Individual variation in male mating preferences for female coloration in a polymorphic cichlid fish

Michele E.R. Pierotti,a,b,c Mairi E. Knight,d Simone Immler,e Nicola J. Barson,f George F. Turner,a and Ole Seehausenb,c

© The Author 2008. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.

For permissions, please e-mail: journals.permissions@oxfordjournals.org

One color morph (plain [P] morph) shows the typical pattern of dark vertical bars common in many other rock-dwelling cichlid species of Lakes Victoria and Malawi. In the other 2 morphs, vertical bars are substituted by black blotches on an orange background (orange-blotted [OB] morph) or on a yellow–white background (piebald [WB] morph). The authors showed that both blotched morphs are carriers of different dominant female determiners (sex reversal factors) linked to the blotch genes. As a consequence, matings between P and blotched (WB/OB) individuals can result in the wild was consistent with nonrandom mating between color morphs. Seehausen et al. (1999) concluded that N. omnicaeruleus might represent a case of arrested incipient speciation by selection on sex reversal and sexual selection. Male mating preferences, as found in N. omnicaeruleus, are not expected to be common among the haplochromine cichlid fishes of Lakes Victoria and Malawi. The haplochromine cichlids of the East African lakes are polygynandrous female mouthbrooders: whereas male investment is limited to courtship and gamete production, females incur high costs of parental care during the mouthbrooding period, when they refrain from feeding and are possibly more exposed to predators. Given such highly asymmetric investment, strong female choice is expected but the reverse seems unlikely. Male choice...
for female ornamentation in non sex–role-reversed fish species has been rarely described (Amundsen and Forsgren 2001, 2003; Basolo and Delaney 2001; Craig and Foote 2001), but this might also be partly due to a research bias (Houde 2001).

To date, there was no evidence that female sex-linked color polymorphisms are the target of mate choice in other cichlid fish radiations, that is, Lake Malawi cichlids, or in fact that individual variation exists in male mating preferences for alternative female color morphs in any East African cichlid radiation.

The mechanism of mate preference inheritance can influence the evolutionary trajectory of a sexually selected trait and possibly the likelihood and speed of species divergence by sexual selection (Laland 1994; Grant PR and Grant BR 1997; Price 1998; Lachlan and Servedio 2004; Albert 2005; Verzijden et al. 2005). Cichlid fishes have been the object of intense research in sexual selection, and while evidence for genetic inheritance of mate preferences has only recently started to emerge (Haesler and Seehausen 2005), the existence of sexual imprinting in cichlids has long been invoked. Earlier studies reported an influence of parental color morph on female mate choice in the neotropical cichlid Archoecinus nigrofasciatus (Weber PG and Weber SP 1976; Siepen and Caprona 1986). Siblings’ coloration seems also to be implicated in the development of female mating preferences in Henichromis bimaculatus (Kop and Heuts 1973), Astatotilapia bartoni (Sjölander and Fernö 1973), and A. nigrofasciatus (Weber PG and Weber SP 1976). In the Lake Malawi mbuna cichlids, there is no parent–offspring interaction after the offspring leave the mother’s mouth. Once released, mother and fry dissolve their bond and fry rush to the nearest natural shelter to avoid predation (Genner and Turner 2005). Therefore, there is very little opportunity for fry to imprint on mother’s color pattern. However, imprinting on sibs’ coloration might take place in this early stage of free swimming.

We studied male mating preferences in the blotch polymorphic Pseudotropheus (Maylandia) ‘zebra gold’, a species belonging to the Lake Malawi cichlid fish radiation. Previous work has established within-population variation in sex-determining factors and the association between dominant female sex determination with dominant blotch coloration in this and related species (Holzberg 1978; Knight 1999). Here, we tested whether male mating preferences for female color morphs have evolved in this species and whether there is individual variation in strength and direction of mating preferences within a population. We also examined the mechanisms of preference acquisition by testing whether male mating preferences have a genetic basis or are acquired by imprinting on sibs’ coloration.

MATERIALS AND METHODS

Study species

Pseudotropheus (Maylandia) ‘zebra gold’ (also known by the junior synonym Metriaclima; e.g., Stauffer et al. 1997) is an undescribed species of rock-dwelling ephlitic algae scrapers. Two color morphs occur in the population (Nhkata Bay) considered in this study: a “gold” morph (P), with males gold-yellow with 6–7 dark vertical bars and females brown with dark vertical bars, and an “orange-blotched” (OB) morph with females orange with irregular black blotches; OB males are extremely rare (Konings 2001). Female OB blotched coloration is dominant in P ‘zebra gold’ and in other haplochromine species (Holzberg 1978; Knight 1999; Seehausen et al. 1999). In Pseudotropheus (Maylandia) zebra, Streeleman et al. (2003) recently identified a single genomic region responsible for OB coloration, in physical linkage with the cichlid protooncogene c-ski1 (Huang et al. 1999).

Housing conditions

Experimental males were kept in individual 19 × 19 × 18 cm aquaria allowing no visual contact of the test males with either female color morph. Females were kept in a female population tank. All aquaria were maintained at 26 ± 2°C and illuminated with daylight fluorescent tubes on a 12:12 h light:dark cycle. Fish were fed twice a day with flake food and a vitamin-enriched mix of mashed prawns and peas. Males and females were tagged with a passive identification transponder (PIT) for individual identification.

A pilot study was conducted in 2001 on 14 individual males to assess whether males sired by P or OB mothers differ in their mating preferences for either female color morph. Seven males sired by wild-caught P parents (from a large laboratory-maintained P stock) and 7 males sired by wild-caught P father and OB mother (from a large laboratory-maintained OB stock) were tested 1–3 times each with a set of 4 P and 4 OB females. Male courtship behavior (see below for details) toward females of each morph was recorded for 15 min. During these trials, males and females could freely interact. For this reason, male mating preferences by visual cues could not be disentangled from effects of chemical and possibly acoustic communication.

A restricted maximum likelihood (REML) linear mixed model, which allows the treatment of unbalanced designs, was performed on the arcsine-transformed proportions of darts. Female morph and male pedigree were considered as fixed factors and female group and male identity as random factors. The analysis suggested a significant interaction between male pedigree and female morph (REML: Wald F = 31.67, P < 0.001). A standardized mean preference score was calculated as the ratio (dart displays to P female – dart displays to OB female)/total number of dart displays. A Mann–Whitney test on individual mean display scores showed that males sired by a P mother courted more P females than males sired by an OB mother (U = 8.5, P = 0.038).

This preliminary test had limited heuristic scope as it could not control for the influence of nonvisual communication on male choice for females of different color morph. The results might have been due to nonvisual male preferences (chemical, acoustic, etc.) or by the interaction of visual and nonvisual cues. Moreover, the design did not allow the assessment of individual male mate preferences. Therefore, the preliminary observations prompted us to design an experiment aiming at isolating visual male preferences as well as identifying variation in individual male mating preferences for female coloration. We controlled for potential imprinting on mother’s coloration by retrieving fry from their mother’s mouth before natural release (see below for details) and imprinting on mother’s nonvisual cues by testing male offspring mating preferences in visual-only designs. Finally, we tested the effects of imprinting on sibs’ coloration with a split-brood cross-sib fostering design.

Mode of inheritance of male preference

Experimental males were the sons of P morph fathers and either P morph mothers or OB morph mothers. P morph parents derived from an experimental P line and OB morph mothers from an experimental OB line were unrelated to individuals used in the pilot study.

To prevent any visual contact between mother and offspring, fry were gently removed from their mother’s mouth after a week of incubation, that is, well before they would be naturally released by the mother (18–24 days). A split-brood cross-sib fostering design was used. Both P × P and OB × P clutches were split in 2 rearing treatments, resulting in 4 experimental
groups: individuals were exposed to either P sibs only or to sibs of both morphs. Families from P parents (P × P) contain only individuals with P color patterns; families from heteromorphic pairs (OB × P) are comprised of both "P" and "OB" phenotypes. Fry of P and OB morphs are initially nonblotched and indistinguishable. OB morphs begin developing the first melanin spots only after about 11 weeks post fertilization. For this reason, OB-only rearing treatments cannot be made. Offspring were removed from "P sibs-only" treatments once they showed the first signs of melanin spot development. Blotched fry at the same early stage of color pattern development was added to experimental clutches from P × P parents and assigned to OB + P rearing treatment.

Male choice trials

Two 14-L aquaria were placed at the short ends of the 2720-L experimental tank. This was fitted with a heater, kept at 26 °C, an external filter, and a halved terracotta flowerpot placed in the center as shelter and spawning site.

Males were introduced into the experimental aquarium and left to acclimatize overnight. The following day, a brown barred female (morph P) and an OB female were introduced each in one of the 2 small aquaria. These were then covered with a lid to exclude water or spray being exchanged between compartments. Therefore, no chemical communication was allowed between experimental males and females during the trials. Any chemical signal potentially exchanged by a mother and its fry during early mouthbrooding is unlikely to influence males’ visual preferences unless genetic variation for pleiotropic effects or linkage between maternal chemical signals and male visual preferences was present.

For each trial, a different set of females was used and every male was only tested once with each female. Females were size matched (within 5% standard length difference) and the 2 morphs randomly allocated to the small aquaria.

Male behavior was scored for 15 min from its first encounter with a female, defined as approaching a female to a distance below 20 cm. Trials in which the males did not encounter both females and trials in which males did not court were discarded from the analyses. Male behavioral patterns recorded were neutral encounter, courtship displays (lateral display, dart, quiver, and lead swim), and aggressive displays (frontal display and butting) (Baerends and Baerends-van Roon 1950). For the analyses, we chose the behavioral elements that can be always unequivocally attributed to courtship (darts) and aggression (butting) (Pierotti MER, personal observation).

Gravity stage was assessed by swelling of the female abdomen using the 5-point scale method of Seehausen and van Alphen (1998). Only ripening or fully ripe females (stages 3–5) were used in the experiments. After a trial, standard length (to the nearest 0.5 mm) and weight (to the nearest 0.1 g) were measured for each female.

Statistical analysis

Each experimental male was tested with 6–8 different female pairs, and a weighted analysis of variance with logit-transformed proportion data (number of displays toward P females/total number of displays) was used to assess variation of preference between males.

In addition, we calculated repeatability for male mating preference (Lessells and Boag 1987). To examine whether male mating preference (inferred from dart counts) could be predicted by mothers’ genotype or by sibs’ coloration, we fitted a generalized mixed-effect model (GLMM) with a binomial distribution (Sokal and Rohlf 1995) and logit link function based on Laplace approximation (lme4 package in R; Bates and Sarkar 2006). Male identity was included as random effect to account for repeated measurements (Hedeker 2005). The significance of each term in the models was assessed using Wald statistics (Sokal and Rohlf 1995). We obtained the minimal model by exclusion of the nonsignificant 2-way interactions between terms. To assess the strength of the effects, we calculated effect size d (Cohen 1988; Nakagawa 2004) and respective confidence limits (Smithson 2003), where confidence intervals (CIs) including d indicate statistical significance.

Individual variation in male aggression behavior toward either female morph was tested as described for male preference. To identify a potential aggression bias toward a female color morph, we performed a GLMM model including male identity as a random factor and tested the overall intercept against zero.

RESULTS

Eighty-four preference choice tests on 12 experimental males were performed. Males courted 1 female morph, only, in 47.6% of the trials (see also Table 1). We found large individual variation in male mating preferences ($F = 5.80, P < 0.0001$, mean squares among males = 198, mean squares within males = 54; Figure 1). Repeatability for individual male mating preferences was $r = 0.39$.

Table 1

<table>
<thead>
<tr>
<th>Pedigree (♂ morph × ♀)</th>
<th>Rearing environment</th>
<th>Male</th>
<th>Trials n</th>
<th>Darts per trial (mean ± SE)</th>
<th>Single female courted</th>
</tr>
</thead>
<tbody>
<tr>
<td>P × P</td>
<td>P</td>
<td>AA1</td>
<td>6</td>
<td>12.0 ± 2.13</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA2</td>
<td>8</td>
<td>4.7 ± 1.47</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AA3</td>
<td>7</td>
<td>17.3 ± 5.47</td>
<td>0.99</td>
</tr>
<tr>
<td>OB × P</td>
<td>P</td>
<td>AB1</td>
<td>6</td>
<td>13.7 ± 3.05</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AB2</td>
<td>8</td>
<td>7.0 ± 2.22</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>P + OB</td>
<td>BA1</td>
<td>8</td>
<td>14.2 ± 1.77</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA2</td>
<td>8</td>
<td>15.2 ± 2.73</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA3</td>
<td>6</td>
<td>3.2 ± 0.95</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>P + OB</td>
<td>BB1</td>
<td>7</td>
<td>18.4 ± 1.70</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB2</td>
<td>6</td>
<td>8.9 ± 2.25</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB3</td>
<td>7</td>
<td>17.1 ± 2.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB4</td>
<td>7</td>
<td>5.2 ± 3.01</td>
<td>0.80</td>
</tr>
</tbody>
</table>
from Lake Malawi. We show that the coexistence of mating preferences for alternative values of a trait in the other sex in a single population is not an unrealistic condition of models of sympatric speciation (Arnegard and Kondrashov 2004). It might not be coincidental that such variation in the direction and strength of consistent repeatable mating preferences for different female morphs occurs in a member of a rapidly speciating cichlid lineage (Greenwood 1974; Kocher 2004; Genter and Turner 2005).

Males from plain mothers (P) preferred to court plain females, males from blotched mothers (OB) exhibited either no preference or a preference for blotched females, and male preference variation was best predicted by mother’s color morph, suggesting genetic inheritance of the preference with no apparent influence of rearing experience on male mating preference development. The individual variation in male preferences for female coloration measured in our experiment cannot be attributed to any maternal effect in the form of imprinting on mother’s coloration because we retrieved experimental males from their mother’s mouth before natural defense under predation risk, it might be adaptive to have certain conditions male mating preferences could generate evolutionary dynamics leading to rapid speciation in sympathy (Lande et al. 2001; Kocher 2004).

Our results provide the first evidence of male mating preferences for female coloration in a polymorphic cichlid species

DISCUSSION

Female mate choice on male nuptial coloration is frequently cited as an important diversifying force in the extraordinary radiations of East African cichlids (e.g., Seehausen et al. 1997; Jordan et al. 2003; Pauers et al. 2004). However, so far little attention has been paid to the role male mate choice might play although theoretical modeling has shown that under certain conditions male mating preferences could generate evolutionary dynamics leading to rapid speciation in sympathy (Lande et al. 2001; Kocher 2004).

The GLMM revealed that imprinting on sibs’ coloration had no significant effect on male preference (z = 1.42, P = 0.16) nor was there any significant interaction between imprinting and male pedigree, that is, mother’s color morph (z = 1.78, P = 0.08). Male preferences were determined by the males’ pedigree (minimum model including only male pedigree: z = -2.96, P = 0.003; effect size d = 0.66; CI: 0.21–1.11) (Figure 1).

Males displayed aggressive behavior in 39 trials and 2 males did not exhibit any aggressive behavior toward females (males BA2 and BB1, Table 1 and Figure 1). The overall intercept of the GLMM model was significantly different from zero (z = 3.26, P = 0.001) indicating an aggression bias toward P morph females. There was no significant effect of a male’s pedigree on its aggressive behavior toward either female morph when using the minimal adequate model (z = 1.47, P = 0.14). The effect of imprinting on aggression bias was significant in the model including pedigree (z = 2.42, P = 0.01). This effect of imprinting was nonsignificant when the pedigree term was removed (z = -1.72, P = 0.09), and there was no significant interaction between imprinting and pedigree (z = 1.70, P = 0.09).

Figure 1
Individual male mating preference scores (dart displays to P female—dart displays to OB female/total number of dart displays). Positive preference score values indicate male preference for P females, and negative values indicate male preference for OB females. Three-digit codes indicate male treatment group and identity, as given in Table 1. Data are given as box plot diagrams showing medians (middle line in the boxes), first and third quartiles (boxes) and range (whiskers). Outliers (filled circles) are also shown.

The same female visual stimulus triggering male mate preference variation had a very different effect on male aggressive behavior. Male aggression preferences for female color morphs appeared to be decoupled from male mating preferences. Males exhibited a general aggression bias toward the P morph, attacking P females more than OB females. This general trend might perhaps originate from negative frequency-dependent selection mediating aggressive behavior toward different color morphs. OB females are less common than P females in all P ‘zebra gold’ populations, and OB males are extremely rare (Konings 2001). In the context of resource defense under predation risk, it might be adaptive to have a search image for the invading rival of the most common morph. This might also give a blotched (OB) morph a selective advantage in the early stages of invasion of a P population because individuals with the novel color patterns (blotch) would initially face less aggression from the predominant P morph (Mikami et al. 2004; Seehausen and Schluter 2004). However, our experiment was not designed to examine differential aggression toward color morphs. Within-sex aggression experiments are needed to assess whether this pattern of aggression bias evolved in contexts other than sexual selection (e.g., ecological competition) or is a secondary effect of intra-sexual selection, in which males are selected to defend a spawning territory attacking males of the more common morph (P).
Finally, the female color and male preference polymorphism of *P. (Maylandia)* 'zebra gold' shows striking similarities with the *N. omnicaeruleus* polymorphism studied by Seehausen et al. (1999). In both systems, variation in male mating preferences for either plain or blotched females is present. In *N. omnicaeruleus*, Seehausen et al. (1999) proposed that male mating preferences might have evolved by sex ratio selection to avoid matings with females carrying dominant female determiners in linkage with blotched coloration. Knight (1999) found evidence of dominant female determiners associated with blotch in our study species, *P. 'zebra gold'* , and in its sister species *P. zebra*. Hence, similar forces might have shaped the evolution of male mating preferences in both the Lake Victoria cichlid *N. omnicaeruleus* and the Lake Malawi cichlid *P. (Maylandia) 'zebra gold'*.

Autosomal factors overriding the effects of dominant female-determining genes have been found both in *N. omnicaeruleus* (Seehausen et al. 1999) and in *P. 'zebra gold'* (Knight 1999). Males carrying such male-rescue factors are not affected by the sex ratio distortion deriving from mating with blotched females (i.e., carriers of dominant female determiners). Male mating preference variation might then be coupled to the possession or lack of male-rescue factors. There is preliminary evidence that blotched females are socially dominant over plain ones in *N. omnicaeruleus* and that this dominance is a pleiotropic effect of blotched coloration (Dijkstra P, personal communication). Social dominance might provide a selective advantage to blotched females, for example, in defending grazing grounds, such as patches of *aufwuchs*-covered rocks. Hence, individual variation in male mating preferences for female color morphs might be the expression of alternative tactics: males carrying male-rescue genes might be choosing superior (blotched) females without paying the costs of heavily biased offspring sex ratios. Males lacking rescue genes might avoid the costs of sex ratio distortion by mating with non-blotched females. We are now testing whether an association between male-rescue genes and male mating preferences for blotched coloration is present in a wild population of males.

An alternative explanation for the evolution of male mating preference variation in female color polymorphic species has been proposed recently by Lande et al. (2001). The authors suggested that, when there is intense male–male competition for females and a preexisting male preference for one color morph is present, males choosing “nonpreferred” females gain a selective advantage by incurring less competition for mating partners. If a male preference for nonblotched female coloration were found to be ancestral in *P. 'zebra gold'*, as shown for *N. omnicaeruleus* (Pierotti and Seehausen 2007), the origin of male preference polymorphism in this species might have been driven by the frequency-dependent selection envisaged by Lande et al. (2001). We are only beginning to explore the complex interactions between natural and sexual selection in the “blotch” sex-linked color polymorphism that characterizes many of the cichlid species in several African lake radiations. Studies assessing the frequency distribution in the wild of individual male mating preference types and the relative fitness of different color morphs in different physical and social environments are needed to shed light onto the origin and maintenance of male mating preferences for female coloration in female polymorphic species and their possible role in cichlid fish adaptive radiation.

FUNDING

University of Hull PhD studenthip to M.E.R.P.

We thank Russell Lande, Ola Svensson, Shinichi Nakagawa, and Charlie Cornwallis for helpful discussion and Alan Smith for assistance in the aquarium. We would also like to thank Naomi Pierce and 3 anonymous referees for useful constructive comments on earlier drafts. This research adhered to the Association for the Study of Animal Behaviour/Animal Behavior Society Guidelines for the Use of Animals in Research, local legislation, and institutional code of conduct.

REFERENCES

