Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants

Ruth L. O’Gorman,1 Hans U. Bucher,2 Ulrike Held,3 Brigitte M. Koller,2 Petra S. Hüppi,3,4 Cornelia F. Hagmann2 and the Swiss EPO Neuroprotection Trial Group

Despite improved survival, many preterm infants undergo subsequent neurodevelopmental impairment. To date, no neuroprotective therapies have been implemented into clinical practice. Erythropoietin, a haematopoietic cytokine used for treatment of anaemia of prematurity, has been shown to have neuroprotective and neuroregenerative effects on the brain in many experimental studies. The aim of the study was to assess the effect of recombinant human erythropoietin on the microstructural development of the cerebral white matter using tract-based spatial statistics performed at term equivalent age. A randomized, double-blind placebo-controlled, prospective multicentre study applying recombinant human erythropoietin in the first 42 h after preterm birth entitled ‘Does erythropoietin improve outcome in preterm infant’ was conducted in Switzerland (NCT00413946). Preterm infants were given recombinant human erythropoietin (3000IU) or an equivalent volume of placebo (NaCl 0.9%) intravenously before 3 h of age after birth, at 12–18 h and at 36–42 h after birth. High resolution diffusion tensor imaging was obtained at 3 T in 58 preterm infants with mean (standard deviation) gestational age at birth 29.75 (1.44) weeks, and at scanning at 41.1 (2.09) weeks. Imaging was performed at a single centre. Voxel-wise statistical analysis of the fractional anisotropy data was carried out using tract-based spatial statistics to test for differences in fractional anisotropy between infants treated with recombinant human erythropoietin and placebo using a general linear model, covarying for the gestational age at birth and the corrected gestational age at the time of the scan. Preterm infants treated with recombinant human erythropoietin demonstrated increased fractional anisotropy in the genu and splenium of the corpus callosum, the anterior and posterior limbs of the internal capsule, and the corticospinal tract bilaterally. Mean fractional anisotropy was significantly higher in preterm infants treated with recombinant human erythropoietin than in those treated with placebo (P < 0.001). We conclude that early recombinant human erythropoietin administration improves white matter development in preterm infants assessed by diffusion tensor imaging and tract-based spatial statistics.

1 MR Research Centre, Children’s University Hospital of Zurich, Switzerland
2 Department of Neonatology, University Hospital of Zurich, Switzerland
3 Horten Centre, University Hospital of Zurich, Switzerland
4 Division of Development and Growth, Department of Paediatrics, University of Geneva, Switzerland

Correspondence to: Dr. med. Cornelia Hagmann Ph.D,
Department for Neonatology,
University Hospital of Zurich Frauenklinikstrasse,
10 8091 Zurich, Switzerland
E-mail: Cornelia.hagmann@usz.ch

Keywords: neuroprotection; brain development; white matter lesion; oligodendrocyte; tractography
Abbreviations: DTI = diffusion tensor imaging; rhEpo = recombinant human erythropoietin; TBSS = tract-based spatial statistics
Introduction

Despite improved survival of preterm infants, the majority still go on to develop some degree of neurodevelopmental impairment later in life (Saigal and Doyle, 2008; Latal, 2009). These neurodevelopmental impairments are associated with periventricular white matter injury (Woodward et al., 2006), which is the most common brain injury observed in preterm infants. Periventricular white matter disease is also frequently accompanied by neuronal/axonal disease, as part of the newly described encephalopathy of prematurity (Volpe, 2009).

In vivo assessment of this neuronal/axonal disease has become possible with the development of new diffusion tensor imaging (DTI) protocols in preterm infants (Huppi and Inder, 2001; Huppi and Dubois, 2006). DTI is a well-studied MRI technique that allows in vivo assessment of biological tissues at a microstructural level. In preterm infants, DTI studies have revealed lower fractional anisotropy values relative to those in healthy term control infants (Huppi et al., 1998, 2001; Miller et al., 2002; Mukherjee et al., 2002; Counsell et al., 2003, 2006; Partridge et al., 2004; Berman et al., 2005; Anjari et al., 2007; Dudink et al., 2007; Cheong et al., 2009; Skiodl et al., 2010), indicative of altered white matter development.

Tract-based spatial statistics (TBSS) is an automated, observer-independent approach for assessing fractional anisotropy in the major white matter tracts on a voxel-wise basis across groups of subjects (Smith et al., 2006). It has been applied to investigate cerebral microstructure in preterm infants at term equivalent age (Anjari et al., 2007), revealing group differences based on either clinical details such as chronic lung disease (Ball et al., 2010; Alexandrou et al., 2014) or birth weight (Lepomaki et al., 2013) or additional imaging findings such as local white matter abnormalities (Bassi et al., 2011). A recent TBSS study has shown that cognitive and motor outcome correlate with fractional anisotropy in the corpus callosum (van Kooij et al., 2012), suggesting that TBSS of DTI data has the potential to be used as a surrogate biomarker for subsequent neurodevelopmental outcome. In term infants with perinatal asphyxial encephalopathy, TBSS analysis has been used to detect the treatment effects of therapeutic hypothermia in a small group of patients (n = 10 per group) (Porter et al., 2010), indicating that TBSS may also be used to evaluate neuroprotective interventions (Ball et al., 2013).

The high incidence of neurodevelopmental impairment in this population is reflected in the ongoing search for neuroprotective interventions that can prevent injury or enhance repair of the immature brain, with the goal of improving long-term motor and cognitive outcome (Gonzalez and Ferriero, 2009). However, to date no such neuroprotective intervention has been implemented into routine clinical care for preterm infants.

Erythropoietin, a hematopoietic cytokine that was originally identified for its role in erythropoiesis, is widely used for the treatment of anaemia in premature infants (Ohlsson and Aher, 2006; Ghezzi et al., 2010). Erythropoietin has been shown to have neuroprotective and neuroregenerative effects on the brain (Dame et al., 2001; Juul, 2004; van der Kooij et al., 2008), and erythropoietin receptors are present on neuron progenitors, neurons, astrocytes, microglia, endothelial cells and erythrocyte progenitors (Juul and Felderhoff-Mueser, 2007). Erythropoietin has anti-inflammatory, anti-excitotoxic, antioxidant and anti-apoptotic effects on neurons and oligodendrocytes and promotes neurogenesis and angiogenesis, which are essential for injury repair and normal neurodevelopment (Shingo et al., 2001; Juul, 2012).

The safety of recombinant human erythropoietin (rhEpo) in preterm infants has been established by two clinical trials with high dose administration (Fauchere et al., 2008; Juul et al., 2008a, b). Early high-dose rhEpo is well tolerated, causing no increased mortality or side effects (Fauchere et al., 2008, 2012). More recently, erythropoietin administration has also been shown to be well tolerated by term infants with hypoxic ischaemic or post-asphyctic encephalopathy (Wu et al., 2012).

One clinical trial of rhEpo for treatment of anaemia of prematurity reporting on the effect of early rhEpo on neurodevelopmental outcome has been published. The neurodevelopmental outcome of 20 preterm infants treated with early rhEpo was assessed at 18–24 months of age. No adverse or beneficial effect of rhEpo on outcome could be shown; however, the erythropoietin treatment group included more infants with intraventricular haemorrhage than the control group (Newton et al., 1999; Ohls et al., 2004).

A large retrospective trial indicated clear benefits of rhEpo for preterm infants, demonstrating that infants treated with rhEpo scored significantly better in the overall school age as well as in the psychological evaluation (Neubauer et al., 2010). These potential neuroprotective effects are thought to arise from a putative reduction in brain injury, but to date the effects of rhEPO on cerebral microstructure in preterm infants have not been established.

The aim of the present study was to assess the effect of early administration of rhEpo on white matter development in preterm infants using TBSS.

Materials and methods

Ethical approval was granted by the local ethical committee (KEK StV-36/04), and the study was approved by the Swiss drug surveillance unit (Swissmedic, 2005DR3179). The trial is registered at ClinicalTrials.gov (number NCT00413946). Full details of the trial protocol can be provided on request. The members of The Swiss EPO Neuroprotection Trial Group are listed in Appendix 1.
Patient selection

Preterm infants in this study represent a subgroup of infants enrolled in the randomized, double-blind placebo-controlled, prospective multicentre study entitled ‘Does erythropoetin improve outcome in preterm infants’ (NCT00413946). All infants born between 26 and 31 gestational weeks, from whose parents informed consent could be obtained in the first 3h after birth, were included unless they met exclusion criteria (presence of a genetically defined syndrome, severe congenital malformation adversely affecting life expectancy, and severe congenital malformation adversely affecting neurodevelopment or prior palliative care). A total of 495 preterm infants were recruited into the study between 2005 and 2013, of whom 58 infants were excluded for an exclusion criterion and/or death before term equivalent age (Fig. 1). The primary outcome measure of this study is neurodevelopmental outcome assessed at 2 and 5 years of age. A secondary outcome measure is brain injury and development assessed by conventional MRI at term equivalent age, measured in a subgroup of 165 infants (Leuchter et al., 2014). For this study, only infants with DTI performed in Zurich (n = 140) were included. Clinical co-morbidities such as sepsis (blood culture proven), necrotizing enterocolitis, patent ductus arteriosus, and chronic lung disease (defined as oxygen requirement at corrected 36 weeks of gestation) were noted.

Randomization, neuroprotective intervention and blinding

The treatment protocol was based on the previously published safety trial (Fauchere et al., 2008). Study medication was randomly assigned to each patient number in a 1:1 allocation using a computer-based random-number generator. Erythropoetin or an equivalent volume of normal saline (NaCl 0.9%) placebo was administered intravenously before 3h of age after birth, at 12–18h and at 36–42h after birth. A single dose consists of 25µg (3000 IU) human erythropoietin per kilogram body weight dissolved in 1ml sterile water. Hospital staff, parents, the outcome assessors and data analysts were kept blind to the allocation.

MRI studies

In Zurich, cerebral MRI was performed with a 3.0 T GE HDxt MRI scanner (GE Medical Systems), using an 8-channel receive-only head coil. All infants were scanned under natural sleep using a vacuum mattress. Ear plugs (attenuation: 24 dB; Earsoft; Aearo) and Minimuffs (attenuation: 7 dB; Natus) were applied for noise protection. Oxygen saturation was monitored during scanning, and a neonatologist and/or neonatal nurse were present during the MRI investigation.

The structural MRI protocol included T1-weighted images acquired with a 3D fast spoiled gradient echo sequence (resolution 0.7×0.7×1.4mm3, repetition time = 5.7ms, echo time = 2.6ms, inversion time = 750ms, flip angle = 12°), and T2-weighted images acquired with a fast recovery fast spin echo sequence (resolution 0.7×0.7×1.5mm3, repetition time = 6600ms, echo time = 126ms). The structural magnetic resonance images were assessed for brain injury based on a clinical scoring system which was adapted from Woodward and colleagues (Woodward et al., 2006; Leuchter et al., 2014). The assessor was not aware of the group assignment of the infants.

DTI was performed in a single centre, using a pulsed gradient spin echo planar imaging sequence with echo time = 77ms, repetition time = 9s, field of view = 18 cm, matrix = 128×128, slice thickness = 3mm. The diffusion encoding scheme included 21 non-collinear gradient encoding directions with b = 1000 and four interleaved b = 0 images.

DTI data demonstrating motion artefacts (n = 78) or from infants with cystic lesions (n = 4) apparent on structural MRI were excluded from further analysis, resulting in a final group size of 58 infants, of whom 24 were treated with rhEpo and 34 were treated with placebo.

Data analysis

Fractional anisotropy maps were calculated with dtifit and corrected for eddy current distortions with eddy_correct, part of the FSL software library (http://www.fmrib.ox.ac.uk/fsl/) (Smith et al., 2004). The skull was removed from the b0 images using the Brain Extraction Tool (BET) (Smith, 2002) and the corresponding brain mask was applied to the fractional anisotropy maps. The fractional anisotropy maps from all infants were then aligned to the most representative fractional anisotropy image from the cohort, using an automated method implemented in the TBSS pipeline, which applies a non-linear registration of each fractional anisotropy map to all other fractional anisotropy images and then selects the fractional anisotropy image with the lowest mean warp displacement score. An age-appropriate diffusion MRI template was then generated from the average of the normalized fractional anisotropy maps, aligned to the target image corresponding to the most representative subject. The non-linear registrations were performed using FNIRT (Andersson et al., 2007a, b), which uses a b-spline representation of the registration warp field (Rueckert et al., 1999).

Voxel-wise statistical analysis of the fractional anisotropy data was carried out using TBSS (Smith et al., 2006). After alignment of the fractional anisotropy maps to the neonatal template, a mean image was created and thinned to create a mean fractional anisotropy skeleton, which represents the centres of all tracts common to the group. This skeleton was thresholded at a fractional anisotropy level of >0.15, and voxel-wise cross-subject statistics were used with Randomise (v2.1) to test for differences in fractional anisotropy between infants treated with rhEpo and placebo using a general linear model, including the gestational age at birth and the corrected gestational age at the time of the scan as covariates. A statistical threshold of P < 0.05 was applied after family-wise error (FWE) correction for multiple comparisons following threshold-free cluster enhancement (Smith and Nichols, 2009).

Student’s t-test or the Mann-Whitney test as appropriate for continuous parameters, and chi-square test or Fisher exact test as appropriate for categorical parameters were used to assess differences between clinical and demographic parameters in the erythropoetin and the placebo group. The Pearson coefficient was used to quantify the linear correlation between continuous variables. A multiple linear regression model was fitted to fractional anisotropy, with erythropoetin/placebo as the determinant of interest and adjusted for gender and corrected gestational age. All analyses were performed with the statistical software R for windows (R Core Team, 2013).
Figure 1 Flow chart of included infants. *Information about screening prior to randomization is not available; **Following randomization, which occurred before 3 h of life, exclusion criteria or the non-compliance with inclusion criteria (due to errors in the reporting of gestational age) were discovered in some infants, and thus they were excluded after randomization. Inclusion criteria: gestational age at birth between 26 and 31 6/7 gestational weeks. Exclusion criteria: presence of a genetically defined syndrome, severe congenital malformation adversely affecting life expectancy, or known to affect neurodevelopment.
on fractional anisotropy of 0.02 (P < 0.001, Table 3). The amount of variability in fractional anisotropy explained by the model was 70%. No significant differences were found in radial or axial diffusivity between the two groups.

Gender effect

Gender effects were analysed using a multiple linear regression model with fractional anisotropy as dependent variable, gender and intervention (rhEpo or placebo) as independent factors. No significant differences were found in mean fractional anisotropy between male and female infants (P = 0.46). Furthermore no interaction between intervention and gender could be shown (P = 0.11).

Clinical co-morbidities

Chronic lung disease (n = 9) correlated with mean fractional anisotropy; however, after adjusting for gestational age at birth this correlation became insignificant. Sepsis (n = 8) and necrotizing enterocolitis (n = 1) showed no significant correlation with mean fractional anisotropy.

Discussion

This is the first clinical imaging study showing that early erythropoietin administration can improve white matter development in preterm infants. These results are consistent with experimental imaging data from an immature animal model showing higher fractional anisotropy values in the corpus callosum in erythropoietin-treated animals compared to those treated with placebo (Chatagner et al., 2010). The results are also consistent with the conventional MRI findings showing a reduced risk of white matter and grey matter injury, white matter signal abnormalities, and periventricular white matter volume loss (Leuchter et al., 2014).

To date, many experimental studies investigating erythropoietin as a neuroprotective strategy in adult and neonatal models of brain injury have been published, showing significant promising neuroprotective effects (van der Kooij et al., 2008). One possible mechanism by which erythropoietin may protect against brain injury is by protecting the vulnerable pre-oligodendrocytes. Accumulating evidence from
both human (Haynes et al., 2003; Back et al., 2005; Robinson et al., 2006) and experimental models (Back et al., 2002, 2005; Volpe, 2008) suggests that pre-oligodendrocytes are the main cellular target for the periventricular white matter injury common to preterm infants. Given the putative link between periventricular white matter injury and subsequent neurodevelopmental impairment, the pre-oligodendrocytes represent a promising target for neuroprotective therapies.

In a rat periventricular leukomalacia model, erythropoietin has been shown to protect late oligodendrocyte progenitors from hypoxic-ischaemic (HI) injury (Mizuno et al., 2008). Erythropoietin also protects oligodendrocytes from interferon-gamma and lipopolysaccharide toxicity (Genc et al., 2006), improves white matter development in vivo, and promotes oligodendrocyte maturation and differentiation in culture (Sugawa et al., 2002). Treatment with erythropoietin also reduced both the incidence and severity of brain injury in a neonatal mouse model of moderate to severe oxidative brain injury (Juul et al., 2008a, b). Administration of erythropoietin upregulates erythropoietin receptors and reduces N-methyl D-aspartate receptor-mediated excitotoxic injury (Keller et al., 2006) and promotes oligodendrogenesis, leading to attenuated white matter injury with increased neurogenesis after hypoxic-ischaemic injury (Iwai et al., 2010).

Recently, in the neonatal stroke model it was demonstrated that multiple erythropoietin treatments resulted in a shift in subventricular neural stem cells, favouring the production of neurons and oligodendrocytes in injured tissue. Less astrogliosis was observed at both early and late time points, suggesting increased progenitor proliferation, decreased precursor cell death or a change in cell fate choice (Gonzalez et al., 2013).

To assess the effect of rhEpo on white matter development we investigated the fractional anisotropy from diffusion tensor MRI using TBSS. Fractional anisotropy is a scalar value independent of the local fibre orientation, thereby providing a relatively objective and straightforward measure for comparison across subject groups (Smith et al., 2006). In this study, fractional anisotropy was calculated from an estimate of the diffusion tensor at each voxel, and compared between erythropoietin and placebo groups using an automated TBSS analysis, as TBSS provides an objective and reproducible voxel-wise analysis of the global white matter integrity. Using this approach, we were able to show that preterm infants treated with

<table>
<thead>
<tr>
<th>Table 2 Demographic and clinical parameters of the infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
</tr>
<tr>
<td>Z-score of birth weight (SD)</td>
</tr>
<tr>
<td>Gestational age at MRI (weeks)</td>
</tr>
<tr>
<td>Gender (= female)</td>
</tr>
<tr>
<td>Retinopathy of prematurity</td>
</tr>
<tr>
<td>Sepsis</td>
</tr>
<tr>
<td>NEC</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
</tr>
<tr>
<td>Duration of mechanical ventilation (days)</td>
</tr>
<tr>
<td>Bronchopulmonary disease</td>
</tr>
<tr>
<td>Postnatal steroids</td>
</tr>
</tbody>
</table>

Differences of clinical characteristics between groups were evaluated with the chi-square test or the Fisher exact test as appropriate for the categorical variables, and with Student’s t-test or Mann-Whitney test as appropriate for the continuous variables. SD = standard deviation; IQR = interquartile range (25–75th percentiles); NEC = necrotizing enterocolitis.

*Chi-square test or Fisher exact test as appropriate.
*Student test.
*Mann-Whitney test.
*Sepsis proven by positive blood cultures.
*Oxygen requirement at corrected age of 36 weeks.

Figure 2 Scatterplot showing the strong positive correlation between fractional anisotropy and corrected gestational age at imaging.
erythropoietin have higher fractional anisotropy in most major white matter tracts compared to those preterm infants treated with placebo. As fractional anisotropy is largely dependent on axonal thickness, including pre-myelination oligodendrocyte wrapping and myelination or axonal attenuation (Sakuma et al., 1991), our results suggest that infants treated with rhEpo have more coherently bundled, more mature fibres along the axis of greatest diffusion, likely reflecting the protective effects of rhEpo on reducing white matter injury and on the promotion of proliferation, maturation and differentiation of pre-oligodendrocytes. These results confirm the conventional MRI findings, with rhEpo treated infants having less white and grey matter injury, fewer white matter signal abnormalities and periventricular white matter loss [reported elsewhere by Leuchter et al. (2014) on the entire multicentre cohort].

Table 3 Results of the linear regression model for fractional anisotropy

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.132</td>
<td>0.037</td>
<td>0.001</td>
</tr>
<tr>
<td>Epo (versus placebo)</td>
<td>0.019</td>
<td>0.004</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender Male</td>
<td>-0.001</td>
<td>0.004</td>
<td>0.793</td>
</tr>
<tr>
<td>Corrected gestational age</td>
<td>0.009</td>
<td>0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Cumulative erythropoietin

Cumulative erythropoietin doses have been shown to provide superior neuroprotection when compared to single dose administration following brain injury in a rat model (Kellert et al., 2007; Gonzalez et al., 2009). This improved neuroprotection is likely to arise from multiple effects of erythropoietin during the evolving injury response. Specifically, erythropoietin decreases the early inflammatory response, decreases both early and late neuronal apoptosis...
(Juul et al., 2008a, b), and stimulates late repair processes such as neurogenesis, angiogenesis and migration of regenerating neurons (Tsai et al., 2006). As the infants in this study were given rhEpo within 2 days of birth and MRI was performed after an interval of several weeks, our data suggest that three early rhEpo doses also improve neuro-protection for preterm neonates, providing a similar long-term improvement to that seen in the neonatal stroke model (Gonzalez et al., 2013). The neuroprotective effect of erythropoietin may be further enhanced by giving rhEpo for a longer period than just within the first 42 h.

Gender effect

Male preterm infants are known to be at higher risk for abnormal neurological outcome than female preterm infants. A recent study has shown that male infants have higher rates for disability and cognitive delay even after adjustment for gestational age at birth and birth weight (Peacock et al., 2012). This observation is in agreement with data from published studies showing constitutional differences between genders, which are not explained by perinatal, neonatal or postnatal factors (Brothwood et al., 1986; Stevenson et al., 2000; Hintz et al., 2006). Therefore, we performed a linear regression to evaluate the interaction between erythropoietin and gender with respect to the mean fractional anisotropy. There was no significant gender effect on mean fractional anisotropy in the measured white matter tracts ($P = 0.46$), and no significant interaction between gender and intervention (rhEpo versus placebo) ($P = 0.23$), indicating that in our sample, gender does not significantly influence the effects of erythropoietin treatment on mean fractional anisotropy. However, the lack of a statistically significant gender effect may also be due to the small numbers in each subgroup (8 and 14 female infants treated with rhEpo and placebo, respectively, 16 and 20 male infants treated with rhEpo and placebo, respectively).

A recent study showed that gestational age in itself was not a strong predictor for adverse brain development as measured by DTI, and that co-morbidities seem to play a larger role in brain development than the degree of prematurity (Bonifacio et al., 2010). In our cohort there was no correlation between mean fractional anisotropy and clinical co-morbidities such as sepsis, necrotizing enterocolitis and chronic lung disease, but this might be due to the small number of infants in our cohort suffering from chronic lung disease (15.5% versus 34.6%; Bonifacio et al., 2010), necrotizing enterocolitis or sepsis (Table 1).

Limitations

One limitation of this study is that the TBSS analysis could only be performed in a subgroup of infants. As the infants were scanned under natural sleep, some DTI studies were incomplete or corrupted by motion artefacts, which made the data unusable. However, we believe that this subgroup is representative of the whole study group, as clinical co-morbidities did not differ between the TBSS and the main cohort. Another limitation is that the TBSS cohort was significantly older than the infants for whom no imaging was performed. However, as the results did not alter after applying a family-wise error (FWE) correction for multiple comparisons following threshold-free cluster enhancement with gestational age at birth as covariate, it seems unlikely that the results are driven by differences in gestational age. A strength of the study is that the magnetic resonance scans of the TBSS cohort were acquired in a single centre; hence, additional variance from between-scanner effects was eliminated.

At present, the neurodevelopmental outcome of this cohort is insufficient to be able to determine the precise relationship between mean fractional anisotropy and motor, cognitive and language outcome. However, as many studies show good correlation between fractional anisotropy and neurodevelopmental outcome (Arzoumanian et al., 2003; van Kooij et al., 2012) in preterm infants, we speculate that preterm infants treated with rhEpo will show improved outcome.

The study used a very short dosing regimen (up to 42 h post-birth) in accordance with the experimental data available at the time of the study design, and therefore did not take into consideration recent experimental data on extended chronic erythropoietin treatment (van de Looij et al., 2014).

Conclusion

Early rhEpo administration improves white matter development in preterm infants assessed by DTI and TBSS. This promising result is consistent with similar results in an immature animal model of neuroprotection through erythropoietin treatment. Neurodevelopmental follow-up at 2 and 5 years are ongoing to further define the neuroprotective effect of erythropoietin.

Funding

None of the authors had any conflicts of interests including any financial interests, activities, relationships, and affiliations. The study was supported by a grant received from the Swiss National Foundation (SNF 320080-108176). C.H. was supported by a personal grant ‘For Women in Science’ by the Swiss Academics for Arts and Science, Unesco and L’Oréal. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All authors had full access to all the data in the study and responsibility for the decision to submit for publication. ClinicalTrials.gov Identifier: NCT00413946.

References

Alexandrou G, Martensson G, Skiodl B, Blennow M, Aden U, Vollmer B. White matter microstructure is influenced by extremely

TBSS to assess the neuroprotective effect of erythropoietin in preterm infants

BRAIN 2015: 138: 388–397 | 397

Ohlsson A, Ahler SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2006; CD004863.

