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Abstract We present a novel example of a biomechatronic
hybrid system. The living component of the system, embedded
within microbial fuel cells, relies on the availability of food and
water in order to produce electrical energy. The latter is essential
to the operations of the mechatronic component, responsible for
finding and collecting food and water, and for the execution of work.
In simulation, we explore the behavioral and cognitive consequences
of this symbiotic relation. In particular we highlight the importance
of the integration of sensorimotor and metabolic signals within
an evolutionary perspective, in order to create sound cognitive
living technology.
-pdf/19/3_4/299/1663917/artl_a
1 Introduction: Control, Cognition, Life, and Affect
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In recent years, robotics has redirected much of its traditional emphasis on precision, speed, and
controllability toward a new set of objectives. Future robots are expected to prove robust, adaptive,
and autonomous. They should learn from their experience and possibly self-repair, self-reproduce,
and evolve to become more adapted to their current environment [3, 39].

Indeed, the operative scenario for future robots has been drastically redrawn and made more
complex. After mastering the protected environment within the high-tech factory, the challenge
for the robot to come is the world in its least structured form. Novel open-ended tasks include,
for example, autonomous exploration of inhospitable and unexplored territories, participation in
search and rescue actions, and coping with social dynamics in robot-robot and human-robot inter-
actions. The uncertain (sometimes the unknown) described by limited, inconsistent, and unreliable
information, characterizes a significant part of these activities. The environment demands contingent
adaptation to temporal and spatial features and, at the same time, underdetermines the appropriate
robot behavior. The environmental intrinsic dynamics express an inertia that the robot often has
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no power to influence directly (e.g., this is the case of a marine tidal stream for a small robotic
explorer, or a hostile and non-collaborative human interlocutor for a service robot). The robot has
to adapt by synchronizing to exogenous dynamics, thus operating under time pressure. Furthermore,
an autonomous robot is expected to manage and provide for its own energy needs by finding in its
surroundings the resources necessary to its energy autonomy [29], while operating under limited or no
human intervention.

In its initial formulation, the problem of robot control has been mapped neatly onto the tradi-
tional domain of engineering methods. On the other hand, coping with the new class of scenarios
seems to urge a novel set of techniques. Growing attention has moved toward the one system that,
to our current knowledge, masters the new objectives of robot control: the (biological) mind, as an
invaluable source of inspiration.

This search is compelling. Indeed, the scientific community has good reasons for a basic intel-
lectual interest in the study of the mind. Nevertheless, there is even more on the plate for the prag-
matically oriented. While robots are currently perceived as ideal candidates for the next electronic
revolution (e.g., [16]), mastering the implementation of even relatively simple levels of “intelligence”
would not simply boost the performance of current artifacts. It would rather launch a broad tech-
nological revolution. Problems like the actuation and control of still-functional muscle groups or
exoskeletal frames for paraplegic individuals (e.g., [19]) or the creation of genuinely autonomous
robotic systems displaying flexible behavior and some level of empathy with their human users could
be approached on more solid grounds.

However, science lacks a satisfactory theory of the mind. To date, this can be reasonably regarded as
a fact. Currently, science is still struggling to find the correct perspective and set of methods to fill
this gap. In parallel, a critical rethinking of the general organization of cognitive systems has redis-
covered a more systemic view of the mind. The classical brain chauvinism in the description of
cognitive processes is undergoing deep reevaluation, and an embodied cognitive science—that is,
a cognitive science where the body plays a foundational cognitive role—has emerged quite naturally
within this more systemic view of the mind [10, 12, 45, 52]. The body of the cognitive agent is not
simply a passive framework that relocates in space and time the agentʼs interface with its world. The
body actively redefines the cognitive problem by processing information [11, 38]. The mind emerges
from the causal interweaving of coupled body, brain, and environment [6]. Increasingly, embodied
cognitive science inspires current cognitive robotics [38].

To date, though, the role of the body in cognition has mostly been studied in terms of dynamics
that take place along the surface dimension of the body (e.g., see [12, 38]). The core of this article
explores a very specific research track that has recently emerged within cognitive science. Recent
work has revitalized William Jamesʼs classical somatic theory of emotions [23] in the light of neuro-
scientific evidence [13, 14]. According to Damasio, a hierarchy of bodily processes (metabolic reg-
ulation, basic reflexes, immune responses, pain and pleasure behaviors, drives, and motivations),
triggered by emotionally relevant stimuli, determines the substrate for emotion proper. Emotional
dynamics can be interpreted as sophisticated strategies for the survival of the organism, “viscerally”
rooted in the inner bodily mechanisms [13, 14, 23, 26]. Under different emotionally relevant stimuli,
the body prepares for action and participates in the cognitive act. In the experimental work reported
in this article, we will address this kind of emotional dynamics in a rather loose sense, therefore
referring to the broader term “affect” to describe them.

These ideas are highly relevant to robotics. Which level (if any) of biological detail should we
impose on biomimetic modeling in order to achieve useful cognitive properties that characterize
living systems? Some authors argue that the complex system of bodily processes might be a crucial
key to a general understanding of biological cognition and a powerful organizational principle for the
design of robots with extended capacity for adaptivity and autonomy [36, 37, 58, 59]. Obviously, this
approach fully discloses the problem of the connection between life and mind and opens questions
on which kind of (artificial or natural) systems are suitable for the study of the mind [4].

More than six decades ago, a pioneering group of British cyberneticists ventured on a path that
seems particularly relevant under this perspective. Still today, their achievements deserve our full
300 Artificial Life Volume 19, Number 3 & 4
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consideration. With his minimalist robotic models, machina speculatrix and its evolution machina docilis,
Walter [53–55] drew attention to the emergence of the mind as a complex dynamic interaction of
brain, body, and environment. His robotic tortoises were designed to be sensitive to specific interactions
(e.g., environmental light distribution and mechanical contacts with objects). Their actual behavior was
causally determined by the fields of force that owe to the interplay between the environment and the
machine itself. The metaphor of mind that is brought forth by the model is one of dynamic interaction
between two interacting systems: the environment and the machine endowed with an extremely sim-
plified control system. The environment was explicitly considered part of the feedback loop [55].

Ashby [1] implemented an elegant electromechanical stylization as his model of a mind, the homeo-
stat. Ashbyʼs homeostat extended the image of a brain continuously engaged in a dynamical inter-
action with its environment by integrating the means for a continuous adaptation to new and
unexpected challenges. Within a cognitive system, he defined as essential variables (EVs) a subset
of the organismʼs variables that are critical to its viability (e.g., blood pressure, heart rate, blood
concentrations of hemoglobin and glucose). The species-dependent specificity of these variables
and of the range admitted for them takes the idea of embodiment, applied to Ashbyʼs thought,
to rather extreme consequences. The relation between different EVs and lethality is species specific
and nonuniform within the same species.

According to Ashby [1], adaptation has to do with the maintenance of all EVs within physiologically
viable limits. In the homeostat, an event that pulls one or more EVs out of their physiological range
will indirectly trigger a sequence of random structural changes in the phase space of the system. The
sequence will be sustained until a new condition, where the dynamics of all EVs are maintained within
their limits, is reached. Wiener [56, p. 38], remarking on Ashbyʼs idea of an “unpurposeful random
mechanism which seeks for its own purpose through a process of learning,” celebrated Ashbyʼs model
as “one of the great philosophical contributions of the present day.” In the analysis by Pickering [40],
Walter and Ashby bring forth the ontological view of a performative (and radically nonrepresentational)
biological brain, being designed by natural evolution to produce effective action in its environment.

Despite the fact that mainstream artificial intelligence has deployed a view of the mind based on
symbolic representations, several lines of research have renovated the original cybernetic intuition.
Neurophysiologists and cognitive scientists have shown that the methods of dynamic system
theory can be effectively applied to interpret and model biological cognition (e.g., [24, 46, 49]).
The dynamic system approach to cognitive science has been explored at the theoretical level [5, 10, 50].
Cognitive tasks of minimal2 cognitive relevance have been synthesized and analyzed as robotic
models [7, 22, 35].

In the remainder of this article we will present an original and novel robotic prototype, a bio-
mechatronic hybrid endowed with a simple artificial metabolic system. An on-board living bacterial
population processes biomass, providing the robot with the electrical energy needed for sensing and
action. The analysis of computer simulations will allow us to predict the crucial properties that are
likely to emerge from such a system at different stages of its technological development, namely, in
short-, medium-, and long-term perspective. The final discussion will highlight the cognitive impli-
cations that might be relevant to the development of a sound cognitive living technology, that is,
engineered systems whose power specifically derives from core properties of the living system [4].

2 A Robot with a Living Core

Over the last decade, researchers at the Bristol Robotics Laboratory have been working on the
development of a peculiar family of prototype robots, EcoBot [21, 30]. Its source of power depends
entirely on the availability of water and biodegradable mass. In fact the energy that is supplied for
2 Analogously to the case of early cybernetic models, the usual inherent simplicity of these cognitive models should be interpreted at the
same level of idealization that is proper to frictionless planes, leakless capacitors, perfect gases, and massless springs [1].
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the robotʼs sensing, actuation, and control derives from a robotic variation of the microbial fuel cell
(hereafter MFC) technology.

2.1 Oxygen-Diffusion Cathode Microbial Fuel Cells
In the anodic compartment of a MFC, an anodophilic population of bacteria in tight adhesion with
the anodic electrode builds up an electrical potential difference by oxidizing the biomass contained
in a liquid substrate (Figure 1). In MFCs that do not make use of exogenous consumables, the
electron transfer from the bacterial intracellular space to the anodic electrode can take place via
endogenously produced mediators, direct membrane-electrode contact, or nanowires [27, 41].
The anodic bacterial population, as long as it is provided with fresh substrate to maintain a well-
buffered and healthy environment, tends to reach a stationary yet metabolically active growth dynamic.
The substrate can be fed by refined renewable biomass (e.g., sucrose, acetate, starch), but also by
unrefined biomass (e.g., rotten fruit, flies, green plants, urine, and wastewater) [30].

A semipermeable membrane separates anolyte and catholyte, at the same time preventing any
flux of O2 to the anode and allowing the migration of H+, a byproduct of oxidation in the anodic
compartment, to the cathode. Since the robot prototype is intended to be an autonomous system,
the (more efficient) exhaustible chemical-electrolyte-based cathodes, traditionally used in MFC
research, have been replaced by oxygen-diffusion cathodes, partly open to the external atmosphere
and, for the remaining part, filled with water. This choice translates into a self-sustained electro-
chemical process. Hereafter, we will specifically refer to this configuration, known as the oxygen-
diffusion cathode microbial cell (ODC-MFC). In an ODC-MFC (Figure 1), H+ ions reduce at the cathode
302 Artificial Life Volume 19, Number 3 & 4
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Figure 1. Schematic of an oxygen-diffusion cathode MFC.
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by combining with O2 and accepting electrons to endogenously produce a little water (normally insuffi-
cient to compensate for the loss due to evaporation), thus closing the electric circuit. The presence of
a continuous flow of highly oxygenated water supports the cathodic chemical dynamics, promoting
optimal efficiency. Nevertheless, this is not an option for autonomous terrestrial robots. Accordingly,
the amount of water present in the cathode and of the chemical-bond energy in the substrate are the
two crucial parameters for the system.

2.2 A Mathematical Model of the ODC-MFC
We developed a mathematical model of the ODC-MFC [32]. Differently from other models of
MFC available in the scientific literature, its high level of abstraction omits the details of the
physical-chemical level. Thus our model allows its use as a platform-independent plug-in that
can be easily integrated within standard computer robot simulations, with extremely limited
computational overhead.

We developed a simple resistance-capacitance electric model (Figure 2). Both the electromotive
force (V0 ) and the internal resistance (Ri ) of the ODC-MFC depend on the level of hydration at
the cathode and on the chemical energy in the substrate. The functional relations for these crucial
parameters were identified by using energy generation data extracted from the physical ODC-MFC-
powered robot prototype [32]. An external capacitance (C ) transiently stores the available energy.
Its presence is a design choice, due to the electrical constraints imposed by the physical sensors and
actuators for robotic applications. A hysteresis cycle ensures that the tension supplied to the robot
(the resistive load in Figure 2) remains within a reasonable range. When the tension across the
capacitor exceeds a given upper threshold, then switch S in Figure 2 closes and the accumulated
energy is distributed to the load (e.g., to the robot). When a lower threshold is reached, then switch
S opens and such distribution is inhibited while the capacitor recharges. The relations that mathe-
matically describe the system parameters (V0 and Ri ) and their physical interactions constitute the
platform-independent model of energy generation. On the other hand, the distribution of the avail-
able energy must be estimated on the basis of the actual robot in use.

For the readerʼs convenience, the equations of the model are reported in the Appendix. A more
detailed description of the model is available from Montebelli et al. [32]. What is important for the
current discussion is that the model produces realistic ODC-MFC energy generation dynamics. The
levels of cathodic hydration and chemical energy in the anodic substrate determine the instant rate of
energy (power ) that is generated by the ODC-MFC. In other words, well-hydrated and well-fed
robots recharge faster and therefore have more energy for their actuation. Observe that both the
hydration level and the chemical energy in the substrate are subject to temporal decay. This models
the spontaneous evaporation from the cathode and (undesired) biochemical processes that degrade
the substrate in the digester.

In simulation, sources of water and food can be easily provided by the environment, and the
desired modality of interaction between them and the robot (ranging from more realistic to heavily
Figure 2. Model of ODC-MFC energy generation. The lumped parameters V0, Ri, and C schematically represent our
platform-independent model. A dashed rectangle represents the robot as a resistive load.
Artificial Life Volume 19, Number 3 & 4 303
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environmental resources (i.e., collecting water and biomass for its digester ), although not yet imple-
mented, is possible for the physical robot prototype as well.
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3 Simulating the ODC-MFC-Powered Robots of Today, Tomorrow, and Beyond

As already mentioned, by using the ODC-MFC model we can readily anticipate the developments of
the MFC technology for robotic applications, while maintaining realistic energy generation dynamics.
Free from physical limitations, the number of on-board ODC-MFCs can be extended as desired in
arbitrary stack configurations.

We can conceive of the ODC-MFC-powered robot as a biomechatronic symbiont, where the two
hybrid components not only benefit from each other, but depend on each other for their own sur-
vival [30]. By processing biomass, the living component in the anodic compartment produces elec-
trical energy that is distributed to the mechatronic component. In return, the latter provides
sensorimotor facilities that are essential to collect food and water that keep the bacterial population
alive. To date, the power density produced by MFCs in general, and even more so by ODC-MFCs, is
admittedly extremely low. Nevertheless, this technology has been proved sufficient to substantially
support the energy demands of important applications, such as wastewater treatment and mobile
robot platforms [21, 30, 57].

3.1 State-of-the-Art ODC-MFCs
Current physical ODC-MFC-powered robots display minimal behavioral dynamics. Different gen-
erations of EcoBot can be scaled up from 8 to the current 48 on-board ODC-MFCs. Each ODC-
MFC provides around 0.1 mW to its load at about 0.2 V. The energy demand for the actuation of a
robot like EcobotIII should not be overlooked. In parallel to the actuation of its motors that drive
the robot to and fro along two railways, the available energy supplies the pumps that periodically
rehydrate the cathode and recirculate the substrate from a central digester to the anodic chambers
of the ODC-MFCs. Despite careful design of the robot morphology and the use of low-power
electronic solutions for the robotʼs actuation, sensing, and control, a few seconds of activity require
several minutes of recharge. Therefore, the limitations due to the extremely low power generation
force the robot to the exploitation of cycles of full charge and discharge of the energy accumulated
across the capacitor. The current physical prototype robot lives a highly protected and controlled
existence within an incubator, subject to direct human support. Nevertheless, its developers are
ready to release its successors into semi-natural environments, thus demonstrating the robotʼs
capacity for energy autonomy, that is, the capacity to provide for its own energy needs with no
human intervention.

3.2 A Foreseeable Future
In simulation, we can scale up the number of ODC-MFCs units that currently power EcoBot III.
For example, we used the ODC-MFC model to power a simulated e-puck robot with 600 MFCs. The
robot, in its basic configuration, sensed its environment through its sound, infrared, and light
sensors. The robotʼs energy demand can be estimated based on the technical characteristics of its
physical actuators (two stepper motors driving its wheels) [33].

Within its environment the robot could find sources of food and water. Two recharging areas,
one for water (marked by a light source) and one for food (marked by a sound source), would
instantaneously refill the associated tank upon the robotʼs entering them. Since the ODC-MFCs were
the robotʼs only sources of energy, the maintenance of a high level of hydration and chemical-bond
energy in its virtual digester allowed for higher available power. A deficit in water and food intake
(both hydration and chemical-bond energy in the substrate were subject to decay) entailed incapacity
for further movement and for further support of the anodic bacterial ecology (death).
304 Artificial Life Volume 19, Number 3 & 4
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Our simulated robot was controlled by an artificial neural network (ANN). We tested several
configurations of feedforward and recurrent ANNs. Their synaptic weights and biases were
adapted by evolutionary algorithms [17]. The simple fitness function rewarded movement outside
the recharging area (the rationale was simply to force motor activation and, consequently, energy
expenditure). Nevertheless, no explicit information was provided about the existence and the
meaning of the recharging areas. During its artificial evolution, the population of controllers would
simply experience the access to the recharging area as an opportunity for an extended and ener-
getically richer life. In virtue of this choice, we abandoned rigid control over the adaptive process.
In other words, we sought to avoid imposing our own ontological perspective of the problem,
by using a generic fitness to drive the evolutionary algorithm. This choice tends to promote self-
organized solutions to the task [34].

Obviously, our choice about the number of on-board ODC-MFCs maintained the robot under
mild energy constraints while it operated in dynamical engagement with its environment. In this case,
the situation for an ODC-MFC-powered robot is not much different from that for a battery-powered
robot (endowed with an undersized battery) that could find energy recharge inside its environment.

The role of the ODC-MFCs in our setup is twofold. Firstly, we can interpret it as an artificial
metabolism that relates energy to the two essential variables of the system (level of hydration and
of chemical-bond energy in the substrate). This provides the system with a set of metabolic signals
that are directly connected to the intrinsic “well-being” of the robot. Secondly, the living bacterial
colony in the anode provides the system with a component that imbues a certain level of biological
causal powers [8, 15, 58]. These observations, together with energy scarcity, lead during the simulated
evolutionary process to specific behavioral implications that we are about to explore:
le-pdf/19/3_4/299/1663917/artl_a_00114.pdf by guest on 21 Septem
ber 2021
• Adaptive forces, in this case evolutionary pressure, promote convergence toward behaviors
that most effectively trace and exploit the environmental resources (food
and water ). In case the body morphology could also be adapted by evolutionary
algorithms (e.g., [9]), this would be synergistic with the evolution of the neurocontroller.
The interaction of more complex controllers and morphologies tends to develop energy-
efficient behaviors. For example, we have shown how a less energetically demanding ocular
actuation might be selected for an initial screening of the environmental scene before direct
engagement in action for a decision-making task [28]. A similar strategy might involve
abstract planning and thought [30].

• The variables (food and water levels) that are essential to the viability of the system (EVs in
Ashbian terminology) are its control parameters [18, 24]. This showed very clearly in a
simplified experiment, where we only had one EV (energy level) subject to an arbitrary
linear decay and a similar environmental interaction to provide recharge. In our analysis, we
left a successfully evolved robot free to roam in its environment after clamping the value of
its EV (i.e., overriding both the natural discharge and the environmental recharge). By a
systematic exploration of the possible energy levels, we showed how their value dynamically
reconfigured the phase space of the dynamic system constituted of the robotʼs body,
neurocontroller, and environment. We classified a set of eight behavioral attractors, and
we demonstrated their distribution as a function of the energy level [31]. A simplified
illustration of this distribution is given in Figure 3. The robot displayed two exploratory
behaviors to find energy sources in the environment. These behaviors were used when the
robot was in the condition of energy deficit (type A behaviors). Four behaviors were local,
used by the robot at high levels of energy to remain close to the potential energy source
(type C). Finally, two were hybrid behaviors, sharing characteristics with both exploratory
and local behaviors and used for intermediate levels of energy (type B). The selection of the
particular behavioral attractor followed the normal laws of dynamic systems: Falling on one
behavioral attractor rather than another depended on the robotʼs starting position and on
the integrated effects of noise. This mechanism implemented a self-organized dynamic action
Artificial Life Volume 19, Number 3 & 4 305
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Figure 3. Lower panels: Sample spatial trajectories for the three classes of behaviors observed in clamped conditions after
transient exhaustion: exploratory behaviors (panel A), local behaviors (panel C), and hybrid forms (panel B). In the
online version, potential energy rechargers (i.e., the positions of the light sources) are indicated by red stars. For better
resolution, the icons representing each class of trajectories zoom on the area of main interest surrounding the light
sources. Top panel: The intensity of the pixels for each column (corresponding to attractors belonging to classes A–C,
as specified by their labels on the top row) represents the relative frequency of the behavioral attractor as a function
of the energy level. For example, an energy level of 0.7 leads to the expression of attractor C‴ (in 70% of the
replications), C′ (20%), or B′ (10%). For energy levels in the interval [0.0, 0.4] we can observe a clear dominance of
attractors in class A. A similar dominance in the energy interval [0.7, 1.0] is shown by attractors in class C. The hybrid
forms in class B characterize intermediate energy levels. Adapted from [31].
306 Artificial Life Volume 19, Number 3 & 4
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selection mechanism that elicited the subset of behavioral attractors as appropriate to the
current context.
More recently, a similar mechanism also emerged for the system with two EVs (food and water
levels) [33]. In this case, water and food areas were the focus of two basins of attraction. In clamped
conditions, the control parameters modulated the ratio of water to food access, that is, the prob-
ability of a transition from one to the other basin of attraction.
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• Depending on the interplay of environmental conditions and physical characteristics, the
viable robots could manifest a wide range of behavioral diversity. For example, we have
shown how they could rely on bursts of maximal power activation, leading to cycles of full
energy recharge and distribution, or on more conservative, submaximal motor activation
that would tend to maintain an instant balance between the generated and utilized power
[33]. In other words, pulsing and continuous actuation would be two qualitative behavioral
options in front of an identical quantitative energy balance. This result, reminiscent of the
range of different behavioral strategies (e.g.) in three-toed sloths, wolves, cheetahs, and
crocodiles, is summarized in Figure 4.
direct.m
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Further consequences appear more specific to MFC-operated systems:
t.edu/artl/article-pdf/19/3_4/299/1663917/artl_a_00114.pdf by guest on 21 Septem
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• The meaning of the terms like “water” and “food” is grounded in the viable dynamics
of the robot. Following Varela [51, p. 79], whose words should not be interpreted in a
functionalist perspective, but rather as emphasizing the role of dynamical interaction:
“There is no food significance in sucrose except when a bacteria swims upgradient and
its metabolism uses the molecule in a way that allows its identity to continue.” Of course,
the same might apply for “energy source” in the case of a battery-operated robot.
Nevertheless, more sophisticated sets of sensors (e.g., electronic noses) might be integrated
in the robot design to provide an elementary chemical analysis of the available resources.
On this basis, the robot might classify the potential food and develop a system of
preferences related to the experienced energy content of the available resources
(a comparison of energy associated with different food sources is available in [30]).
Thus, the potential for the emergence of proto-meaning appears naturally richer in
the case ODC-MFC-powered robots.

• EcoBot III is now provided with a solid-waste excretion mechanism to periodically excrete
solid sediments from the substrate that served the anodic chambers. Apparently, such
solid wastes possess fertilizing properties. The robot might learn how to spatially organize
areas dedicated to its foraging and excretions, and temporally rotate them in order to
achieve more prosperous harvests.
r 2021
3.3 A Long-Term Prospect
Finally, in simulation we can also increase the number of on-board ODC-MFCs further, so that
they could promptly satisfy virtually any power demand by the robot they serve over extended
periods of time. This possibility links to a serious effort toward miniaturization in MFC research.
In fact, Ieropoulos, Greenman, and Melhuish [20] showed how small-scale MFCs tend to produce
higher power density. In some types of MFC, such a miniaturization might be pushed to micro-
scopic limits (Am), as shown by Kim et al. [25]. If experimentally further supported, this scenario
entails the design of artifacts supplied with large numbers of on-board miniature cells connected
in appropriate stack configurations to implement a distributed energy system, largely reminiscent
of the distributed energy mechanisms in biological cells.

After the constraints imposed by energy scarcity have been removed, would our MFC powered
system differ in any significant way from energy autonomous robots energized by more conventional
Artificial Life Volume 19, Number 3 & 4 307
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sources (e.g., rechargeable batteries)? Firstly, we could answer by pointing to the intrinsic thermo-
dynamic irreversibility of, for example, common rechargeable batteries (the property that forces us
to dispose of exhausted batteries). On the other hand, in principle, the bacterial colony in the MFCsʼ
anode constitutes a rather robust and dynamically self-sustained system, as long as it can satisfy its
Figure 4. Top panels: Examples of continuous (left) and pulsed (right) robot trajectories. In each panel, on entering the
higher (the lower ) circle, the robot receives hydration (fresh substrate). Lower panels: Motor activation (top) and energy
level (bottom) for continuous (continuous curves) and pulsed (dashed curves) behavior. Adapted from [33].
308 Artificial Life Volume 19, Number 3 & 4
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need for biomass and water. Secondly, a careful design of the MFC-powered robotʼs body (including
behavioral consequences to cope with smaller digesters) might overcome the weight and bulkiness
of battery-operated systems.

Yet a further and most important distinction is possible. Both MFC and conventionally powered
robots rely on the coupling with an external environment. In the case of conventional systems, they
are coupled with an artificial environment, that is, an environment that must be provided with
substantial energy and human supervision in order to compensate for its natural entropic drift.
Otherwise, it dissipates. For example, think of our modern cities, generously offering easy access
to power sockets. Any image of the Roman Forum should provide enough evidence about the
dissipative phenomenon in question. On the other hand, MFC-powered systems can be coupled
to a natural environment. Natural environments require energy too: nevertheless, they admit (and
rather seem to favor ) lack of human intervention. Therefore, battery- and ODC-MFC-powered
robots bring forth a different kind of energy autonomy, for they seem to offer drastically different
capacities and potentials.

There is a further peculiar constraint that our setup poses on the kind of autonomy that is pos-
sible for our robot and that differentiates it from a battery-powered one. Consider a population of
ODC-MFC-powered robots. Each member of the population still crucially depends on the resources
at hand in its environment. It is viable as long as its behavior promotes a balanced and sustained
relationship with its environment, and the same applies to the whole population within the space-
time horizon of this robotic species. Behaviors that are disruptive of the ecological balance would be
irreconcilable with long-term viability. In other words, the viable robot and population would be
ecologically grounded in its environment, and its specific form of autonomy would be constrained
by the maintenance of its ecological balance. By ecological autonomy we mean a form of energy and
motivational autonomy that is crucially constrained by the demands of the agentʼs viable integration
in its natural environment over time.
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4 Discussion and Conclusions

In this article, we have presented simulations of a robotic system subject to energy limitations that
can capitalize on these restrictions, as it adapts to develop a rich behavioral diversity. The simulated
agent in our experiments constitutes a biomechatronic symbiont. A conventional e-puck robot derives
the energy for its actuation from a stack of ODC-MFCs, mathematically modeled on the basis of an
actual physical prototype. In our simulated robotic setup, the ODC-MFC energy generation system
represents a basic abstraction of a metabolic system, thus allowing the study of the interaction be-
tween sensorimotor and metabolic dynamics. The use of simulation offers the opportunity for the
systematic study of different scenarios, where the energy constraints can be increased or relaxed at
will. The living bacterial colony in the ODC-MFC anode endows our biomechatronic hybrid system
with some level of biological causal powers that is unprecedented in robotics.

The use of hybrid systems, made of living components coupled to electronic or biomechatronic
devices, is not new. For example, Ruaro, Bonifazi, and Torre [43] used neural cultures coupled to
traditional electronic systems via multielectrode arrays in order to perform intrinsically parallel basic
image processing and pattern recognition. A similar technology was used by Bakkum et al. [2] to
control the navigation of a simple robot through a culture of dissociated cortical neurons. An anal-
ogous result was reported by Reger et al. [42], who established a two-way communication between a
dissected portion of the brain stem of a sea lamprey and a Khepera robot. Similarly, the idea of a
control parameter that dynamically reshapes the phase space of the system is not new in the robotic
literature. For example, a recurrent neural network with parametric bias (see [47, 48]) was used to control
the switching between simple behavioral attractors in a basic humanoid robot handling a ball [22].

Nevertheless, the system that we have introduced in the previous sections does bring forth an
element of novelty. The primary motivation of this article is bringing that to the fore. In our system
we can distinguish between two kinds of signals. First, sensory and motor information, at relatively
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high frequency, relate to the ongoing interaction between the robot and its environment. The typical
evolution of this signal follows a time scale on the order of magnitude of seconds. For example, the
robot can reorient its light sensor toward a source of light and bring it to saturation in a fraction of a
second. The same can happen with the activation of its motors. On the other hand, we also rec-
ognize low-frequency signals, characteristically associated with the artificial metabolism of the robotic
system constituted by the stack of ODC-MFCs. Typically, signals associated with the ODC-MFC
dynamics have a time scale in the hundreds of minutes. Indeed, the sensorimotor signal is the
information that qualifies the study of perception, action, and their interaction. Crucially, the low-
frequency metabolic signal, by means of the evolutionary adaptation of the neurocontroller, asso-
ciates the contingent flow of sensorimotor information to the non-negotiable essence of adaptivity,
that is, the agentʼs well-being. Blindness to this fact amounts to trapping the study of cognitive
phenomena in contingent and local dynamics, while neglecting that, on a broader scale, cognition
amounts to the deployment of sophisticated strategies for survival.

Indeed, this feature is not uniquely characteristic of our own hybrid model. Bedau et al. [3, p. 91]
draw a useful distinction between primary living technology—that is, systems whose lifelike properties
are “constructed out of components that never were alive”—and secondary living technology, where such
properties “depend primarily on the antecedent lifelike properties” of their components. While our
model undoubtedly belongs to the latter class, systems belonging to the former might well carry
analogous types of information, capable of orienting the contingent sensorimotor flow toward
paths that promote viability and general well-being of the system. Taking this point of view, we
maintain a neutral stance with respect to the kinds of artificial cognitive systems that are most
suitable for the study of cognition, as long as they are capable of producing the basic kind of bio-
logical causal power that we have just illustrated.

In fact, more theoretical arguments advocate that metabolic processes of the kind that we have
described in this article might play a fundamental role in the emergence of cognition. Affect is a
powerful motivator of future behavior [26]. Somatic theories of emotions (e.g., [14]) consider emo-
tions as emerging from tangible processes, physically rooted in the body and objectively measurable.
Searle [44] argued that current cognitive architectures lack the “biological causal power” to convinc-
ingly replicate biological intentionality, the basic property for cognitive processes. In a similar and
more analytical vein, Bickhard [8] described the biological foundations for the emergence of cogni-
tion. According to his approach, namely interactivism, there are three basic necessary conditions for a
cognitive system. Ordered according to increasing strictness, they are [8]:
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1. the system must display sustained existence far from equilibrium, for example, as in Rayleigh-
Bérnard convection cells, where regular patterns of convection cells form on the surface
of a fluid maintained under an appropriate heat differential between its bottom and its
open surface;

2. the system must be self-maintenant, that is, as in a candle flame, the system must be capable
of regenerating the conditions for the process to occur;

3. the system must be recursively self-maintenant, that is, it must be capable of maintaining the
property of being self-maintenant (Bickhard [8] gives the example of a “science-fictional
candle flame” that can refuel when the candle is almost consumed).
According to Bickhard [8], classical and connectionist computers can merely simulate but not
instantiate cognitive processes, because, unlike organisms, they have no significant properties of
self-maintenance and openness (i.e., they do not significantly interact with their environment).
On the contrary, the form that being far from equilibrium takes in living systems is a deep onto-
logical condition, rather than an incidental fact, due to the thermodynamical irreversibility of
the process. In other words, once the far-from-equilibrium living process is sufficiently perturbed,
it cannot be restarted, which is different from a machine that operates far from equilibrium. Bickhard
[8] concedes that battery-operated robots can be considered as being, in some minimal and marginal
310 Artificial Life Volume 19, Number 3 & 4
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sense, far from equilibrium, self-maintenant, and recursively self-maintenant. Nevertheless, the revers-
ibility of the machine process marginalizes the normative aspects of their relation to the environment
[8]. According to this analysis, far-from-equilibrium and recursively self-maintenant systems that do not
benefit from such reversibility, analogously to the hybrid system that we describe in this article, seem
more suitable models for the emergence of meaning and cognition.

The metabolic signal plays a crucial role in providing the cognitive system with a motivational level.
Parisi and Petrosino [37] highlight the insufficiency of (external) sensory stimuli and the centrality of
(internal) motivations to determine behavior. The motivational state of an animal (i.e., its behavioral
bias toward eating rather than drinking, or mating, or escaping predators) determines the conditions
for the selection of an actual behavior, a choice that is pertinent to the cognitive level: “motivational
decisions are super-ordinate with respect to action selection” [37, p. 455]. Figure 3 can be reinter-
preted in this light. In this scenario, the energy level sets the system in different motivational states.
Within this main motivational condition, the actual robotʼs dynamics are selected according to
the laws of dynamical systems, for a number of behavioral attractors are competing at each level
of energy.

Finally, we should also observe how our experimental setup emphasizes the constructive role of
energy. Strangely, contemporary robotics has almost entirely neglected energy, unless as an annoying
problem that imposes strong and undesirable constraints on the robotʼs autonomy. Nevertheless,
the role of biological metabolism is not limited to the assimilation and synthesis of the basic
material needed for the continuous organismic self-production. It also makes available a net
amount of energy that can be used to support sensory, motor, and nervous activity. During the
evolutionary adaptation of the neurocontroller of our simulated robot, the interaction between
energy restriction and biological causal powers plays a fundamental role and endows the robot with
characteristic and peculiar properties. This interaction creates a powerful pressure that tends to
select effective (in the sense of viable) and energy-efficient behaviors (the same might apply in
the case of evolvable morphology). It also determines the conditions for a rich collection of
behaviors and behavioral strategies. The metabolic signals, directly connected to the basic needs
for the viability of the system, can be readily interpreted as its control parameters, the crucial vari-
ables that dynamically select the subset of behaviors that are appropriate to the specific context. In
parallel, biological causal powers constrain the robotʼs autonomy to behaviors that promote an
ecologically balanced integration in its environment and the grounding of meaning, relative to
the aspects of the environment that are most salient for robot viability. In our future work, the
potential of energy as a powerful kind of synthetic information that can be effectively used to
drive adaptation on different time scales will be further developed.
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Appendix: Equations of the ODC-MFC Model

We report below the set of equations for the ODC-MFC model, as thoroughly described in [32].
The values for the parameters that appear in the equations are reported in Table 1. Observe that the
form of the model used in [33] differs from the one described here. The former model can be
interpreted as the local linearization of the following equations.

A.1 Electric Charge Balance

With reference to node a in Figure 2,

V0 − VC

Ri
¼ C

dVC

dt
ð1Þ

A.2 Dependence on Substrate
tp://direct.m
it.edu/artl/article-pdf/19/3_4/299/1663917/ar
subst ¼ 1 −
ts
Hs

ð2Þ

where subst represents the current level of biochemical energy in the anodic substrate, and ts is the
time from the last replenishment of the anodic chamber with fresh substrate.

V0max ¼ qV0 þ mV0 ts ð3Þ
Rimin ¼ qRi þ mRi ts: ð4Þ

A.3 Dependence of Hydration on Time
tl_a_00114.pdf by guest on 21 Septem
hyd ¼ hþ ap

1þ egpðth−ypÞ
−

an

1þ egnðth−ynÞ
ð5Þ

where hyd represents the current level of hydration in the cathode, and th is the time from the
last hydration.

A.4 Dependence of Ri and V0 on Hydration
ber 2021
V0 ¼ V0max − aV0 þ
aV0

1 − hyd� ðhyd − hyd�Þ ð6Þ

Ri ¼ Rimin þ aRi

1 − hyd� ð1 − hydÞ: ð7Þ

A.5 Energy Stored in the Capacitor
q ¼ 1
2
CV 2

C : ð8Þ
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Table 1. Suggested values for the parameters.
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