fitting residuals, δ_{rms} for the Amati correlation, evaluated in four ranges of redshift $(z \in [0, 1], z \in [1, 2], z \in [2, 3] \text{ and } z > 3$, where however we have only 10 GRBs. Columns are as follows: Column 1: ID of the redshift range; Column 2: maximum likelihood parameters; Columns 3 and 4: 68 per cent confidence ranges for the parameters (a, σ_{int}); Columns 5 and 6: median and root mean square of the residuals.

<table>
<thead>
<tr>
<th>$z \in [0, 1]$</th>
<th>$(a, b, \sigma_{int})_{\text{ML}}$</th>
<th>$(a - 1\sigma, a + 1\sigma)$</th>
<th>$[\sigma_{int} - 1\sigma, \sigma_{int} + 1\sigma]$</th>
<th>δ_{med}</th>
<th>δ_{rms}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1.53, 52.6, 0.36)$</td>
<td>$(1.28, 1.69)$</td>
<td>$(0.27, 0.51)$</td>
<td>-0.07</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>$(1.38, 52.6, 0.55)$</td>
<td>$(0.8, 1.9)$</td>
<td>$(0.43, 0.7)$</td>
<td>0.08</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>$(1.38, 52.6, 0.56)$</td>
<td>$(0.83, 1.94)$</td>
<td>$(0.43, 0.75)$</td>
<td>0.08</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>$(1.59, 52.9, 0.22)$</td>
<td>$(1.08, 2.01)$</td>
<td>$(0.1, 0.46)$</td>
<td>0.01</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>

² It is worth stressing that both the choice of the weight function and the order of the fitting polynomial are somewhat arbitrary. Similarly, the value of α to be used must not be too small in order to make up a statistically valuable sample, but also not too large to prevent the use of a low-order polynomial. In our local regression routine, we have performed an extensive set of simulations, ending up with a mock catalogue having the same redshift and error distribution of the actual SNIa one. This mock catalogue is used as an input to the routine sketched above, and finally the reconstructed $\mu(z)$ value for each point in the catalogue is compared to the input one (see Cardone et al. 2008 for details).
In equation (15), \(v \) is the affine parameter, \(T_{\text{aff}} \) is the matter density tensor, \(k^\alpha = \frac{\partial \zeta}{\partial x^\alpha} = -\Sigma^{\alpha \beta} \) is the vector field tangent to the light ray congruence and \(\Sigma \) is the null surface along which the light rays propagate from the source. In the general form equation (15) is very complicated. General properties of this equation have been extensively studied (see e.g. Kantowski 1998; Kantowski, Kao & Thomas 2000; Kantowski & Thomas 2001; Demianski et al. 2003). In most cases, equation (15) does not have analytical solution, and from the mathematical point of view it can be reduced to a Fuchsian type with several regular singular points and a regular singular point at infinity. The solutions near each of these singular points can be expanded in a series of hypergeometric functions. When we introduced the dimensionless angular diameter distance \(r = DH_0/c \), we discovered (Demianski et al. 2003) that there is a simple function \(r(z) \), which quite accurately reproduces the exact numerical solutions of equation (15) for \(z \) up to very high values; it has the form

\[
r(z) = \frac{z}{\sqrt{d_1 z^2 + (1 + d_2 z + d_3 z^2)^2}}.
\]

where \(d_1, d_2 \) and \(d_3 \) are constants. Moreover, function (17) automatically satisfies the imposed initial conditions, so \(r(0) = 0 \) and \(\frac{d}{dz}(0) = 1 \). This approximate expression immediately provides an empirical formula for the luminosity–distance relation of the SNeIa, through the equation (1). Fitting relation (17) to the SNeIa Union data set, we obtained the following best-fitting values for the fitting parameters \(d_i \):

\[
\begin{align*}
 d_1 &= -3.87, \\
 d_2 &= 1.51, \\
 d_3 &= 0.70.
\end{align*}
\]

In Fig. 9, we show the approximate distance modulus with the SNeIa data superimposed. The approximate function agrees with the real data within a relative error not larger than a few per cent in the SNeIa redshift range, as shown in Fig. 10.

From the empirical approximate luminosity distance we can construct the empirical approximate distance modulus \(\mu_{\text{approx}}(z) \), which we use to calibrate in a cosmological-independent way, alternative to the one described above, the \(E_{\text{p},i} - E_{\text{i,iso}} \) (Amati) correlation, following our standard procedure, and considering only the GRBs with \(z \leq 1.55 \) in order to cover the same redshift range spanned by the SNeIa data. We use other GRBs to construct a new GRB HD that we call the approximate calibrated GRB HD. In Fig. 11, we show the correlation between the observed log \(E_{\text{p},i} \) and derived log \(E_{\text{i,iso}} \) with

![Figure 7](https://example.com/figure7.png)
Figure 7. Marginalized likelihood functions constructed by the local regression on the SNeIa: the likelihood function, \(L_a \), is obtained marginalizing over \(\sigma_m \), and the likelihood function, \(L_{\text{approx}} \), is obtained marginalizing over \(a \).

![Figure 8](https://example.com/figure8.png)
Figure 8. Comparison of the distance modulus \(\mu(z) \) for the calibrated and estimated GRB HD made up fitting the Amati correlation. The red solid line represents the graph of the function \(F_\mu(SN) = \mu_{\text{SN}} \), and it turns out that it is also the fitting function if we do not include a constant term in the list of basis functions (needed to perform the fit procedure). The dashed green line is the best-fitting function.

3 AN ALTERNATIVE PROCEDURE TO CALIBRATE THE \(E_{\text{p},i} - E_{\text{i,iso}} \) RELATION IN A COSMOLOGICAL-INDEPENDENT WAY: IMPLICATIONS FOR COSMOGRAPHY

In this section, we propose a procedure to calibrate the \(E_{\text{p},i} - E_{\text{i,iso}} \) relation using only the GRB events with the redshift \(z \leq 1.55 \) without specifying a cosmological model. The luminosity–distance estimations to GRBs are inferred from many known SNeIa, and based on an approximate formula for the luminosity distance which holds in any cosmological model, depending only on the shape of this function, more than on a power series expansion in the redshift parameter \(z \) [the coefficients of such an expansion being functions of the scale factor \(a(t) \) and its higher order derivatives], as in the cosmographic approach. Our starting point is the relation between the angular diameter distance \(D_A \) and the luminosity distance \(D_L \):

\[
D_L = (1 + z)^2 D_A,
\]

where the angular diameter distance, \(D_A \), is a solution of equation

\[
\left(\frac{D(z)}{dz} \right)^2 \frac{d^2 D}{dz^2} + \frac{d^2 D}{dz^2} D + 4\pi G \frac{c^4}{c^4} T_{\text{aff}} k^\alpha k^\beta D = 0,
\]

with the following initial conditions:

\[
D(z)|_{z=0} = 0, \quad \frac{dD(z)}{dz}|_{z=0} = \frac{c}{H_0}.
\]

In equation (15), \(v \) is the affine parameter, \(T_{\text{aff}} \) is the matter density tensor, \(k^\alpha = \frac{\partial \zeta}{\partial x^\alpha} = -\Sigma^{\alpha \beta} \) is the vector field tangent to the light ray congruence and \(\Sigma \) is the null surface along which the light rays propagate from the source. In the general form equation (15) is very complicated. General properties of this equation have been extensively studied (see e.g. Kantowski 1998; Kantowski, Kao & Thomas 2000; Kantowski & Thomas 2001; Demianski et al. 2003). In most cases, equation (15) does not have analytical solution, and from the mathematical point of view it can be reduced to a Fuchsian type with several regular singular points and a regular singular point at infinity. The solutions near each of these singular points can be expanded in a series of hypergeometric functions. When we introduced the dimensionless angular diameter distance \(r = DH_0/c \), we discovered (Demianski et al. 2003) that there is a simple function \(r(z) \), which quite accurately reproduces the exact numerical solutions of equation (15) for \(z \) up to very high values; it has the form

\[
r(z) = \frac{z}{\sqrt{d_1 z^2 + (1 + d_2 z + d_3 z^2)^2}}.
\]

where \(d_1, d_2 \) and \(d_3 \) are constants. Moreover, function (17) automatically satisfies the imposed initial conditions, so \(r(0) = 0 \) and \(\frac{d}{dz}(0) = 1 \). This approximate expression immediately provides an empirical formula for the luminosity–distance relation of the SNeIa, through the equation (1). Fitting relation (17) to the SNeIa Union data set, we obtained the following best-fitting values for the fitting parameters \(d_i \):

\[
\begin{align*}
 d_1 &= -3.87, \\
 d_2 &= 1.51, \\
 d_3 &= 0.70.
\end{align*}
\]

In Fig. 9, we show the approximate distance modulus with the SNeIa data superimposed. The approximate function agrees with the real data within a relative error not larger than a few per cent in the SNeIa redshift range, as shown in Fig. 10.

From the empirical approximate luminosity distance we can construct the empirical approximate distance modulus \(\mu_{\text{approx}}(z) \), which we use to calibrate in a cosmological-independent way, alternative to the one described above, the \(E_{\text{p},i} - E_{\text{i,iso}} \) (Amati) correlation, following our standard procedure, and considering only the GRBs with \(z \leq 1.55 \) in order to cover the same redshift range spanned by the SNeIa data. We use other GRBs to construct a new GRB HD that we call the approximate calibrated GRB HD. In Fig. 11, we show the correlation between the observed log \(E_{\text{p},i} \) and derived log \(E_{\text{i,iso}} \) with
Figure 10. Behaviour with the redshift of the relative residuals, δ = \frac{r_{\text{obs}} - r_{\text{fit}}}{r_{\text{fit}}}$, of the fit procedure which provides our empirical formula in equation (17), which agrees with the real data within a relative error of magnitude not more than few per cent.

Figure 11. Best-fitting curves for the $E_p - E_{iso}$ correlation, obtained using our empirical approximate luminosity–distance formula, superimposed on the data. The solid and dashed lines refer to the results obtained with the Bayesian and Levenberg–Marquardt estimator, respectively.

Figure 12. Comparison of the distance modulus $\mu(z)$ for the empirical approximate and calibrated (SNla) GRB HDs. The data set are fully statistically consistent and are strongly correlated with the Spearman correlation $\rho = 0.99$. The red solid line represents the graph of the function $F(\mu_{\text{SN}}) = \mu_{\text{SN}}$, and it turns out that it is also the fitting function if we do not include a constant term in the list of basis functions (needed to perform the fit procedure). The dashed green line is the best-fitting function.

Figure 13. Residuals (relative) $\epsilon = \frac{\mu_{\text{SN}} - \mu_{\text{approx}}}{\mu_{\text{SN}}}$ between the approximate and calibrated GRB HDs.

3.1 Implications for high-redshift cosmography

Recently the cosmographic approach to cosmology gained increasing interest for catching as much information as possible directly from observations, retaining the minimal priors of isotropy and homogeneity and leaving aside any other assumptions. Actually, the only ingredient taken into account a priori in this approach is the Friedmann–Lemaître–Robertson–Walker (FLRW) line element obtained from kinematical requirements:

$$ds^2 = -c^2dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2d\Omega^2 \right].$$ \hspace{1cm} (21)

Using this metric, it is possible to express the luminosity distance d_L as a power series in the redshift parameter z, the coefficients of the expansion being functions of the scale factor $a(t)$ and its higher order derivatives. Such an expansion leads to a distance–redshift relation which only relies on the assumption of the Robertson–Walker metric thus being fully model independent since it does not depend on the particular form of the solution of cosmic evolution equations. To this aim, it is convenient to introduce the following parameters (Visser 2004):

$$H = \frac{1}{a} \frac{da}{dt},$$ \hspace{1cm} (22)

$$q = -\frac{1}{a^2} \frac{d^2a}{dt^2},$$ \hspace{1cm} (23)

$$j = \frac{1}{a^3} \frac{d^3a}{dt^3}. $$ \hspace{1cm} (24)
which are usually referred to as the Hubble, deceleration, jerk and snap parameters, respectively. Their present day values (which we will denote with a subscript 0) may be used to characterize the evolutionary status of the Universe. For instance, \(q_0 < 0 \) denotes an accelerated expansion, while \(j_0 \) allows us to discriminate among different accelerating models. It is worth noting that it is possible to infer implications for cosmography just using our empirical formula (17) of the luminosity distance in our analysis. Actually, we first recast our approximate \(d_L \) as a function of a new variable \(y = z/(1 + z) \) (Capozziello & Izzo 2010; Vitagliano et al. 2010) in such a way that \(z \in (0, \infty) \) is mapped into \(y \in (0, 1) \), obtaining

\[
d_L^{\text{approx}}(y) = \frac{c}{H_0} \left(\frac{y}{y-1} \right)^{\frac{3}{2}} \left(1 - \frac{d_L^2}{y-1} + \frac{d_L^2}{y-1} + 1 \right)^{\frac{3}{2}}. \tag{25}
\]

Expanding our approximate luminosity distance up to the fourth order in the \(y \) parameter, we get

\[
d_L(y) = \frac{c}{H_0} \left\{ y^3 \left(- \frac{d_1}{2} + d_2^2 - 4d_2 - d_1 + 6 \right) + y^4 \left(\frac{1}{2}d_1(3d_2 - 5) - d_2^2 + 5d_2^2 + 2d_2(d_2 - 5) - 5(d_3 - 2) \right) - (d_2 - 3)y^2 + y \right\}. \tag{26}
\]

It is now possible to relate the \(d_i \) to the cosmographic parameters \(q_0, j_0 \) and \(s_0 \) by comparing the expansion in equation (27) with the standard expansion to the fourth order:

\[
d_L(y) = \frac{c}{H_0} \left\{ y^3 \left(- \frac{1}{2}q_0 - 3 \right)y^2 + \frac{1}{6} \left[12 - 5q_0 + 3q_0^2 - j_0 \right] y^3 + \frac{1}{24} \left[60 - 7j_0 - 10 - 32q_0 + 10q_0j_0 + 6q_0 \right] y^4 + 21q_0^2 - 15q_0^3 + s_0 \right\} y + O(y^5). \tag{28}
\]

It turns out that

\[
d_1 = 1 + j_0 + q_0 + 6j_0q_0 - 2q_0^2(1 + 3q_0) + s_0, \tag{29}
\]

\[
d_2 = \frac{3 + q_0}{2}, \tag{30}
\]

\[
d_3 = \frac{14 + j_0(5 - 4q_0) + q_0(16 + 3(-1 + q_0)q_0) - s_0}{12(3 + q_0)}. \tag{31}
\]

Inverting the systems of equations (29)–(31), it is possible to recover the cosmographic parameters \(q_0, j_0 \) and \(s_0 \) as the functions of our fitted parameters \(d_i \). Actually, we get

\[
q_0 = -3 + 2d_2, \tag{32}
\]

\[
j_0 = -23.9 + 1.70, \tag{33}
\]

\[
s_0 = -256.4 + 34.7. \tag{34}
\]

These equations, together with the values of the fitting parameters in equations (18)–(20) with the corresponding physically acceptable regions of confidence, allow us to estimate the corresponding parameter confidence intervals for \(q_0, j_0 \) and \(s_0 \). We actually obtain that,

\[
\begin{align*}
q_0 &< -0.45, j_0 = -12.3 \text{ and } s_0 = -99.3, \\
&\text{which agree with the values found in the literature (see e.g. Capozziello} \\
&\text{& Izzo} 2010; \text{Vitagliano et al.} 2010). \text{In Fig.} 14, \text{we plot our approximate cosmographic distance moduli together with the SNIa} \\
&\text{Union data set. In addition, we investigate the possibility of using high-redshift GRBs to determine parameters of our approximate} \\
&\text{cosmography. Therefore, in the following, we use the calibrated} \\
&\text{(with SNIa) GBR HD, described above, to fit the} d_i \text{ parameters and then to derive the cosmographic parameters} \\
&\text{q0, j0} \text{ and} s_0. \text{We obtain the following} (2\sigma) \text{ parameter confidence intervals:}
\end{align*}
\]

\[
\begin{align*}
d_1 &= 0.950028 \pm 11.2294, \\
d_2 &= -2.76299 \pm 1.92514, \\
d_3 &= 0.140305 \pm 0.836675,
\end{align*}
\]

\[
\begin{align*}
q_0 &< -1.09 \pm 0.10, \\
j_0 &= -0.3 \pm 2.71, \\
s_0 &= -1.23716 \pm 8.34.
\end{align*}
\]

\[\text{The E_{p,i} - E_{iso} relation} \quad 3587\]

\[\text{Figure 14. Distance moduli for the best-fitting values of our cosmography,} \]

\[\text{together with the Union data set.} \]

\[\begin{align*}
j_0 &= 17 + 3d_4 - 22d_2 + 6d_2^2 + 6d_4, \\
s_0 &= d_1(51 - 24d_2) + 158d_2^2 - 24d_3^2 - 8d_2(35 + 9d_3) + 3(49 + 34d_3).
\end{align*}\]

\[\text{It is worth noting that such physically acceptable regions are obtained imposing on the confidence regions provided by the standard statistical} \]

\[\text{fitting procedure, some priors, which have to guarantee that the approximate} \]

\[\text{function in equation (17) preserves the special shape typical of the angular} \]

\[\text{diameter distance. Instead, since the SNIa data set used to fit the parameters} \]

\[d_4 \text{ is limited in redshift by} z < 1.39, \text{the approximate function in equation (17)} \]

\[\text{is not sampled at higher values of the redshift, and its behaviour could result} \]

\[\text{mis-shaped.} \]
the best fit being \(q_0 = -0.51, j_0 = 0.69 \) and \(s_0 = -0.48 \), in agreement with other results in the literature (see e.g. Gao, Liang & Zhu 2010; Vitagliano et al. 2010). In Fig. 15, we plot our approximate cosmographic distance modulus together with the SNIa Union data set and the calibrated GBR HD. The reliability of the reconstruction is measured by the relative residuals, \(\epsilon = \frac{\mu_{\text{obs}} - \mu_{\text{fit}}}{\mu_{\text{obs}}} \), shown in Fig. 16. We finally perform our approximate cosmographic analysis, considering a whole data set containing both the SNIa Union data set and the calibrated GBR HD, which we call the cosmographic data set. We obtain the following parameter confidence (at 2\(\sigma \) intervals) for the \(d_j \) and the cosmographic parameters, respectively:

\[
\begin{pmatrix}
 d_1 & -1.35 & 2.26 \\
 d_2 & 0.71 & 1.30 \\
 d_3 & 0.39 & 0.59 \\
 q_0 & -1.58 & -0.39 \\
 j_0 & 2.67 & 8.87 \\
 s_0 & -6.88 & 46.9376
\end{pmatrix}
\]

The best fit being \(q_0 = -0.9, j_0 = 5.25 \) and \(s_0 = 27.25 \), which again agree with the values found in the literature. In Fig. 17, we show the approximate cosmographic distance modulus together with the cosmographic data set. Moreover, we observe that since the cosmographic data set also includes the GBR HD, which spans a quite large range of redshift up to \(z \approx 8 \), the approximate function in equation (17) is sampled also at higher values of the redshift, and its behaviour is not misshaped, even without any prior on the confidence regions, as needed above. In order to further check the reliability of our procedure, we compare the results summarized above with that provided by the standard cosmography. We apply this procedure to the cosmographic data set only and obtain the following parameter confidence (2\(\sigma \) intervals):

\[
\begin{pmatrix}
 q_0 & -1.09 & -0.08 \\
 j_0 & -0.30 & 2.71 \\
 s_0 & -1.24 & 8.34
\end{pmatrix}
\]

which fully agree with the previous results. Also, from the point of view of the analysis of residuals it turns out that our approximate cosmography is statistically fully consistent with the standard cosmography; actually, we obtain a fully compatible values for the root mean square and the correlations in both cases. In Fig. 18, we show the standard cosmographic distance modulus together with the cosmographic data set. In short, let us note that we implemented a cosmographic analysis, using both the SNe and the GRB data, which allow us to obtain constraints on the parameters of cosmography (starting from our approximated luminosity distance), which we also compare with the results of a standard approach. Therefore, our approach is very different from the one used in Capozziello & Izzo (2010), where they obtain a cosmographic luminosity distance in the \(y \) redshift, which is used to calibrate the \(E_p-E_{iso} \) relation using a weighted \(\chi^2 \) estimator, but without making up the GRB HD. Moreover, in that case the constraints on the cosmographic parameters are obtained from the SNIa data only.
4 DISCUSSION AND CONCLUSIONS

Recently several interesting correlations among the GRB observables have been identified. Proper evaluation and calibration of these correlations are needed to use the GRBs as standard candles to constrain the expansion history of the Universe up to redshifts of $z \sim 8$. Here we used the GRB data set recently compiled by Amati et al. (2008, 2009) to investigate, in a quintessential cosmological scenario, the $E_{p,i}-E_{iso}$ correlation. Marginalizing over the normalization, b, our Bayesian analysis provides the following parameter confidence (at 3σ) intervals for the best-fitting power-law and the intrinsic dispersion, respectively:

$$
\begin{pmatrix}
ad & 1.263 \\
s_{\text{int}} & 1.77 \\
0.36 & 0.5
d & 51
\end{pmatrix}.
$$

The maximum likelihood value for the normalization coefficient turns out to be $b = 52.67$. We used the fitted parameters to construct an estimated fiducial HD that extends up to redshifts $z \sim 8$. In the first part of our analysis, we have assumed that the fit parameters do not change with the redshift. The limited number of GRBs prevents detailed exploration of the validity of this usually adopted working hypothesis, which we tested somewhat investigating if the residuals correlate with the redshift. We have not found any significant correlation. Moreover, we tested the fit of the $E_{p,i}-E_{iso}$ correlation parameters with respect to the evolution with redshift, binning the GRBs into four groups with redshift from low to high, each group containing a reasonable number of GRBs. We thus maximized the likelihood in each group of redshifts and determined the best-fitting calibration parameters. Our analysis indicates that the presently available GRB data sets do not show statistically unambiguous evolutionary effect with the cosmological redshift, but this should be tested further with larger GRB samples. We also investigated the impact of varying the parameters of our fiducial cosmological model, fitting the Amati correlation on a regular grid in the space of parameters of our quintessential model and evaluating, for each GRB, the root mean square of the percentage deviation from the fiducial μ value. In this way, we performed a sort of average of the absolute percentage deviation which provides the variation of the fitting parameters a and b. It turns out that the distance modulus may be underestimated or overestimated by a modest 0.3 per cent with values never larger than 1 per cent, so that the underlying cosmological model (in terms of varying the values of its characteristic parameters) has only a modest impact on the final estimate of the distance modulus. However, this fact does not imply that the cosmological constraints that can be obtained from GRB data with this method are also marginal; already in Demianski et al. (2011) we tested the stability of values of the fitted correlation parameters by considering an ad hoc definition of the luminosity distance that gives much larger distances to objects at $z > 2$ than either of the fiducial model. It turned out that such artificial crazy luminosity distance is changing the values of the correlation parameters, but the difference is not dramatic at the 1σ confidence level. However, the situation changes when we consider, in the space of parameters, the regions of 1σ, 2σ and 3σ of confidence for our crazy model. It turns out that with respect to the same regions constructed for the fiducial model they overlap only at 1σ, but differ consistently at higher levels of confidence. As a consequence, when we made up the GRB HD, the number of GRBs deviating from the fiducial μ more than 2σ increases from $N = 14$, in the case of the quintessential cosmological model, to $N = 51$ in the case of the crazy model.

The calibration of the Amati correlation, as well as the other known correlations, in several cosmological scenarios is therefore already needed to fully use the GRBs as a cosmological probe. Actually, quite recently, in Diaferio, Ostorero & Cardone (2011) the GRBs are used to test the Λ cold dark matter (ΛCDM) versus conformal gravity, and in a forthcoming paper we are standardizing the GRBs with the Amati relation to test cosmological models based on extended theories of gravity. Moreover, we apply a local regression technique to estimate, in a model-independent way, the distance modulus from the recently updated SNIa sample. The derived calibration parameters are used to construct an updated GRB HD, which we call the calibrated GRB HD. We also compare the fiducial and calibrated GRB HDs, which turned out to be fully statistically consistent, thus indicating that they are not affected by any systematic bias induced by the different calibration procedures. This means that the high-redshift GRBs can be used to test different models of dark energy settling the circularity problem. Finally, we propose a new approach to calibrate the GRB relations in a cosmologically independent way, by using an approximate luminosity–distance relation, which holds in any cosmological model. We use this calibration of the Amati relation to construct an empirical approximate HD, which is fully consistent with the calibrated GRB HD, probing in such a way the reliability of our approach, which could provide a robust procedure to calibrate in a cosmological-independent way different GRB correlations, especially if the available data set is poorly populated in the SNIa range of redshift, so that, in such a case, the SNIa fitting procedure fails. We finally investigated the implications of such an approach for the high-redshift cosmography. Actually, starting from the estimation of the constant d_l, d_s and q_0 present in our approximate luminosity–distance relation, we constructed the map which connects our d_ss to the parameters describing the kinematical state of the Universe q_0, jerk j_0 and snap s_0. This map is a core for our approximate cosmography, which we actually applied to a whole data set containing both the SNIa Union data set and the calibrated GRB HD, which we call the cosmographic data set. Using the cosmographic data set, we show that the deceleration parameter, q_0, up to the 3σ confidence level is definitively negative. The constraints for the jerk and snap parameters are, instead, less strong. Finally, it turns out that our results are fully consistent with the results obtained using the standard approach, showing that our new approximate cosmography allows robust results in a wide range of redshifts.

ACKNOWLEDGMENTS

We warmly thank Dr Lorenzo Amati for providing us with data of 14 unpublished GRBs, which we added to the samples in Amati et al. (2008, 2009). This paper was supported in part by the Polish Ministry of Science and Higher Education grant NN202-091839.

REFERENCES

5 In Demianski et al. (2011), the results concerning the crazy model are inferred from fitting five correlations different from the Amati relation. However, we tested that for the Amati relation we also obtain the same kind of behaviour.