Longitudinal changes of outcome measures in spinal and bulbar muscular atrophy

Atsushi Hashizume,1 Masahisa Katsuno,1 Haruhiko Banno,1,2 Keisuke Suzuki,1 Noriaki Suga,1 Tomoo Mano,1 Naoki Atsuta,1 Hiroaki Oe,3 Hirohisa Watanabe,1 Fumiaki Tanaka1 and Gen Sobue1

1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
2 Institute for Advanced Research, Nagoya University, 464-8601, Nagoya, Japan
3 Biometrics Department, Statistics Analysis Division 2, EPS Co., Ltd., 532-0003, Osaka, Japan

Correspondence to: Gen Sobue, MD,
Department of Neurology,
Nagoya University Graduate School of Medicine,
65 Tsurumai-cho, showa-ku,
Nagoya 466-8550, Japan
E-mail: sobueg@med.nagoya-u.ac.jp

Correspondence may also be addressed to: Masahisa Katsuno, MD
E-mail: ka2no@med.nagoya-u.ac.jp

Spinal and bulbar muscular atrophy is an adult-onset, hereditary motor neuron disease caused by the expansion of a trinucleotide CAG repeat within the gene encoding the androgen receptor. To date, several agents have been shown to prevent or slow disease progression in animal models of this disease. For the translational research of these agents, it is necessary to perform the detailed analysis of natural history with quantitative outcome measures and to establish sensitive and validated disease-specific endpoints in the clinical trials. To this end, we performed a prospective observation of disease progression over 3 years in 34 genetically confirmed Japanese patients with spinal and bulbar muscular atrophy by using quantitative outcome measures, including functional and blood parameters. The baseline evaluation revealed that CAG repeat length in the androgen receptor gene correlated not only with the age of onset but also with the timing of substantial changes in activity of daily living. Multiple regression analyses indicated that the serum level of creatinine is the most useful blood parameter that reflects the severity of motor dysfunction in spinal and bulbar muscular atrophy. In 3-year prospective analyses, a slow but steady progression was affirmed in most of the outcome measures we examined. In the analyses using random coefficient models that summarize the individual data into a representative line, disease progression was not affected by CAG repeat length or onset age. These models showed large interindividual variation, which was also independent of the differences of CAG repeat size. Analyses using these models also demonstrated that the subtle neurological deficits at an early or preclinical stage were more likely to be detected by objective motor functional tests such as the 6-min walk test and grip power or serum creatinine levels than by functional rating scales, such as the revised amyotrophic lateral sclerosis functional rating scale or modified Norris scale. Categorization of the clinical phenotypes using factor analysis showed that upper limb function is closely related to bulbar function, but not to lower limb function at baseline, whereas the site of onset had no substantial effects on disease progression. These results suggest that patients with spinal and bulbar muscular atrophy show a slow but steady progression of motor dysfunction over time that is independent of CAG repeat length or clinical phenotype, and that objective outcome measures may be used to evaluate disease severity at an early stage of this disease.
Introduction

Spinal and bulbar muscular atrophy, also known as Kennedy’s disease, is an adult-onset, hereditary motor neuron disease characterized by muscle atrophy, weakness, contraction fasciculation and bulbar involvement (Kennedy et al., 1968; Sobue et al., 1989; Sperfeld et al., 2002). The progression of neurological deficits is usually slow in spinal and bulbar muscular atrophy, with the average interval between the onset of symptoms and death being ~20 years (Atsuta et al., 2006). Life-threatening respiratory tract infections due to bulbar palsy often occur in an advanced stage of the disease, resulting in premature death. In blood profiles, the elevations due to bulbar palsy often occur in an advanced stage of the disease (Kennedy et al., 1968; Sobue et al., 1989; Sperfeld et al., 2002). The progression of neurological deficits is usually slow in spinal and bulbar muscular atrophy, with the average interval between the onset of symptoms and death being ~20 years (Atsuta et al., 2006). Life-threatening respiratory tract infections due to bulbar palsy often occur in an advanced stage of the disease, resulting in premature death. In blood profiles, the elevation of serum creatine kinase levels is a characteristic blood finding of spinal and bulbar muscular atrophy and is occasionally detectable many years prior to the onset of clinical symptoms (Sorarù et al., 2008; Chahin and Sorenson, 2009; Rhodes et al., 2009). In addition, patients often have non-neurological conditions, such as hyperlipidaemia and diabetes mellitus (Barkhaus et al., 1982; Dejager et al., 2002; Sinnreich et al., 2004).

Spinal and bulbar muscular atrophy is caused by the expansion of a CAG repeat, encoding a polyglutamine tract, within the first exon of the androgen receptor gene (La Spada et al., 1991). CAG repeat numbers range among 38–62 in patients with spinal and bulbar muscular atrophy, whereas normal individuals have 9–36 CAG repeats (La Spada et al., 1991; Fischbeck et al., 1991; Atsuta et al., 2006). To date, nine polyglutamine diseases have been identified: Huntington’s disease, dentatorubral–palidolusian atrophy, spino-cerebellar ataxia 1, 2, 3, 6, 7 and 17, and spinal and bulbar muscular atrophy. Although the clinical features vary for each disorder, corresponding to the pathological distribution of neurodegeneration, the symptoms generally appear in mid-life and progressively deteriorate until death from fatal complications (La Spada and Taylor, 2003). Although several studies showed that CAG repeat size correlated with the age of onset in polyglutamine diseases, including spinal and bulbar muscular atrophy, considerable controversy surrounds whether the length of the CAG repeat influences the speed of disease progression (Atsuta et al., 2006; Orr and Zoghbi, 2007; Walker, 2007).

The androgen-dependent accumulation of pathogenic androgen receptor proteins in the nucleus of lower motor neurons is thought to be crucial in inducing neuronal cell dysfunction and eventual degeneration, and underlie the gender dependency in the manifestation of the disease (Schmidt et al., 2002; Katsuno et al., 2012). In mouse models of spinal and bulbar muscular atrophy, surgical castration delays disease onset and reverses the neuromuscular phenotype (Katsuno et al., 2002; Chevalier-Larsen et al., 2004). Similar effects emerged when these mice are treated with leuprorelin, a luteinizing hormone-releasing hormone agonist that reduces testosterone release (Katsuno et al., 2003). In a phase II clinical trial, leuprorelin suppressed the accumulation of pathogenic androgen receptor and slowed the deterioration of motor function in patients with spinal and bulbar muscular atrophy (Banno et al., 2006, 2009). However, in a large-scale phase III randomized controlled trial, the efficacy of leuprorelin on clinical endpoints was not clearly demonstrated, although it was suggested that early intervention might be beneficial (Katsuno et al., 2010). Similarly, the 5α-reductase inhibitor dutasteride, which blocks the conversion of testosterone to dihydrotestosterone, did not show a significant effect in a phase II clinical trial (Fernández-Rhodes et al., 2011). These results appear to be partly attributable to the characteristics of spinal and bulbar muscular atrophy, such as its notably slow progression, and the lack of established outcome measures for the evaluation of therapeutic efficacy. In slowly progressive neurodegenerative diseases, the efficacy of a disease-modifying therapy is difficult to detect in short-term trials (Rascol, 2009). To facilitate the development of disease-modifying therapy for spinal and bulbar muscular atrophy, it is necessary to have a detailed description of the natural history of the disease to design appropriate clinical trials and to evaluate drug efficacy in patients. However, there are limited published data on the natural history of spinal and bulbar muscular atrophy, particularly for objective and quantitative measures, mainly because of its rarity (Rhodes et al., 2009; Hashizume et al., 2012).

In the present study, we performed prospective, quantitative analyses of the natural course of the disease in 34 genetically-confirmed Japanese patients with spinal and bulbar muscular atrophy over 3 years. Our results demonstrated longitudinal progression of quantitative outcome measures such as motor functional scales and tests as well as serum levels of creatinine. Although CAG repeat size in the androgen receptor gene correlates with activity of daily living milestones, i.e. hand tremor, muscular weakness, requirement of a handrail, dysarthria and dysphagia; its effect on disease progression rate was not demonstrated using random coefficient linear regression models. The analyses using these models also revealed that objective motor function tests and the serum levels of creatinine, but not subjective functional scales, are sensitive measures to detect neurological deficits at an early or preclinical stage of spinal and bulbar muscular atrophy. In addition, our findings indicated that upper limb function closely related to bulbar function, but not to lower limb function in spinal and bulbar muscular atrophy, whereas the site of onset had no substantial effect on disease progression.

Materials and methods

Patients

A total of 34 male patients with a diagnosis of spinal and bulbar muscular atrophy were recruited and followed with no specific treatment. The inclusion criteria were as follows: (i) genetically confirmed male Japanese patients with spinal and bulbar muscular atrophy with more than one of the following symptoms: muscle weakness, muscle...
atrophy or bulbar palsy; and (ii) patients who were 25–75 years old at the time of informed consent. The patients were excluded if they met any of the following criteria: (i) unable to attend periodic follow-up visits; (ii) unable to stand upright for 6 min without assistance; (iii) tachycardia (>120 beats/min) or uncontrolled hypertension (>180/100 mmHg); (iv) experienced angina pectoris or myocardial infarction; (v) severe complications, such as malignancy and heart failure; (vi) severe bulbar palsy or other neurological complications; (vii) medical history of allergy to barium; (viii) taken hormonal agents within 48 weeks before informed consent; (ix) castrated; and (x) participated in any other clinical trials before informed consent. All of the patients were followed in Nagoya University Hospital. The data were collected between January 2007 and February 2011.

This study adhered to the ethics guidelines for human genome/gene analysis research and those for epidemiological studies endorsed by the Japanese government. The Ethics Committee of Nagoya University Graduate School of Medicine approved the study, and all participants gave their written informed consent.

Activity of daily living milestones

The initial symptoms and onset of nine activities of daily living milestones were assessed to evaluate the clinical course of the disease as previously described (Atsuta et al., 2006). The activity of daily living milestones were defined as follows: hand tremor (patient awareness of hand tremor), muscular weakness (initial patient awareness of muscular weakness in any part of the body), requirement of a handrail (patient was unable to ascend stairs without the use of a handrail), dysarthria (patient was unable to articulate properly and had intelligible speech only with repetition), dysphagia (patient choked occasionally at meals), use of a cane (patient used a cane constantly when away from home), use of a wheelchair (patient used a wheelchair when away from home) and development of pneumonia (patient developed pneumonia that required in-hospital care). We assessed the age at which the activity of daily living milestones first occurred by direct interview at the first evaluation, since the inter-rater reliability of this method has been validated (Atsuta et al., 2006). The activity of daily living milestones that occurred before the initial examination were checked and analysed. In this study, the age at which muscular weakness first occurred was defined as age at disease onset.

Outcome measures

The outcome measures of this study consist of functional and blood parameters, which were measured every 6 months during the 3-year follow-up. We used the following functional parameters in the present study: the revised amyotrophic lateral sclerosis functional rating scale (ALSFRS-R), modified Norris scale (Limb Norris score and Norris Bulbar score), modified quantitative myasthenia gravis score, grip power, 6-min walk test, five-item amyotrophic lateral sclerosis assessment questionnaire (ALSAQ-5), timed walking test (15 ft) and pharyngeal barium residue.

The ALSFRS is a validated questionnaire-based scale that measures physical function in patients with amyotrophic lateral sclerosis performing activity of daily living [The ALS CNTF treatment study (ACTS) phase I–II Study Group, 1996]. The revised version of this scale, ALSFRS-R, was generated to improve the disproportion of weighting to the limbs and bulbar system compared with respiratory dysfunction. The ALSFRS-R was translated into Japanese and validated (Ohashi et al., 2004). The ALSFRS-R is divided into five domains: bulbar-related (three items: speech, salivation and swallowing), upper limb-related (two items: handwriting, and cutting food and handling utensils), trunk-related (two items: dressing and hygiene, and turning in bed and adjusting bed clothing), lower limb-related (two items: walking and climbing stairs) and respiration-related (three items: dyspnoea, orthopnoea and respiratory insufficiency).

The modified Norris scale is another rating scale for amyotrophic lateral sclerosis, which consists of two parts: the Limb Norris Score and the Norris Bulbar Score. The former has 21 items to evaluate limb function and the latter has 13 items to assess bulbar function. Each item is rated in four ordinal categories, and thus the possible best score is 63 and 39, respectively. The original version was translated into Japanese and validated (Oda et al., 1996).

The quantitative myasthenia gravis score is an objective measure to detect fatigue of enduring muscle power that was originally designed for myasthenia gravis (Besinger et al., 1983). We used a part of the quantitative myasthenia gravis score that measures the muscle power of the extremities and neck flexion as a modified quantitative myasthenia gravis score. Therefore, the best possible score is 0 and the worst possible score is 15. Although this scale has not been previously validated in patients with spinal and bulbar muscular atrophy, the contents of the modified quantitative myasthenia gravis score are suitable for the evaluation of spinal and bulbar muscular atrophy symptoms, and we thus considered them to be applicable to this disease (Katsumoto et al., 2010).

Grip power was measured using an electronic hand dynamometer. The patients were instructed to keep their elbows at 90°, their forearms in neutral rotation and their wrists not flexed or pronated. The measurements were performed twice on each side and the larger value was adopted as the grip power on each side. Grip power has been recommended as an acceptable endpoint for amyotrophic lateral sclerosis clinical trials (James et al., 1997).

The 6-min walk test is a popular clinical test that has been used to assess the functional capacity of gait. The distance travelled during 6 min, i.e. the 6-min walk distance is a parameter that evaluates the global and integrated responses of all the systems involved in walking, including the neuromuscular, pulmonary and cardiovascular systems. The validity of this test has been verified in various neuromuscular disorders, including spinal and bulbar muscular atrophy (Takeuchi et al., 2008; Montes et al., 2010).

The timed walking test measures the time required to walk 15 feet. It has been recommended as a test for amyotrophic lateral sclerosis clinical trials (James et al., 1997).

The ALSAQ-5 is a subjective health measure that was designed to evaluate the quality of life in patients with amyotrophic lateral sclerosis. This questionnaire was developed from the original version (ALSAQ-40) using item reduction (Jenkinson et al., 1999; Jenkinson and Fitzpatrick, 2001). The validity of the Japanese version of the ALSAQ-40 has been confirmed (Yamaguchi et al., 2004).

Pharyngeal barium residue was examined to evaluate swallowing function. In the videofluorography examinations, the patients were instructed to swallow 3 ml of 40% w/v barium sulphate twice while standing. Pharyngeal barium residue was measured for the first 3 ml swallowed because the first residue directly affects the second one. Pharyngeal barium residue after initial swallowing was measured by two masked independent investigators according to standard procedures using a semiquantitative scale: 0, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% (Logemann et al., 1989; 2000; Katunuma et al., 2010). Previous studies have shown high intra- and inter-rater reliability for the measurement of videofluorographic swallowing, although little is known about the reproducibility of this parameter (Kuhlmeier et al., 1998).

Blood sampling was performed at an outpatient clinic without any fasting.
Longitudinal analyses

The data of the patients who were evaluated only once during the follow-up period were eliminated from the longitudinal analyses. Follow-up data were defined as the values of the last evaluation. The differences between baseline and follow-up were analysed using a paired t-test. The disease progression rate per year was defined as the difference between the baseline and follow-up data divided by the follow-up period (years).

Genetic analysis

Genomic DNA was extracted from peripheral blood of the patients with spinal and bulbar muscular atrophy using conventional techniques. PCR amplification of the CAG repeat in the androgen receptor gene was performed using a fluorescent-labelled forward primer (5'-TCCAG AATCTGGTTCACAGGTTC-3') and a non-labelled reverse primer (5'-TGGCCTCGCTCAGGATGTCTTTAAG-3'). The detailed PCR conditions were described previously (Doyu et al., 1992). Aliquots of the PCR products were combined with loading dye and separated by electrophoresis using an autoreader sequencer (SQ-5500; Hitachi Electronics Engineering). The size of the PCR standards was determined by direct sequencing, as described previously (Doyu et al., 1992).

Statistics

Statistical analyses were performed using SPSS Statistics 17.0 (SPSS Japan Inc.) or SAS Software version 9.2 (SAS Institute). Descriptive variables such as the mean, median, standard deviation, standard error of the mean and range were used to summarize the quantitative measures. Spearman’s correlation coefficient was used to assess the correlations between the age at the appearance of each activity of daily living milestone and CAG repeat number, and the baseline characteristics and disease progression rate. For multivariate analyses, stepwise multiple linear regression was first performed to select the best subset of covariates. Covariates that strongly correlated with each other (Spearman’s correlation coefficient > 0.7) were eliminated to avoid the multicollinearity that may affect the precise selection of factors. In the ‘Results’ section, only associations that were selected by stepwise analysis and found to be significant (P < 0.05) are shown.

In order to address the representative disease progression most effectively, random coefficient regression models were used as the primary statistical method to evaluate the longitudinal relationship of outcome measures (Laird and Ware, 1982). Although its mathematical formulation is somewhat different, the theory underlying these models is essentially the same as that for a traditional univariate repeated measures ANOVA (Searle, 1988; McLean et al., 1991). Random coefficient regression models utilize familiar designs such as ANOVA, but their hypotheses and designs are related to regression lines rather than to single observations and can deal with random variation of entry scores and rates of progression among subjects. These models also attend to ‘random effects’, that is, unmeasured, uncontrollable sources of variability and have been used for analysing natural history of neurodegenerative diseases (Nandhagopal et al., 2009). Ignoring random effects can increase the chance of declaring statistical significance in error because the pooling of intra-subject with inter-subject variability falsely reduces the estimate of the error of variance.

Factor analysis was performed using the baseline data of ALSFRS-R to classify the clinical phenotypes of spinal and bulbar muscular atrophy. We selected the factors with loadings that were > 1, and performed a ‘Varimax’ rotation on these factors to maximize the number of variables with high loadings for each factor (Williams et al., 2005). The loadings of each variable on both of these factors were plotted against each other, and two groups of variables in different areas of the plot were selected for further analyses.

Results

Patient demographics and blood profiles

A total of 34 patients with spinal and bulbar muscular atrophy were included (Table 1). The characteristics of the present study population, such as age at the first evaluation, age at onset and CAG repeat length, were similar to those of previous studies (Atsuta et al., 2006; Katsuno et al., 2010; Fernández-Rhodes et al., 2011). Blood count and biochemical and hormonal profiles are shown in Table 2. The most characteristic observations of the blood tests were the elevated levels of creatine kinase and the decreased levels of creatinine. A total of 29 cases (85.3%) showed abnormalities in both parameters, whereas none had a normal value for both creatine kinase and creatinine. Aspartate and alanine aminotransferase were elevated above the reference range in ~70% of the patients. The total testosterone level was also elevated in 23.5% of the patients, while no case showed an abnormally low level of this hormone.

Activity of daily living milestones

The timing of activity of daily living milestones in this cohort was equivalent to that in a previous study (Supplementary Table 1) (Atsuta et al., 2006). For instance, the age at onset of muscle weakness was between 22 and 66 years, which was preceded by hand tremor in most cases, and the intervals between the onset of weakness and the requirement of handrails for stair climbing were 0 to 18 years. As previously reported (Atsuta et al., 2006), all of the milestones including the onset of muscular weakness were significantly correlated with CAG repeat length (Spearman’s correlation coefficient 0.05) are shown.

Table 1 Clinical and genetic features of 34 patients with spinal and bulbar muscular atrophy at baseline

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Mean ± SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at the first evaluation (years)</td>
<td>53.6 ± 12.6 (27–74)</td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>9.2 ± 5.3 (2–21)</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>44.4 ± 12.6 (19–66)</td>
</tr>
<tr>
<td>CAG repeat length in the androgen receptor gene (number)</td>
<td>47.9 ± 4.0 (40–57)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSFRS-R</td>
<td>42.6 ± 4.1 (32–48)</td>
</tr>
<tr>
<td>Limb Norris score</td>
<td>55.9 ± 6.9 (39–63)</td>
</tr>
<tr>
<td>Norris Bulbar score</td>
<td>34.6 ± 4.3 (22–39)</td>
</tr>
<tr>
<td>Modified quantitative myasthenia gravis score</td>
<td>6.1 ± 3.4 (0–13)</td>
</tr>
<tr>
<td>Grip power</td>
<td>42.2 ± 13.5 (16.6–70.6)</td>
</tr>
<tr>
<td>6-Min walking distance</td>
<td>350 ± 130 (60–569)</td>
</tr>
<tr>
<td>ALSAQ-5</td>
<td>10.3 ± 3.7 (5–18)</td>
</tr>
<tr>
<td>Timed walking (15 ft)</td>
<td>4.48 ± 2.51 (2.29–13.08)</td>
</tr>
<tr>
<td>Barium residue</td>
<td>13.7 ± 17.5 (0–65)</td>
</tr>
</tbody>
</table>
Baseline data of outcome measures

To clarify the clinical parameters that are associated with disease severity, we investigated the correlations between the value of the clinical parameters and the following demographic and anthropometric variables: age at first evaluation, CAG repeat length, disease duration, age at onset and body mass index. We also examined whether the value of the functional parameters correlated with blood parameters which are often abnormal in patients with spinal and bulbar muscular atrophy (Table 2 and Supplementary material). As a result, age at the first evaluation, serum creatinine, HbA1c, prothrombin time and body mass index were selected by the stepwise analyses as candidate variables that reflected disease severity in the patients with spinal and bulbar muscular atrophy examined in the present study (Supplementary Table 2). The age at baseline was correlated with the scores in the functional rating scales and walking capacity. Moreover, the serum levels of creatinine were strongly correlated with all of the clinical parameters, except for the ALSAQ-5 and pharyngeal barium residue, suggesting that this parameter is likely to be the most reliable and valid blood parameter that reflects disease severity. By contrast, no correlation was detected between the functional parameters and creatine kinase, although it is thought to be the most characteristic biomarker of spinal and bulbar muscular atrophy (Chahin and Sorenson, 2009). The scatter diagrams also showed strong simple correlations between the serum creatinine and the clinical parameters at baseline (Fig. 1).

Longitudinal assessment of outcome measures

Based on the results of baseline correlations, we prospectively analysed the longitudinal change of the functional parameters and the serum levels of creatinine. The results of longitudinal observation showed a slow but steady disease progression in all of the outcome measures we examined, except for the quality of life score (ALSAQ-5) and swallowing function (barium residue after initial swallowing) (Table 3). We also performed sample size estimation using the outcome measures that showed significant longitudinal changes (Supplementary Table 3). The results demonstrated that the functional rating scales require a smaller sample size than objective measures, although a larger number of patients have to be enrolled in clinical trials of disease-modifying therapies that slow disease progression in comparison with those of symptomatic therapies expected to improve motor function.

Next, we investigated the correlations between the baseline characteristics, such as age at onset, age at the first evaluation, disease duration and CAG repeat length and the disease progression rate of the outcome measures that showed significant changes during the 3-year follow-up (Table 3). The baseline characteristics we evaluated did not correlate with the longitudinal changes of any outcome measure, suggesting that disease progression may not be affected by the characteristics of these patients (Supplementary Table 4).

Furthermore, we analysed the longitudinal data in terms of the disease duration in each patient. The score of each outcome measure was plotted over disease duration for each subject (Fig. 2). The trajectory for each subject was expressed with a connected line over the plot. We applied modelling processes to clarify the representative progression of spinal and bulbar muscular atrophy. To this end, linear multivariate regression analyses using random effects (random coefficient regression models) were utilized to model our longitudinal data since this model is robust to inter- and intra-individual variation and allowed the analysis of the repeated data of each subject (Deschaintre et al., 2009; Nandhagopal et al., 2009). In addition to the linear relationship, we also assessed non-linear models by adding a quadratic term of disease duration as an explanatory variable, and used exponentially decreasing models as an alternative description of the relationship. We evaluated the P-values of the quadratic term of estimate and Akaike’s information criterion (Akaike, 1973) for

Table 2 Haematological profiles at baseline (n = 34)

<table>
<thead>
<tr>
<th>Haematological test</th>
<th>Mean ± SD (range)</th>
<th>Reference range</th>
<th>Out of reference range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Total lymphocytes (x 10^9/μl)</td>
<td>2.6 ± 0.7 (1.2–4.2)</td>
<td>1.5–3.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
<td>7.5 ± 0.5 (6.6–8.9)</td>
<td>6.7–8.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>4.2 ± 0.3 (3.7–5.0)</td>
<td>4.0–5.0</td>
<td>20.6</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.4 ± 0.8 (4.7–8.8)</td>
<td>4.3–5.8</td>
<td>0</td>
</tr>
<tr>
<td>Creatine kinase (IU)</td>
<td>969 ± 573 (144–2050)</td>
<td>62–287</td>
<td>0</td>
</tr>
<tr>
<td>Aspartate transaminase (IU/l)</td>
<td>46.2 ± 27.3 (23–159)</td>
<td>13–33</td>
<td>0</td>
</tr>
<tr>
<td>Alanine transaminase (IU/l)</td>
<td>57.7 ± 47.6 (17–272)</td>
<td>6–30</td>
<td>0</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>5.5 ± 1.5 (2.5–9.3)</td>
<td>3.6–7.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Testosterone (µg/dl)</td>
<td>7.4 ± 3.1 (3.7–15.0)</td>
<td>1.66–8.11</td>
<td>0</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.45 ± 0.09 (0.22–0.66)</td>
<td>0.60–1.10</td>
<td>94.1</td>
</tr>
<tr>
<td>Prothrombin time (%)</td>
<td>101.4 ± 9.3 (85.0–129.2)</td>
<td>80–120</td>
<td>0</td>
</tr>
<tr>
<td>Activated partial thromboplastin time (%)</td>
<td>33.6 ± 2.8 (10.4–29.0)</td>
<td>80–120</td>
<td>14.7</td>
</tr>
</tbody>
</table>
Figure 1 Simple correlations of serum creatinine levels with the outcome measures. Each outcome measure, other than barium residue, correlates well with the serum creatinine levels. mQMG = modified quantitative myasthenia gravis score.

Table 3 Longitudinal change of outcome measures

<table>
<thead>
<tr>
<th>Clinical outcomes</th>
<th>Baseline, mean ± SD (range)</th>
<th>Follow-up, mean ± SD (range)</th>
<th>P-value</th>
<th>Change per year, mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSFRS-R (n=33)</td>
<td>43.0 ± 3.7 (33–48)</td>
<td>39.8 ± 4.0 (26–46)</td>
<td><0.001</td>
<td>−1.1 ± 0.9</td>
</tr>
<tr>
<td>Limb Norris score (n=33)</td>
<td>56.4 ± 6.4 (39–63)</td>
<td>49.7 ± 8.9 (27–62)</td>
<td><0.001</td>
<td>−2.2 ± 1.6</td>
</tr>
<tr>
<td>Norris Bulbar score (n=33)</td>
<td>34.9 ± 3.7 (24–39)</td>
<td>31.9 ± 4.4 (21–38)</td>
<td><0.001</td>
<td>−1.0 ± 0.9</td>
</tr>
<tr>
<td>Modified quantitative myasthenia gravis score (n=32)</td>
<td>5.9 ± 3.3 (0–13)</td>
<td>7.1 ± 3.4 (1–13)</td>
<td><0.001</td>
<td>0.4 ± 0.5</td>
</tr>
<tr>
<td>Grip power (n=32)</td>
<td>42.6 ± 13.8 (16.6–70.6)</td>
<td>36.5 ± 13.8 (14.0–66.0)</td>
<td><0.001</td>
<td>−1.7 ± 3.0</td>
</tr>
<tr>
<td>6-min walking distance (n=32)</td>
<td>360 ± 126 (60–569)</td>
<td>315 ± 136 (1–515)</td>
<td><0.001</td>
<td>−20.3 ± 26.0</td>
</tr>
<tr>
<td>ALSAQ-5 (n=32)</td>
<td>10.2 ± 3.7 (5–15)</td>
<td>11.2 ± 3.6 (5–16)</td>
<td>0.051</td>
<td>0.2 ± 1.2</td>
</tr>
<tr>
<td>Timed walking (15 ft) (n=32)</td>
<td>4.36 ± 2.44 (2.29–13.08)</td>
<td>5.46 ± 4.26 (2.06–22.53)</td>
<td>0.004</td>
<td>1.00 ± 3.37</td>
</tr>
<tr>
<td>Barium residue (%) (n=29)</td>
<td>13.1 ± 17.1 (1–65)</td>
<td>13.8 ± 16.9 (1–75)</td>
<td>0.796</td>
<td>0.2 ± 5.1</td>
</tr>
<tr>
<td>Creatinine (n=32)</td>
<td>0.45 ± 0.09 (0.22–0.66)</td>
<td>0.41 ± 0.10 (0.19–0.58)</td>
<td><0.001</td>
<td>−0.013 ± 0.030</td>
</tr>
</tbody>
</table>

a The numbers of patients whose data were analysed are shown. The data of patients who were evaluated once during follow-up were eliminated from the analysis.

b Follow-up data were defined as the value of the last evaluation.

c P-value for paired t-test.

d Change per year was defined as follows. [(Follow-up data) − (Baseline data)]/(observational period (years)).

Barium residue = barium residue after initial swallowing.
assessing fitness of these models. However, neither non-linear nor exponential models provided a substantially better fit than the linear models for the present data (Supplementary Table 5). In the analyses using the linear models, a fitted line was identified for all of the outcome measures, indicating a relentless deterioration of motor function in patients with spinal and bulbar muscular atrophy (Fig. 2). The linear models, shown by the solid lines in Fig. 2, were of the form $F(t) = a + bt$, where a, b and t were regression parameters to be estimated: t represented the disease duration; a represented the intercept at $t = 0$ (onset of symptoms); and b represented the disease progression rate. The broken curvilinear lines in each figure indicate the 95% confidence intervals of these models. In order to confirm that disease progression was not significantly affected by the patients’ backgrounds, we split the patient population into two groups according to the level of their background variables, thereby generating two linear models. The results of this subgroup analysis considering CAG repeat length are shown in Supplementary Table 6. For all of the outcome measures, except for timed walking and creatinine, the progression rate was not significantly different, suggesting that disease progression is not strongly affected by CAG repeat length. Similarly, subgroup analyses according to the median value of age at onset and serum testosterone level also showed no substantial differences between the subgroups, except for the deterioration of grip power, which was faster in patients with lower serum levels of testosterone (Supplementary Tables 7 and 8).

Figure 2 also showed that the individual behaviour of the chronological change had a large variation. Not only intra-individual but also interindividual variation was notably detected in each outcome measure. Thus we next investigated the characteristics of the patients whose baseline data of ALSFRS-R was below (Severe group) or above (Mild group) the curvilinear line of 95% confidence intervals (Fig. 2A). The results of this comparison showed that the patients of the mild group had better motor function despite longer disease durations compared with patients of the severe group, although there was no difference of the CAG repeat length in the androgen receptor gene or the age at the first examination between the groups. This indicates that factors other than CAG repeat size, such as physical capacity before the onset, might contribute to the variability of phenotypes in patients with spinal and bulbar muscular atrophy (Supplementary Table 9).

We next investigated the intercepts of the regression lines that corresponded to the estimated severity at clinical onset to identify clinical markers that are sensitive to the clinical changes during the early stage of the disease (Fig. 2). The intercepts of these regression lines were almost equal to or beyond the full score regarding
the subjective functional parameters, such as the ALSFRS-R and modified Norris score, indicating that motor functional deficits at an early stage of the disease may not be detected using these measures. By contrast, the estimated values at onset were far more or less than the normal level for the objective outcome measures, such as the 6-min walk distance, grip power and serum creatine kinase and creatinine levels, implying that disease severity may be evaluated by using these objective measures. Thus, our findings suggest that the objective and quantitative assessments, but not functional scales, are sensitive measures to detect subtle clinical deficits at an early or preclinical stage of spinal and bulbar muscular atrophy.

Clinical phenotypes and onset site distribution of spinal and bulbar muscular atrophy

In the analyses of the baseline data, we noticed that the degree of bulbar symptoms do not necessary correspond to that of limb involvement. For instance, pharyngeal barium residue, a clinical measure of dysphagia, was relatively little in certain patients who showed a decreased 6-min walk distance (Patients 9 and 11; Supplementary Table 10). Conversely, walking capacity was relatively preserved in Patients 28 and 32 who demonstrated increased barium residue in videofluorography. These findings prompted us to categorize the clinical symptoms of spinal and bulbar muscular atrophy with respect to the site of involvement using factor analysis (Fig. 3 and Supplementary material). This result suggests that upper limb function is closely related to bulbar function, but not to lower limb function. To confirm this view, the relationship among each domain of ALSFRS-R and that of the modified Norris score were investigated. The results showed that upper limb function is closely related to bulbar function compared with lower limb function, supporting the findings of our factor analysis (Supplementary Table 11). These observations suggest that the phenotypes of spinal and bulbar muscular atrophy may take a bulbar/upper limb-dominant or lower limb-dominant form. However, subgroup analyses according to the initially affected site showed no substantial differences between the patients whose initial symptom were bulbar or upper limb weakness and those who first noticed lower limb symptoms (Supplementary Table 12).

Discussion

Spinal and bulbar muscular atrophy is a relatively rare neurodegenerative disease, for which the data regarding longitudinal analyses of clinical measures are limited (Katsuno et al. 2010; Fernández-Rhodes et al. 2011). The 3-year natural history data of quantitative outcome measures in spinal and bulbar muscular atrophy obtained from the present study will be useful for the design of future therapeutic trials, including the choice of outcome measures, determination of the observation period, stratification of patients and calculation of the sample size. In our longitudinal analyses, all of the outcome measures, except for the ALSAQ-5 and barium residue, showed a statistically significant progression, suggesting a slow but steady deterioration of symptoms in patients with spinal and bulbar muscular atrophy. The lack of significant longitudinal changes of pharyngeal barium residue may result from unequivocal variation among patients and piecemeal deglutition, a possible compensatory mechanism against slowly progressive bulbar palsy, which may hinder the measurement of the residue in patients with spinal and bulbar muscular atrophy (Katsuno et al., 2010).

The results of sample size calculation indicated that the employment of functional rating scales as the primary endpoint may reduce the sample size. However, even with these functional outcome measures, clinical trials of disease-modifying therapies that suppress the exacerbation of symptoms appear to be less practical than those testing symptomatic therapies. Furthermore, these scales are shown to be more susceptible to placebo effects than objective measures (Hashizume et al., 2012). This issue should also be taken into account to design clinical trials of spinal and bulbar muscular atrophy using subjective outcome measures. In addition, the effect of ageing on outcome measures is an alternative factor that may compromise the sample size estimation. Since motor function declines with age, the longitudinal changes of outcome measures in the present study might contain both disease-specific and age-related deterioration of function. This issue appears to be particularly critical when using objective measures, whereas the effects of ageing appear to be less problematic for subjective measures, the score of which is expected to be full even in aged subjects with normal activity. For instance, previous studies suggest that the 6-min walk distance test shows an age-dependent decline at ~5 m/year that may lead to the overestimation of disease progression in patients with spinal and bulbar muscular atrophy (Enright et al., 1998; Takeuchi et al., 2008).
In this longitudinal study, we also analysed the individual raw data in consideration of disease duration because it influences the severity of the neurological symptoms of spinal and bulbar muscular atrophy (Takeuchi et al., 2008; Rhodes et al., 2009). To this end, we summarized the individual data into a representative line by using random coefficient regression models. The results indicated that the disease progression is relatively linear, rather than quadratic or exponential, in the population studied (Fig. 2). The slope of the line was equivalent to the actual disease progression calculated for each parameter, indicating the plausibility of this modelling process (Table 3). This result raised the possibility that the data from the present study can be used as comparative historical control data in future clinical studies.

In the present study, we also confirmed that CAG repeat length correlated well with the age of onset and other activity of daily living milestones, as previously shown in spinal and bulbar muscular atrophy and other polyglutamine diseases (Abe et al., 1998; Stevanin et al., 2000; Atsuta et al., 2006; Walker, 2007; Reetz et al., 2011). In contrast to the strong correlation of CAG repeat size with the age at onset, the disease progression of spinal and bulbar muscular atrophy was not affected by CAG repeat length in androgen receptor. This result may suggest that the size of the CAG repeat influences the timing of the onset of clinical symptoms, but not the progression of neurological deficits, and that different mechanisms underlie disease initiation and progression in spinal and bulbar muscular atrophy (Atsuta et al., 2006). In support of this view, the onset of motor dysfunction is reportedly determined by the expression of causative proteins in neurons, but disease progression is largely dependent on glial pathology, in a mutant super oxide dismutase 1 mouse model of amyotrophic lateral sclerosis (Boille et al., 2006). Alternatively, the length of the CAG repeat may determine the nucleation speed of pathogenic androgen receptor proteins and the eventual onset of disease, but not the rate of aggregation that is likely to influence progression (Zhou et al., 2011). It can also be inferred that the older age at onset in patients with a shorter CAG repeat may lead to accelerated progression, which overwhelms the direct effects of genotype on the post-onset course of the disease. This may underlie the faster deterioration of timed walking and serum creatinine levels in the patients with a shorter CAG repeat (Supplementary Table 6). In our subgroup analyses considering age at onset, patients with an older age of onset tended to show a more rapid deterioration of timed walking and serum creatinine levels, although the intergroup differences were not significant (Supplementary Table 7).

Laboratory tests often detect high serum levels of creatine kinase in patients with spinal and bulbar muscular atrophy, a possible clue to early diagnosis (Soraru et al., 2008; Chahin and Sorenson, 2009; Rhodes et al., 2009). Our results of the baseline analysis suggested that the elevation of creatine kinase and the decrease of creatinine levels in serum were the most characteristic blood findings in patients with spinal and bulbar muscular atrophy. Since there are no established blood markers for spinal and bulbar muscular atrophy, it is important to determine if each blood index can be used as a biomarker to evaluate the effects of tested therapies in future clinical trials. In the present study, multiple regression analyses using baseline data raised the possibility that the serum level of creatinine is a reliable biomarker of disease severity. Creatinine is a biosynthetic product of creatine phosphate, which is a key molecule for energy production in muscle. Creatine is converted to creatinine and transported from muscle through the circulation to the kidneys (Viollet et al., 2009). Because the serum creatinine level is associated with the whole muscle mass, it may be a useful marker for monitoring disease progression in spinal and bulbar muscular atrophy. The correlation between the serum levels of creatinine and clinical severity also suggested that the precise measurement of the whole muscle mass is essential to develop new biomarkers. Conversely, the serum level of creatine kinase was not correlated with most of the outcome measures, possibly because it is vulnerable to the patient’s activity before blood sampling. Therefore, careful management of the patient’s activity before sampling appears to be necessary when the serum levels of creatine kinase are used as a biomarker of spinal and bulbar muscular atrophy (Banno et al., 2009).

Preventive or early intervention is construed as a key factor for successful translational research on disease-modifying therapies for neurodegenerative diseases (Holtzman, 2008). With regard to spinal and bulbar muscular atrophy, the results of phase III trials suggest that leuprolrelin might be more effective in patients whose disease duration is <10 years (Katsumo et al., 2010). These observations imply the need to evaluate disease severity at an early stage using sensitive clinical markers to facilitate clinical trials of disease-modifying therapies. In the longitudinal analyses of the present study, it was suggested that the biological or neurological deficit at a preclinical or early stage of the disease might be detectable using objective functional or blood parameters, but not using subjective outcome measures. In support of these findings, the reduction of brain volume and the decline of quantitative motor function were demonstrated in pre-manifest carriers in a prospective analysis of the natural history of Huntington’s disease (Tabrizi et al., 2009). These results might suggest the need to adopt appropriate objective measures for designing clinical trials of early interventions, and to reconsider the conventional definition of the onset of neurodegenerative diseases, including spinal and bulbar muscular atrophy, on the basis of the patients’ perception of subjective symptoms for the development of disease-modifying therapies. The variability of onset age with a similar CAG repeat length may also suggest the limit of clinical definition of disease onset (Supplementary Table 9).

On the basis of the observation that the degree of bulbar involvement is not necessarily similar to that of limb impairment, we analysed the clinical phenotype of spinal and bulbar muscular atrophy using baseline data. The results indicated that upper limb function is closely related to bulbar function, but not to lower limb function and that patients with spinal and bulbar muscular atrophy appear to be diverse in terms of the preferentially affected site. These observations suggest that the severity of neurodegeneration may be associated with neuroanatomical closeness in spinal and bulbar muscular atrophy. In support of this view, the degeneration of neurons is shown to affect the dynamics of cell death in neighbouring cells (Friedlander, 2003). Additionally, disease-specific patterns of the topographical expansion of pathology have been suggested for several neurodegenerative diseases (Goedert et al., 2010).
In summary, the results of the present study demonstrated the slow but steady progression of motor impairment in spinal and bulbar muscular atrophy. Analyses using random coefficient models did not indicate that the disease progression of spinal and bulbar muscular atrophy is substantially affected by the CAG repeat length, the age of onset, or serum levels of testosterone, suggesting that these variables may not be critical factors for the stratification of patients in clinical trials. Biological and neurological deficits were detectable using objective functional or blood parameters, even during the early or preclinical stage of spinal and bulbar muscular atrophy, suggesting that these indices may be used as endpoints in clinical trials of disease-modifying therapies for spinal and bulbar muscular atrophy.

Funding
This work was supported by a Center-of-Excellence (COE) grant, a Grant-in-Aid for Scientific Research on Innovative Areas ‘Foundation of Synapse and Neurocircuit Pathology’ and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan; grants from the Ministry of Health, Labor, and Welfare of Japan; and Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST). There were no other funding sources, and the investigators had sole discretion over study design, collection, analysis and interpretation of data, writing of the report and decision to submit it for publication.

Supplementary material
Supplementary material is available at Brain online.

References

Funding
This work was supported by a Center-of-Excellence (COE) grant, a Grant-in-Aid for Scientific Research on Innovative Areas ‘Foundation of Synapse and Neurocircuit Pathology’ and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan; grants from the Ministry of Health, Labor, and Welfare of Japan; and Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST). There were no other funding sources, and the investigators had sole discretion over study design, collection, analysis and interpretation of data, writing of the report and decision to submit it for publication.

Supplementary material
Supplementary material is available at Brain online.

References

