Serum GFAP is a diagnostic marker for glioblastoma multiforme

Department of Neurosurgery, Department of Neurology, Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University, Frankfurt am Main, Germany

Correspondence to: Carla S. Jung, MD, Department of Neurosurgery, Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
E-mail: carla.jung@med.uni-heidelberg.de

A serum marker for malignant cerebral astrocytomas could improve both differential diagnosis and clinical management of brain tumour patients. To evaluate whether the serum concentration of glial fibrillary acidic protein (GFAP) may indicate glioblastoma multiforme (GBM) in patients with single supratentorial space-occupying lesions, we prospectively examined 50 consecutive patients with histologically proven GBM, World Health Organization (WHO) grade IV, 14 patients with anaplastic astrocytoma (WHO grade III), 4 patients with anaplastic oligodendroglioma, 13 patients with diffuse astrocytoma (WHO grade II), 17 patients with a single cerebral metastasis and 50 healthy controls. Serum was taken from the patients before tumour resection or stereotactic biopsy. Serum GFAP levels were determined using a commercially available ELISA test and were detectable in 40 out of the 50 GBM patients (median: 0.18 µg/l; range: 0–5.6 µg/l). The levels were significantly elevated compared with those of the non-GBM tumour patients and healthy controls (median: 0 µg/l; range: 0–0.024 µg/l; P < 0.0001, respectively). Non-GBM tumour patients and all healthy subjects showed zero serum GFAP levels. There was a significant correlation between tumour volume (Spearman Rho, CC = 0.47; 95% confidence interval, 0.2–0.67; P = 0.004), the amount of necrotic GFAP positive cells (CC = 0.61; 95% confidence interval, 0.29–0.81; P = 0.007) and serum GFAP level among the GBM patients. A serum GFAP level of > 0.05 µg/l was 76% sensitive and 100% specific for the diagnosis of GBM in patients with a single supratentorial mass lesion in this series. Therefore, it can be concluded that serum GFAP constitutes a diagnostic biomarker for GBM. Future studies should investigate whether serum GFAP could also be used to monitor therapeutic effects and whether it may have a prognostic value.

Keywords: glioblastoma; GFAP; biomarker; serum

Abbreviations: GFAP = glial fibrillary acidic protein; GBM = glioblastoma multiforme; MRI = magnetic resonance images; CSF = cerebrospinal fluid; NSE = neuron-specific enolase; VEGF = vascular endothelial growth factor

Introduction

Glioblastoma multiforme (GBM; WHO grade IV tumour) is the most malignant form of cerebral glioma and accounts for ~50% of such tumours (Kleihues et al., 1993; Kleihues and Cavanee, 2000). It can present as a high-grade lesion from the onset (primary or de novo GBM) (Zülpich, 1986) or can evolve from a lower-grade precursor lesion, such as WHO grade II astrocytoma and WHO grade III anaplastic astrocytoma (secondary or progressive GBM) (Kleihues and Ohgaki, 1999; Brat et al., 2002).

Using brain imaging, the differential diagnosis of GBM includes metastases, abscesses or sometimes even immune-mediated demyelinating mass lesions (Voorhies et al., 1980). Although brain imaging and clinical characteristics may suggest the diagnosis of a GBM, histopathological
Table 1 Clinical and histological characteristics of n = 104 patients with a solitary supratentorial mass lesions and n = 50 healthy controls (normal subjects), including gender, age, tumour volume, type of surgery and dexamethasone treatment

<table>
<thead>
<tr>
<th>Histology</th>
<th>n</th>
<th>Females (%)</th>
<th>Age (years ± SD)</th>
<th>Tumor volume (cm³ ± SD)</th>
<th>Surgery</th>
<th>Dexamethasone (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBM</td>
<td>50</td>
<td>42</td>
<td>63 ± 13</td>
<td>35.4 ± 24.8</td>
<td>23 STX</td>
<td>62</td>
</tr>
<tr>
<td>anapl. Oligo</td>
<td>4</td>
<td>75</td>
<td>36 ± 5</td>
<td>22.3 ± 14.6</td>
<td>0 STX</td>
<td>25</td>
</tr>
<tr>
<td>Astro III</td>
<td>14</td>
<td>29</td>
<td>54 ± 18</td>
<td>30.9 ± 36.3</td>
<td>9 STX</td>
<td>21</td>
</tr>
<tr>
<td>Astro II</td>
<td>13</td>
<td>46</td>
<td>46 ± 19</td>
<td>36.9 ± 36.7</td>
<td>10 STX</td>
<td>23</td>
</tr>
<tr>
<td>single Metastasis</td>
<td>17</td>
<td>47</td>
<td>60 ± 14</td>
<td>21.8 ± 299</td>
<td>7 STX</td>
<td>59</td>
</tr>
<tr>
<td>multiple Metastasis</td>
<td>6</td>
<td>17</td>
<td>56 ± 16</td>
<td>94.9 ± 184.5</td>
<td>No lesion</td>
<td>67</td>
</tr>
<tr>
<td>Normal subjects</td>
<td>50</td>
<td>52</td>
<td>48 ± 16</td>
<td>No lesion</td>
<td>No surgery</td>
<td>0</td>
</tr>
</tbody>
</table>

Because of a tendency towards smaller tumour volumes in the single brain metastasis group compared to the GBM group, six additional patients with multiple brain metastases were examined.

GBM = glioblastoma multiforme (WHO grade IV); anapl. Oligo = anaplastic Oligodendroglioma (WHO grade III), Astro III = anaplastic astrocytoma (WHO grade III), Astro II = diffuse astrocytoma (WHO grade II); STX = stereotactic biopsy; TR = tumour resection.

analysis of the tumour tissue is mandatory for a definite diagnosis. Despite recent progress in the combined use of surgical resection, radiation and chemotherapy, the prognosis of GBM is still poor, with a median survival time of 12.1–14.6 months after diagnosis (Stupp et al., 2005).

Gliarial fibrillary acidic protein (GFAP), first described in 1971 by Eng et al., is a member of the cytoskeletal protein family and is widely expressed in astroglial cells and in neural stem cells (Eng et al., 1971, 2000; Doetsch, 2003). It is also expressed in astroglial tumours, such as astrocytoma and GBM (Jacque et al., 1978; Hamaya et al., 1985; Abaza et al., 1998). We hypothesized that GFAP may be released from astroglial tumours, especially malignant gliomas, into the serum and could therefore be used as a diagnostic biomarker for GBM. On the basis of this hypothesis, we studied GFAP levels in the serum of GBM patients and various control groups.

Patients and Methods

The study protocol was approved by the ethics review committee of the Medical Faculty of the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. All patients and controls gave their written informed consent.

The study included 98 consecutive patients with an initial diagnosis of solitary supratentorial intracerebral mass lesion admitted for surgery at the Department of Neurosurgery at the above-mentioned university between July 2004 and July 2005. Fifty healthy subjects without intracerebral lesions or a history of head injury served as controls. Of the 98 patients, 61 underwent stereotactic biopsy and/or tumour resection (n = 45).

Tumour specimens were examined neuropathologically and classified according to the WHO classification of tumours (Kleihues et al., 1993).

Patients and histopathological diagnoses

Fifty of the 98 patients had a GBM (age: 61 ± 13 years; median: 60.5 years; range: 26–84 years; 29 males and 21 females); 13 patients had a WHO grade II astrocytoma (age: 40 ± 16 years; median: 37 years; range: 20–75 years; 7 males and 6 females) and 14 had a WHO grade III astrocytoma (age: 50 ± 14 years; median: 52 years; range: 22–72 years; 10 males and 4 females); 4 patients had an anaplastic oligodendroglioma (age: 36 ± 5 years; median: 38 years; range: 29–40 years; 1 male and 3 females); 17 patients had a single cerebral metastasis of a primary non-cerebral tumour (median: 60 years, range: 26–74 years; 9 males and 8 females). In the latter group, the primary tumours were identified as breast cancer in two patients, ovarian carcinoma in one patient, pulmonary adenocarcinoma in one patient, melanoma in one patient, renal cell carcinoma in one patient, rectal adenocarcinoma in another patient and remained unknown in 10 patients. The single brain metastasis group showed a tendency towards smaller tumour volumes compared to the GBM group (Table 1). Therefore, to exclude any effects of tumour volume on GFAP detectability we additionally included six patients with multiple brain metastases. Clinical data of the patients are presented in the Table 1.

Normal subjects

We included 50 persons with neither a history of head injury nor signs or symptoms characteristic for an intracerebral lesion. These apparently healthy subjects were aged 49 ± 16 years (median: 50 years, range: 18–78 years; 24 males and 26 females).
Volumetric measurements
The tumour volume of each patient as well as the necrotic area within the GBM were estimated from preoperative, post-contrast T1-weighted magnetic resonance images (MRI) using a modified ellipsoid volume equation: \(V = \frac{4}{3} \pi r^3 \), with \(V \) representing the three dimensions of the tumour and the three dimensions of the necrotic area, detectable as hypointense, non-contrast-enhancing area within the GBM (Kothari et al., 1996). In addition, T2-weighted images and FLAIR-weighted images were used to verify the measurements and to further differentiate tumour from perifocal oedema. The MRI scans had been performed no more than 14 days before serum sampling.

Sample collection and GFAP measurement
A single serum sample was taken from each subject at the time of admission, prior to any treatment, e.g. cranial surgery, radiation therapy or chemotherapy. Samples were centrifuged immediately and supernatants were stored at \(-70^\circ C\) until the levels of GFAP were assessed.

Serum GFAP levels were determined blind to the clinical data on the corresponding patients using a biotin-labelled antibody-based sandwich enzyme immunoassay for the quantitative measurement of human GFAP. GFAP-ELISA test conditions and quantification were as described by the manufacturer (BioVendor, Heidelberg, Germany). In short, samples, quality controls and calibrators were diluted 1:3 prior to analysis. Duplicate of 100 µl samples and calibrators were then pipetted into the ELISA wells and incubated for 2 h at room temperature, followed by 1 h incubation with a biotin-labelled Anti-GFAP-antibody solution and 1 h of incubation with a Streptavidin-HRP conjugate. Between each step, 4 cycles of thorough washing (400 µl washing solution per well) were performed. Finally, the plate was incubated for approximately 20 min at room temperature under avoidance of direct sunlight with the substrate solution of the kit. The colour development was stopped by adding the commercially available stopping solution of the kit. The absorbance was measured by reading the ELISA plate at 450 nm. The detection limit of the test, defined as the concentration of the mean of the absorbance of blanks (calibrator diluent) plus 3 SD of the absorbance of the blanks \(A_{\text{blank}} + 3 \times SD_{\text{blank}} \), was measured and calculated as \(0.012 \mu g/l \) \((n = 15) \). All values below this detection limit were defined as \(0 \mu g/l \).

GFAP analysis in tumour tissue
GFAP expression after GFAP immunohistochemical staining of the tumour specimen was determined by two independent observers who were blinded to GFAP serum levels. GFAP expression was assessed in non-necrotic tumour areas of five separate microscopic fields of view under a magnification of \(40 \times \) and was classified as the mean of the percentage of GFAP immunohistochemically positive tumour cells. GFAP expression was ranked as: \(<25, 25–50, 51–75\) and \(>75\%\) GFAP positive tumour cells. \(k \) statistics revealed a good interobserver agreement of \(k = 0.86 \). Furthermore, on the assumption that the assessed GFAP expression of non-necrotic tumour areas is comparable to those in necrosis, the product of GFAP expression and tumour necrosis volume was determined as a measure for the amount of necrotic GFAP positive cells in GBM.

Statistical analysis
Data are presented as median and range. Statistical analysis of the data was performed using non-parametric tests. For comparisons, non-parametric correlation measures (Spearman correlation) were used. Statistical significance was defined as \(P < 0.05 \). Using receiver operating characteristic (ROC) curve analysis, a GFAP cut-off point was determined for which accuracy measures were derived from cross-tabulations.

Results
In GBM patients, we found a median serum GFAP level of 0.18 µg/l (range: 0–5.6 µg/l; \(n = 50 \)). This was significantly higher than in the non-GBM tumour patients (median: 0; range 0–0.024 µg/l; \(n = 54 \)) or in the normal subjects (median: 0; range 0–0.0 µg/l; \(n = 50 \)) \((P < 0.001 \) respectively; see Fig. 1). All normal subjects showed zero serum GFAP levels (detection limit: 0.012 µg/l; see Fig. 1). Two non-GBM tumour patients with a WHO grade II astrocytoma, both diagnosed via stereotactic biopsy, had serum GFAP levels of 0.024 µg/l. While one patient had an extremely large and diffuse growing tumour, MR-spectroscopy scans of the other patient revealed retrospectively a small area within the tumour suspicious for a higher grade glioma, which might have been missed performing stereotactic biopsy. The remaining non-GBM-tumour patients with WHO grade II or III astrocytomas, anaplastic oligoastrocytomas as well as solitary and multiple cerebral metastases showed serum GFAP levels below the detection limit. Furthermore, in 10 GBM patients, serum GFAP was not detectable (\(\leq 0.012 \mu g/l \)). Tumour volume and tumour necrosis volume were significantly smaller in these GBM patients \((n = 10) \): 19.4 ± 18.7 cm³; median: 8.9 cm³ and 2.0 ± 4.5 cm³; median: 0.03 cm³, respectively) than in those GBM patients with detectable serum GFAP \((n = 40) \): 38.4 ± 24.4 cm³; median: 31 cm³; \(P = 0.01 \) and 12.60 ± 13.7 cm³; median: 5.2 cm³; \(P = 0.0004 \), respectively). Tumour volume significantly correlated with tumour necrosis volume in GBM patients (Spearman Rho, CC = 0.82; 95% confidence interval, 0.65–0.91; \(P < 0.0001 \)). Furthermore, there was a significant correlation between tumour volume and serum GFAP level as well as between tumour necrosis volume and serum GFAP in GBM patients (Spearman Rho, CC = 0.47; 95% confidence interval, 0.2–0.67; \(P < 0.001 \) and CC = 0.49; 95% confidence interval, 0.2–0.72; \(P = 0.004 \), respectively). No significant associations emerged for age, gender or treatment with dexamethasone \((P > 0.05 \), respectively).

The ROC analysis cut-off point of 0.05 µg/l of serum GFAP afforded a sensitivity of 76% and a specificity of 100% for the differentiation of GBM patients from non-GBM tumour patients or healthy controls (area under the curve, 0.9; \(P < 0.001 \)). The positive and negative predictive values were 1.0 and 0.89, respectively.

Immunohistochemically, GFAP was not detectable in cerebral metastases. However, all glial tumours expressed...
immunohistochemically GFAP. Patients with astrocytoma grade III revealed GFAP expression of >50% and those with astrocytoma grade II of >25%. Oligodendroglial and oligoastroglial tumours expressed low amounts of GFAP (<25%). GFAP expression varied little within each non-GBM tumour group. However, GBM tumour tissue samples showed a strong variability in GFAP expression ranging from <25% in some patients to almost 100% in others. Although, there was no direct correlation between GFAP expression and serum GFAP levels ($P = 0.3$), it was evident, that GBM patients without tumour necrosis had, independent of their GFAP expression, serum GFAP levels below the detection limit. Whereas, those GBM patients with similar necrosis volumes and differing GFAP expressions showed with increasing GFAP expression a corresponding increase in serum GFAP level. The product of GFAP expression and tumour necrosis volume as a measure for the amount of necrotic GFAP positive cells in GBM patients was strongly correlated with GFAP serum levels (Spearman Rho, $CC = 0.61$; 95% confidence interval, 0.29–0.81; $P = 0.007$).

Discussion

Our study shows that GFAP is detectable in the serum of many patients with GBM (WHO grade IV tumour). The serum GFAP levels of these patients were significantly higher than those of patients with WHO grade II or III astrocytomas or of patients with brain metastases. Furthermore, serum GFAP levels were correlated with the GBM volume and tumour necrosis volume measured from MRI scans. In this sample, a serum GFAP level above 0.05 µg/l provided a sensitivity of 76% and a specificity of 100% for the diagnosis of GBM. Serum GFAP therefore appears to be a promising new diagnostic biomarker.

Elevated GFAP levels also occur after head trauma, intracerebral haemorrhage and ischaemic stroke (Herrmann and Ehrenreich, 2003; Pelinka et al., 2004; Foerch et al., 2006), but these conditions were excluded from this study. In the past, other markers have been found in the cerebrospinal fluid (CSF) of glioma patients, including S100, neuron-specific enolase (NSE), recoverin (protein A) and vascular endothelial growth factor (VEGF) (Gronowitz et al., 1984; Cochran and Wen, 1985; Taomoto et al., 1987; Sampath et al., 2004). However, the need for repeated CSF examinations limits their widespread use. Only a few potential markers have been detected in the serum of brain tumour patients, including recoverin, low-molecular weight caldesmon (l-CaD) and cathepsin D. Serum and tissue gene expression levels of cathepsin D were significantly higher in GBM patients than in low-grade astrocytoma patients, prompting the suggestion that cathepsin D could be used as a predictor of short survival (Fukuda et al., 2005). Serum l-CaD and recoverin levels showed no significant difference between patients with low-grade and patients with high-grade gliomas, although, they were elevated compared with those of the healthy controls. Recoverin levels were particularly elevated in patients with recurrent GBM (Sampath et al., 2004; Zheng et al., 2005).

GFAP is highly specific for cells with astrocytic differentiation and is widely used as a reliable marker in the immunohistochemical diagnosis and differentiation of
brain tumours (Bonnin and Rubinstein, 1984). Whereas GFAP is consistently expressed, at least to some extent, in all gliomas including glioblastoma, it is usually not found in meningiomas, medulloblastomas and brain metastasis of carcinomas (Fischer et al., 1989; Oh and Prayson, 1999). In our series, all glioblastomas, WHO grade II and III astrocytomas as well as oligoastroglial and oligodendrogial tumours, showed to some extent immunoreactivity for GFAP, whereas cerebral metastases were negative. Comparable to previous reports, the most uniform staining was seen in well-differentiated grade II astrocytomas, whereas GBM patients showed a strong variability in GFAP expression and distribution (Royds et al., 1986 acta neuropathol). Although GFAP is immunohistochemically evident in low and high-grade glioma, it remains unclear why serum GFAP mainly indicates GBM. However, several pathophysiological mechanisms or their combination may explain increased GFAP levels in serum of GBM patients, including: (i) GFAP expression, (ii) tumour necrosis and/or (iii) disruption of the blood–brain-barrier (BBB).

As described previously (Gottschalk and Szymas, 1987), a high variability of GFAP expression in GBM tumour tissue was also observed in this study. However, GFAP expression was not directly correlated with GFAP serum levels. GFAP expression is believed to indicate the differentiation status of astrocytes. Some GBM, which show high cell proliferation, contain more undifferentiated astrocytes and do not express GFAP extensively. Others express GFAP at the same amounts as anaplastic astrocytomas (Herpers et al., 1986), or even demonstrate increased expression of all GFAP isoforms (Blechingberg et al., 2007). A decrease in GFAP expression has been associated with growth and malignancy of glial tumours (Rutka et al., 1997) and was more prominent in high-grade than in low-grade gliomas (Chumbalkar et al., 2005). In vitro, a reduced expression of GFAP in some glioblastoma cell lines was also associated with more aggressive and invasive potentials (Murphy et al., 1998; Zhou and Skalli, 2000; Lee et al., 2005). While some factors like TGF-alpha lead to decreased GFAP expression (Zhou and Skalli, 2000; Lee et al., 2005), multiple other factors including glial growth factor (GGF) (Brookes et al., 1980) and glial maturation factor (GMF) (Lim and Mitsunobu, 1974) were proven to influence and upregulate GFAP expression in vitro (Chiu and Goldman, 1985; Morrison et al., 1985).

Although there were no significant differences in tumour volume between the GBM and non-GBM tumour patients (Table 1), we found a strong correlation between tumour volume and GFAP level in the GBM patients. Tumour volume therefore appears to influence the sensitivity of GFAP detection in GBM patients. Tumour volume was further correlated with tumour necrosis volume. Tumour necrosis, which is absent in low-grade glioma and present in GBM was significantly correlated with serum GFAP levels. Tumour necrosis might therefore explain elevated GFAP serum levels in patients with voluminous GBMs.

Furthermore, the product of GFAP expression in tissue samples and tumour necrosis as a measure for necrotic GFAP positive cells in GBM patients was strongly correlated with GFAP serum levels, emphasizing the direct and/or indirect influence of these two factors on GFAP detectability in serum.

Normal subjects and patients with WHO grade II or III astrocytomas showed serum GFAP levels below the cut-off point of 0.05 µg/l and were comparable with the results of healthy blood donors (range: 0.002 ± 0.049 µg/l) described by others (Missler et al., 1999). Furthermore, in a small series of large, solitary, supratentorial meningiomas (tumour volume: 39.3 ± 33.4 cm³; median: 29 cm³; n = 6) serum GFAP levels were also undetectable (data not shown), indicating that simple brain compression does not result in serum GFAP elevation.

GFAP has a relatively high molecular weight of 52 kDa (Yen et al., 1976), which limits its transit through the BBB under physiological conditions. Similar to acute head trauma, intracerebral haemorrhage or brain infarction (Herrmann and Ehrenreich, 2003; Pelinka et al., 2004; Foerch et al., 2006), elevated serum GFAP concentrations in GBM patients are likely to reflect, both, GFAP leakage from glial cells (e.g. tumour necrosis) and a disruption of the BBB. In fact, both are among the diagnostic criteria defining GBM.

There are some limitations to this study that will require further research. First, the GFAP-ELISA test has not yet been standardized. Second, although our sample of 50 GBM patients, 54 non-GBM tumour patients and 50 healthy controls appears sufficient for an exploratory pilot study, its results require confirmation in larger cohorts. Finally, abscesses and immune-mediated space-occupying lesions were not included in this series. Consequently, our promising results regarding the specificity of serum GFAP may not apply to inflammatory conditions.

Conclusion

Elevated serum GFAP concentrations of > 0.05 µg/l appear to predict GBM in de novo brain tumour patients with a single supratentorial lesion. Furthermore, serum GFAP concentration was closely linked with glioblastoma tumour volume, tumour necrosis volume and the estimated amount of necrotic GFAP positive cells in 50 patients. This study opens up the possibility of using serum GFAP as a diagnostically and therapeutically relevant biomarker in the management of GBM patients.

References

Chiu FC, Goldman JE. Regulation of glial fibrillary acidic protein (GFAP) expression in CNS development and in pathological states. J Neuroimmunol 1985; 8: 283–92.

