188 pts with 307 pt years (PY). Rates/100PY of AEs and serious AEs (SAEs) were 406.5 and 11.1, respectively; infections were the most common AE (151.4) and SAE (5.2); ALT and AST elevation ≥3× upper limit of normal occurred in 6.4% and 2.7% of pts, respectively. Grade 3 neutropenia and grade 2/3 thrombocytopenia occurred in 5.9% and 1.6% of pts, respectively. LDL cholesterol ≥110 mg/dl occurred in 16.2% of pts.

Conclusion: Efficacy of TCZ was maintained through 2 years of treatment in pts with pcJIA, with no change in safety profile from that reported previously.

Disclosure statement: The authors have declared no conflicts of interest.

ABSTRACT 3 BSPAR169

AUTOANTIBODIES PREDICTIVE OF UVEITIS IN JUVENILE IDIOPATHIC ARTHRITIS (APERTURE): A PROOF OF CONCEPT STUDY

D. S. Gibson1,2, J. Qi3, S. Finnegan1, E. A. Mendoza3, K. Barker3, C. Mc Allister1, J. Labaer3 and M. Rooney1

1Queens University of Belfast, 2University of Ulster, UK and 3Arizona State University, AZ, USA

Correspondence to: M. Rooney. E-mail: m.rooney@qub.ac.uk

Method: Nucleic Acid Programmable Protein Array (NAPPA) enables the production of multiple proteins from DNA templates which are immobilized on a solid phase. These can then be probed for the presence of autoantibodies in patient’s serum. NAPPA slides with 2200 genes were produced. PubMed search identified ~60 genes associated with uveitis pathology and ~30 genes associated with arthritis development. The remaining ~2100 genes were randomly identified from a ~12,000 human gene collection (http://dnasu.a-su.edu) (Fig. 1). The arrays were then probed using plasma from JIA patients with (n = 20) and without uveitis (n = 20) and from healthy age and sex matched controls (n = 20).

Results: Quantitative reproducibility of NAPPA was demonstrated with > 0.95 intra-array and inter-array correlations. Differences in the levels of potential autoantibodies were revealed between JIA patients with and without uveitis. Patients were segregated into two clinical subtypes with distinct antibody signatures by unsupervised hierarchical cluster analysis.

Conclusion: The NAPPA platform has the potential to identify novel autoantibodies that robustly forecast the development of uveitis in children with Juvenile idiopathic arthritis. This predictive tool could enable the development of a more appropriate, effective and efficient clinical management algorithm.

Disclosure statement: The authors have declared no conflicts of interest.

ABSTRACT 4 BSPAR124

DEVELOPMENT OF AN INTERNATIONALY AGREED MINIMAL DATASET FOR JUVENILE DERMATOMYOSITIS

K. Arnold1, L. R. Wedderburn1, C. A. Pilkington1, A. Ravelli1, A. Huber1, M. W. Beresford2 and L. McCann1,2

1Rheumatology Unit, ICH, University College London and 2Rheumatology Unit, Great Ormond Street Hospital, London, UK

Correspondence to: K. Arnold. E-mail: k.arnold@ucl.ac.uk

Introduction: JDM is a rare disease, requiring large patient cohorts to elucidate impact of recent genetic/antibody discoveries on disease pathogenesis and outcome. International collaboration using standardized disease activity/outcome measures is essential. Two overlapping but distinct research core sets exist (IMACS1 and PRINTO2) but are time consuming and lack international consensus. Its aims were to gain international consensus on a minimal JDM dataset comprising clinical, laboratory and patient/parent reported measures, collected in routine clinical practice that can be incorporated into international data collections. This will facilitate communication between research groups, provide a platform for future trials and establish an international standard of care.

Method: A representative group of international JDM experts compared variables collected within four large JDM data sets: UK JDM Cohort Biomarker Study and Repository (JDCBS), Euromyositis, Childhood Arthritis Rheumatology Research Alliance (CARRA) and a Paediatric Rheumatology International Trials Organisation (PRINTO) coordinated study. Variables common to two data collections (n = 59) were evaluated by group consensus, with consideration of published research tools, for relevance to clinical practice/research.

Results: The resulting provisional minimal dataset is sub-divided into eight domains, three of which are only pertinent to presentation. Our group aim to use this as a starting point to gain international consensus via a web-based Delphi consensus distributed through collaborative networks (including BSPAR) and a face-to-face meeting of experts using Nominal Group Technique.

Conclusion: A core minimal dataset has the potential to strengthen and standardize current international data collection for JDM patients, provide a framework for clinical trials and improved clinical care.

Disclosure statement: The authors have declared no conflicts of interest.