Multiple sexual ornaments in satin bowerbirds: ultraviolet plumage and bowers signal different aspects of male quality

Stéphanie M. Doucet and Robert Montgomerie
Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Much attention has been devoted to understanding the evolution of elaborate male ornaments and how they may signal male quality. However, the evolution of multicomponent sexual signals remains poorly understood, and past research on this type of signaling has been largely theoretical. Satin bowerbirds, *Ptilonorhynchus violaceus*, are polygynous, are sexually dichromatic, and construct sexually selected display structures (bowers): a model system for investigating the evolution and signal function of multiple sexual signals. We studied the interrelationship between bower features, plumage coloration, and indicators of male quality in this species. To do this, we located the bowers of male satin bowerbirds in rainforest in Queensland, Australia, and quantified bower quality. We captured the male bower owners and used reflectance spectrometry to objectively measure the plumage coloration of several body regions. We measured various indicators of male health and condition, including the intensity of infection from ectoparasites and blood parasites. Bower quality and male ultraviolet plumage coloration were significantly correlated. By using multiple regression analyses, we show that bower quality predicts ectoparasite load and body size, whereas ultraviolet plumage coloration predicts the intensity of infection from blood parasites, feather growth rate, and body size. Our findings support the multiple messages hypothesis of multicomponent signals: Female satin bowerbirds should assess both male and bower features to choose the highest quality mates. Key words: bowerbirds, bowers, honest advertisement, multiple ornaments, parasites, plumage color, sexual selection, structural colors. [Behav Ecol 14:503–509 (2003)]

In satin bowerbirds, individual variation in the quality of bower construction, the numbers and types of decorations adorning the bower platform, and age-correlated features of courtship song are known to influence female choice of copulation partners, as measured by male mating success (Borgia, 1985b; Lofredo and Borgia, 1986). In contrast to other features of the sexual display of male satin bowerbirds, the structurally based iridescent plumage of males has received less attention, even though this species is highly sexually dichromatic and plumage ornamentation is a prominent feature of male courtship display. Recent studies of other bird species have shown that structural plumage coloration can honestly signal condition (Doucet, 2002; Keyser and Hill, 1999), male quality (Keyser and Hill, 2000), and viability (Sheldon et al., 1999). Thus plumage coloration can honestly signal condition (Doucet, 2002; Keyser and Hill, 1999), male quality (Keyser and Hill, 2000), and viability (Sheldon et al., 1999). Thus plumage coloration can honestly signal condition (Doucet, 2002; Keyser and Hill, 1999), male quality (Keyser and Hill, 2000), and viability (Sheldon et al., 1999). Thus plumage coloration can honestly signal condition (Doucet, 2002; Keyser and Hill, 1999), male quality (Keyser and Hill, 2000), and viability (Sheldon et al., 1999).

METHODS

This study was conducted from September–December 2000 in a 700-ha study area in Mount Baldy State Forest, Queensland, Australia (17°30′ S, 145°30′ E). The dominant habitat was rainforest with a sharp transition to wet sclerophyll forest at the northeastern edge of our study area. We located 12 satin bowerbird bowers in our study area by listening for male
To assess the extent of bower decoration, we evaluated four features of bower construction—overall symmetry of the structure, stick size, stick density, and overall quality of construction—each on a scale from one (poor) to four (excellent). We calculated a bower quality score for each bower as the sum of these measures averaged between the two observers. Similar indices of bower quality have been shown to accurately search for active display sites. We assessed bower quality by evaluating bower construction and quantifying the number of decorations used. Two observers independently evaluated four features of bower construction—overall symmetry of the structure, stick size, stick density, and overall quality of construction—each on a scale from one (poor) to four (excellent). We calculated a bower quality score for each bower as the sum of these measures averaged between the two observers. Similar indices of bower quality have been shown to correlate with mating success in several species of bowerbird (Borgia, 1985b; Borgia and Mueller, 1992; Lenz, 1994; Uy and Borgia, 2000). To assess the extent of bower decoration, we regularly visited bowers from mid October to late November (n = 3–7 visits per bower) and recorded the number of each type of decoration present on the bower. For our analyses, we used the mean number of decorations recorded at each bower. We caught 11 adult males (10 of which held bowers) near their display sites by using mist nets baited with blue objects, and fitted them with a unique combination of color bands. We wanted to investigate the influence of UVV-brightness for overall bright and highly saturated ornamental plumage coloration. We did not include UVV-brightness in the PCA because of all the color variables calculated, this was the most variable both within and among males (see below); thus, we wanted to investigate the influence of UVV-brightness for each body region separately.

Parasites
We assessed ectoparasite load by counting the number of *Myrsidea ptilonorhynchi* lice on the head (especially near the eyes) of each male. This louse belongs to a suborder in which species are known to consume feathers and to feed on the blood and skin of their hosts; thus, these lice probably elicit specific immune responses in their hosts and can have a considerable effect on host fitness (Clayton, 1991a,b). This louse is the only common ectoparasite on satin bowerbirds, and it is found mainly around the head and eyes where birds cannot easily preen (Borgia, 1986a; Borgia and Collis, 1989, 1990).

To assess the intensity of infection from blood parasites, we collected a small sample of blood from the brachial vein of each male, drawing blood into a capillary tube and thinly
smearing it onto a glass slide. We prepared the slides by using the Hema 3 staining procedure (Fisher Scientific). We then observed each slide at ×1250 magnification under oil immersion, scanning for haemosporidian parasites until 10,000 red blood cells had been surveyed, and identifying each parasite to genus (Campbell, 1988). All but one of the blood parasites scored were *Haemoproteus*; thus, only mature (intra-erythrocytic) *Haemoproteus* parasites are considered in the following analyses. All slides were scored by the same observer, blind to the identity of the individual bird being scored.

We assessed feather growth rates by measuring the width of alternating dark and light bars on the right outer rectrix of each male. Each pair of bars represents 1 day’s growth (Michener and Michener, 1938), and the width of these bars has been associated with nutritional condition in several species (Grubb, 1989, 1991; Jenkins et al., 2001). We measured the width of six pairs of bars on either side of the midpoint of the feather, from which we calculated a 12-day average daily feather growth rate for each male (see Hill and Montgomerie, 1994).

Statistical analysis

None of the variables described in this study deviated significantly from normality (all, p > .10); thus, no transformations were required for parametric analyses. Values are reported as mean ± SE, and all probabilities are two-tailed. To determine which plumage and bower variables would best predict four male traits that may reveal male quality (ectoparasite load, intensity of infection from blood parasites, feather growth rate, body size), we constructed four backward stepwise multiple regression models. In each of the four models, we used PCI color score, UVV-brightness (of rump, wing coverts, mantle, and breast, separately), bower quality score, and number of bower decorations as potential predictor variables. We performed a backward selection procedure so that variables that could significantly predict male traits in combination would be included in the models even if they were not significant predictors individually (see Zar, 1999). The models reported here include only variables that were significant predictors (p ≤ .05) of each quality trait under investigation. We also constructed correlation matrices and examined leverage plots for indications of collinearity in predictor variables that might make these regression models difficult to interpret; none of the regression models showed evidence of serious problems with collinearity. Because of our small sample size, we make no attempt to assess the relative importance of these different signals in predicting aspects of male quality, although the standardized regression coefficients may serve as a rough guide. Analyses that could reliably reveal the relative importance of different predictor variables (e.g., path analysis) would require much larger sample sizes.

RESULTS

Plumage coloration

The rump, mantle, breast, and wing coverts of male satin bowerbirds reflect most strongly in the UV and violet regions of the bird-visible spectrum (Figure 1). Indeed, the average male hue across the four body regions measured was 362 ± 6.8 nm, well within the UV range (300–400 nm). There was considerable variation in male plumage characteristics, both among males and among body regions within males. UV-brightness was the most variable of the plumage characteristics we calculated, with coefficients of variation (CV) among males ranging from 0.25–0.38 for the wing coverts, mantle, breast, and rump. In comparison, mean CVs for total brightness, UVV-chroma, contrast, and hue were 0.29, 0.08, 0.17, and 0.07, respectively. Mean UV-brightness was also significantly different across the four body regions measured (ANOVA: F_{4,40} = 5.86, p = .002; mean UV-brightness of the rump, 7.8 ± 0.90; mantle, 10.5 ± 0.79; breast, 6.3 ± 0.66; wing coverts, 7.0 ± 0.64) despite looking identical to us. Interestingly, correlations of UVV-brightness between regions (within males) were weak and both positive and negative (Table 1).

Plumage coloration and bower characteristics

Measures of bower structure and male plumage coloration were intricately associated in satin bowerbirds. Male ornamental plumage color (PCI color score) was significantly positively related to both bower quality (Figure 2a) and the average number of decorations adorning bowers (Figure 2b). Thus, the satin bowerbird’s bower provides females with a useful index of a male’s appearance, even in his absence, with bower quality score and number of decorations together explaining about 75% of the variation in this PCI color score (multiple regression: F_{2,7} = 10.3, p = .008).

Parasites

To determine whether plumage coloration and bower features revealed aspects of male quality, we compared these attributes to the degree of infection from ectoparasites and...
endoparasites. In a stepwise multiple regression analysis, the quality of bower construction emerged as the only significant predictor of ectoparasite load among the variables tested (Table 2, Figure 3). That is, males with high quality bowers had fewer ectoparasites, and bower quality explained more than 50% of the variation in ectoparasite load. On the other hand, variation in the intensity of endoparasite infection was best explained by the UVV-brightness of the male’s rump plumage (Table 2, Figure 3); males with the brightest rumps had the lowest intensity of infection by *Haemoproteus* blood parasites, with rump UVV-brightness explaining 50% of the variation in the intensity of infection.

Feather growth rate

Overall plumage color (PC1 color score), rump UVV-brightness, and wing covert UVV-brightness were all significant predictors of feather growth rate (Table 2, Figure 3), together explaining 74% of the variation in growth rate. PC1 color score was the best predictor of feather growth rate, explaining 46% of the variation. Note, however, that PC1 color score varied negatively with feather growth rate, in the opposite direction to that predicted. Rump and wing covert UVV-brightness, on the other hand, were positive predictors of feather growth rate and together explained an additional 28% of the variation. UVV-brightness of rump and wing coverts were not correlated within males nor was either of these significantly correlated with PC1 color score (Table 1).

Body size

Rump UVV-brightness, bower quality score, and number of bower decorations were all significant predictors of body size (Table 2, Figure 3), together explaining more than 80% of the variation in tarsus length. Rump UVV-brightness was the best predictor of tarsus length (Table 2), explaining 46% of the variation, with bower quality score and number of decorations together explaining an additional 36% of the variation. Bower quality score and number of decorations were significantly correlated within males, but neither of these bower variables was correlated with rump UVV-brightness (Table 1). Rump UVV-brightness and average number of bower decorations were positive predictors of tarsus length, whereas bower quality score was a negative predictor. Note, however, that bower quality was a negative predictor of tarsus length only in this multiple regression analysis, in which the number of bower decorations is statistically controlled. By itself, bower quality score was positively, although not significantly, related to tarsus length ($r = .10, n = 10, p = .79$).

DISCUSSION

Our analyses show that male plumage coloration and bower quality features are intricately related in satin bowerbirds and that, together, these elaborate sexual ornaments reveal important aspects of male quality. This is the first study to identify an association between bower features and male plumage ornamentation in bowerbirds, suggesting that bowers are an extension of the male phenotype that females can use to assess male quality. It is possible that the observed positive relations between bower quality score, number of decorations, and overall plumage color (PC1 color score) (Figure 2) may result from a general increase in the quality of bower construction (Borgia, 1986b) and structural plumage color with male age. However, females seem to consistently prefer specific individuals in a population (Uy et al., 2000, 2001), thereby suggesting that some aspects of male quality may be independent of age. More work will be needed to determine the effects of male age on their plumage coloration and quality of bower construction to determine whether these signals also provide females with useful fitness-related information about male longevity.

As we have shown, the signal function of decorated bowers and bright plumage in satin bowerbirds may be explained in part by their significant correlation with parasite load, an important indicator of male quality (see also Doucet and Montgomerie, in press). According to the Hamilton-Zuk hypothesis of parasite-mediated sexual selection, females should prefer males with the most elaborate sexual ornaments because the degree of ornament elaboration may be limited by a male’s ability to resist disease infection (Hamilton and Zuk, 1982). Hence, by mating with highly ornamented males, females stand to acquire heritable parasite resistance for their offspring (Hamilton and Zuk, 1982). Here, we provide support for the Hamilton-Zuk hypothesis by two means. First, we show that quality of bower construction is a significant predictor of ectoparasite load in this population. Thus, females could potentially assess male ectoparasite load by evaluating bower quality, even in the absence of the bower owner. In another population of satin bowerbirds, male ectoparasite load was negatively related to mating success but was unrelated to bower quality (Borgia and Collis, 1989,
II. Endoparasites

Rump UVV-brightness ($R^2 = .50$)

Wing coverts UVV-brightness ($R^2 = .50$)

Rump UVV-brightness ($R^2 = .50$)

III. Feather growth rate

Whole model ($R^2 = .74$)

PC1 plumage color score ($R^2 = .74$)

Wing coverts UVV-brightness ($R^2 = .74$)

Rump UVV-brightness ($R^2 = .74$)

IV. Body size

Whole model ($R^2 = .82$)

Rump UVV-brightness ($R^2 = .82$)

Bower quality score ($R^2 = .82$)

Number of decorations ($R^2 = .82$)

Each model was constructed using backward stepwise multiple regression analysis with both bower features (bower quality score, number of decorations) and plumage features (PC1 plumage color score, UVV-brightness of the wing coverts, mantle, rump, and breast) as independent variables. Standardized regression coefficients (β') and significance tests are shown for each significant predictor variable.
is probably essential to building complex bowers, searching for bower decorations, and decorating bowers appropriately; female brain size may be as important in searching for potential mates (Uy et al., 2000, 2001) and assessing complex bowers, male plumage, and elaborate male displays. Thus, female satin bowerbirds may be particularly well suited to evaluate the impressive array of signals of quality discovered so far in this species, from bower features and male plumage coloration to song and perhaps even display complexity.

We are grateful to M. Bhardwaj for excellent field assistance and to D. Westcott for indispensable help with establishing this project. We thank D. J. Mennill for assistance in the field and helpful comments on this manuscript, two anonymous reviewers for their helpful suggestions, the Australian Bird & Bat Banding Scheme and the Queensland Department of Environment for permission to work on satin bowerbirds, the Queensland Department of Natural Resources for permission to work in State Forest, and CSIRO Australia and the Tropical Forest Research Center in Atherton for logistic support. Funding was provided by the Natural Sciences and Engineering Research Council of Canada in the form of a PGS A scholarship to S.M.D. and both research and equipment grants to R.M.

REFERENCES

Pryke SR, Lawes MJ, Andersson S, 2001b. Agonistic carotenoid signalling in male red-collared widowbirds: aggression related to...
the colour signal of both the territory owner and model intruder. Anim Behav 62:695–704.