Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain

Nicole Maphis,1 Guixiang Xu,2 Olga N. Kokiko-Cochran,2 Shanya Jiang,1 Astrid Cardona,3 Richard M. Ransohoff,4 Bruce T. Lamb2 and Kiran Bhaskar1

Pathological aggregation of tau is a hallmark of Alzheimer’s disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1−/− mice. Second, CD45+ microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1−/− mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret®) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain.

1 Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque NM 87131, USA
2 Department of Neurosciences, NC30, 9500 Euclid Avenue, Cleveland Clinic, Cleveland OH 44195, USA
3 Department of Biology, University of Texas San Antonio, West Campus/Tobin lab MBT 1.216, San Antonio TX 78249, USA
4 Biogen Idec, 225 Binney Street, Cambridge, MA 02142, USA

Correspondence to: Kiran Bhaskar, Department of Molecular Genetics and Microbiology MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque NM 87131, USA
E-mail: KBhaskar@salud.unm.edu; KBhaskar@unm.edu

Keywords: Alzheimer’s disease; tauopathies; tau protein; microglia; neuroinflammation
Abbreviations: IL-1Ra = interleukin-1 receptor antagonist; p38 MAPK = p38 mitogen activated protein kinase

Introduction

The hyperphosphorylation and aggregation of microtubule-associated protein tau (MAPT) forms the initial aetiologial insult prior to neurodegeneration in tauopathies, which include progressive supranuclear palsy, corticobasal degeneration, Alzheimer's disease and many others (Lee et al., 2001). Recent studies have suggested that misfolded tau can affect neuronal integrity via several mechanisms including microtubule instability, defective axonal transport, synaptic deficits, exacerbating amyloid-β-mediated pathologies as well as trans-synaptic spreading within anatomically connected brain regions (Morris et al., 2011; Bhaskar, 2012; Liu et al., 2012). However, the mechanisms leading...
to elevated tau hyperphosphorylation and aggregation still remain unclear. Neuroinflammation, which positively correlates with tau pathology, has been implicated in driving tau hyperphosphorylation, aggregation and neurodegeneration in various human (Gebicke-Haerter, 2001; Ishizawa and Dickson, 2001; Gerhard et al., 2006; Bellucci et al., 2011) and rodent models of tauopathies (Bellucci et al., 2004; Ikeda et al., 2005; Yoshiyama et al., 2007; Sasaki et al., 2008; Zilka et al., 2009). First, activated microglia are found to spatially co-exist with tau-burdened neurons in the brains of patients with progressive supranuclear palsy and corticobasal degeneration (Ishizawa and Dickson, 2001; Gerhard et al., 2004, 2006). Second, microglial activation has been demonstrated to precede tau pathology in the P301S mouse model of tauopathy (Yoshiyama et al., 2007). Notably, administration of an immunosuppressant drug (FK506) attenuated microglial activation and extended the life span of P301S mice (Yoshiyama et al., 2007). Third, induction of systemic inflammation via administration of the toll-like receptor 4 (TLR4) ligand, lipopolysaccharide, significantly induced tau hyperphosphorylation in a triple transgenic mouse model of Alzheimer’s disease (Kitazawa et al., 2005). Subsequent studies from this group have suggested that the blocking or sustained activation of interleukin 1 (IL1) signalling leads to attenuation or exacerbation of tau pathology, respectively (Kitazawa et al., 2011). While these studies suggested that inflammatory alterations might induce tau pathology and neurodegeneration, there is little mechanistic evidence for the role of microglia in this process.

We have previously provided compelling evidence that chemically or genetically enhancing microglial activation significantly accelerated tau pathology and behavioural abnormalities in the hTau mouse model of tauopathy (Bhaskar et al., 2010). Deficiency of microglia-specific fractalkine receptor (CX3CR1) in hTau mice resulted in elevated microglial activation, accelerated tau pathology as well as impaired working memory (Bhaskar et al., 2010). Additional mechanistic studies suggested that this effect is mediated via activation of the neuronal IL-1 receptor (IL-1R)-p38 mitogen activated protein kinase (p38 MAPK) signalling pathway. Such effects of Cx3cr1 deficiency on tau pathology have also been observed in other (hAPP) models of neurodegeneration (Cho et al., 2011). These studies suggest that microglia-specific neuroinflammation accelerates tau pathology and leads to neurodegeneration. However, it is still unclear whether reactive microglia themselves are sufficient to drive neuronal tau phosphorylation/aggregation and eventually lead to the spread of tau pathology.

In the current study, we first evaluated the onset and progression of tau pathology as a function of CX3CR1 deficiency in hTau mice at different disease stages. Next, we assessed the spatio-temporal correlation between the spread of tau hyperphosphorylation and CD45* microglia in anatomically connected regions of the hippocampus of hTauC3cr1−/− mice. We then examined spatial memory in hTauC3cr1−/− mice to determine if microglial activation and tau pathology correlates with functional deficits. Finally, we performed adoptive transfer of purified microglia derived from hTauC3cr1−/− mice to determine whether reactive microglia are sufficient and directly induce tau pathology within the brains of naive non-transgenic recipient mice.

Materials and methods

Mice

The hTau (Andorfer et al., 2003) (expressing human MAPT and deficient for endogenous mouse Mapt) and Cx3cr1−/− (Jung et al., 2000) (targeted deletion of Cx3cr1 via insertion of green fluorescence protein (GFP) gene into the Cx3cr1 locus) mice were crossed and maintained in the C57BL/6J genetic background and were obtained from the Jackson Laboratory and Dan Littman (HHMI, New York University School of Medicine). The hTauC3cr1−/− mice were generated as previously described (Bhaskar et al., 2010). All experimental protocols involving animals were performed in accordance with US National Institutes of Health guidelines on animal care and were approved by the University of New Mexico and Cleveland Clinic Institutional Animal Care and Use Committees.

Antibodies and reagents

MAPT antibodies: mouse monoclonal antibodies AT8, AT180 (Pierce) and Tau5 (Innogen); PHF-1 (provided by Peter Davies, Albert Einstein College of Medicine). Inflammatory markers: rabbit polyclonal antibody against ionized calcium binding adaptor molecule 1 (Iba1) (Wako), rat monoclonal antibodies against CD68 and CD45 (Serotec). Other antibodies: mouse monoclonal antibody against GADPH; mouse monoclonal NeuN (Millipore), total p38 MAPK and activated p38 MAPK (phospho-T180/Y182) (Cell Signaling for western blotting; Invitrogen for Immunohistochemistry); mouse monoclonal antibody against SNAP25 (a kind gift from the late Dr Michael Wilson, University of New Mexico). Other reagents: interleukin-1 receptor antagonist (IL-1Ra) (Kineret®, Amgen).

Tissue preparation and measurement of hippocampal wet weight

Prior to biochemical and neuropathological analysis, the mice were anaesthetized and transcardially perfused with phosphate buffer and the brains were removed. The left hemisphere was immerse fixed in 4% paraformaldehyde and the hippocampi from the right hemisphere were micro-dissected and the wet weights were recorded before freezing in liquid nitrogen for subsequent biochemical analysis.

SDS-PAGE and western immunoblotting

Proteins were homogenized in the Tissue Protein Extraction Reagent (TPER®, Thermo Scientific) and soluble hippocampal lysates were resolved via SDS-PAGE and immunoblotted as
previously described (Bhaskar et al., 2010). The dilutions of primary antibodies used were as follows: AT8 1:5000; AT180 1:2500; PHF-1 1:5000; Tau5 1:5000; GAPDH 1:10000; phospho-p38 MAPK and total p38 MAPK 1:1000; SNAP25 1:2500. See the online Supplementary material for additional details on SDS-PAGE/western blotting.

Immunohistochemistry, quantitative morphometry and Gallyas silver staining

Free-floating random sections (30 μm thick) derived from multiple mouse brains per group were utilized for all of the immunohistochemical and immunofluorescence analysis. The antibody dilutions were: AT8, AT180, NeuN, p-p38 MAPK (T180/Y182) and CD45 at 1:250; Iba1 at 1:500 incubated overnight at 4°C. Secondary antibodies (1:250) conjugated to either biotin (for immunohistochemistry from Vector Laboratories) or Alexa Fluor® dyes (for immunofluorescence from Life Technologies) were used. Sections were then either mounted in DAPI Hardset Reagent (for immunofluorescence) or incubated with Avidin/Biotinylated enzyme Complex (ABC reagent, Vector Laboratories; for immunohistochemistry) reagent for 1 h at room temperature. The immunoreactive signals were revealed by developing sections in SigmaFast® HRP substrate for 1 h at room temperature. The immunofluorescence images were acquired using Leica DMW upright fluorescence/bright field microscope. Confocal images were acquired and analysed with Leica TCS-SP and SP-AOBS upright confocal microscopes with Leica confocal software or a Zeiss inverted Meta confocal machine and composed the images via Zeiss Zen software.

For the quantitative morphometry, NIH ImageJ was used to quantify the percentage of CD45 and p-p38 MAPK immunoreactive areas. The number of AT180+/NeuN+ neurons, AT8 immunoreactivity and EGFP+ microglia in the adoptive transfer experiments were manually scored in four random sections/mouse. See the Supplementary material for additional details on immunohistochemical analysis and quantitative morphometry. The Gallyas silver staining on 30 μm free-floating sections was performed as described (Braak and Braak, 1991; Bhaskar et al., 2010).

Morris Water Maze

The mice were tested in the visible (for 3 days) and hidden (for 4 days) platform task of the Morris Water Maze (Morris, 1984). See Supplementary material for a detailed description.

Isolation and adoptive transfer of microglial cells

Mononuclear cells were isolated from a pool of two brains per group as previously described (Bergmann et al., 1999) (Fig. 5C). Briefly, the mice were anaesthetized, transcardially perfused with phosphate buffer, brains removed and dissociated in 0.25% trypsin/RPMI media. Mononuclear cells were separated via a 30%/70% discontinuous isotonic Percoll® gradient followed by magnetic assisted cell sorting (Dynabead FlowComp™ Flexi kit, Cat # 110-611; Life Technologies; DSB-X™ Biotin Protein Labeling Kit, Life Technologies; Cat # D-20655) using the CD11b antibody (Millipore) and elution method as per the manufacturer’s protocol. Purified microglia (0.5 × 10⁵ cells/ml, in 50 μl) from donor mice with described genotypes or vehicle (RPMI media) were injected with or without IL-1Ra (Kineret®, Amgen; 3 ng) into the brains of 2-month-old C37BL/6J non-transgenic recipient mice with the following stereotaxic co-ordinates: from Bregma: −1.94 mm posterior; 1.5 mm lateral; 1.5 mm dorsoventral, as previously described by Cardona et al. (2006). After 72 h, the recipient mice were perfused with 4% paraformaldehyde and the brains were processed for immunofluorescence analysis for AT8 and GFP+ microglia and quantitative morphometry as described in the Supplementary material.

Gene expression analysis

RNA from the hemi-brain was extracted using TRI Reagent® Solution as described by the manufacturer (Invitrogen). Total RNA (50 ng/μl) was converted to cDNA using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems Inc., ABI) and amplified using specific TaqMan® probes for CD45 (now known as Ptprc and Il1B) and Gadph which was used as a housekeeping gene for normalization, on the StepOnePlus® Real-Time PCR System (Life Technologies).

Sarkosyl insoluble assay

The Sarkosyl-insoluble fraction of MAPT was isolated from hippocampal tissues as described previously (Greenberg and Davies, 1990) with minor modifications, which have been previously described (Bhaskar et al., 2010).

Primary microglial culture

Microglial cultures were prepared from post-natal Day 3 (P3) pups from Cx3cr1−/− or Cx3cr1+/− genotypes as previously described (Saura et al., 2003; Bhaskar et al., 2010). See Supplementary material for a description of the primary microglial culture.

IL1B assay in HEK-Blue™ reporter cells

HEK-Blue™ IL1B cells (InvivoGen) specifically respond to IL1B. Once IL1B binds to its receptor IL-1R on the surface of HEK-Blue™ IL1B cells, this triggers a signalling cascade leading to the activation NF-κB and the subsequent production of secreted embryonic alkaline phosphatase (SEAP). Induced SEAP levels in the supernatant of HEK-Blue™ IL1B cells can be assessed using QUANTI-Blue™, a SEAP detection medium. QUANTI-Blue™ turns blue in the presence of SEAP (Fig. 4C), which can be easily quantified using a spectrophotometer. The intensity of the colour reaction is proportional to the amount of IL1B in the supernatant from hippocampal lysates measured. IL1B levels in the samples
can be determined by making a standard curve using standards (recombinant murine IL1B).

Hippocampal lysates were prepared by homogenizing in tissue-protein extraction reagent (T-PER, 78510; Pierce) with protease (p8340; Sigma-Aldrich) and phosphatase (p5726; Sigma-Aldrich) inhibitor cocktails. Lysates were spun down and the supernatant was saved. Supernatant (50 µl) and different concentrations of standards (recombinant murine IL1B) were then transferred onto 150 µl (~50,000 cells) of HEK-Blue™ IL1B reporter cells (InvivoGen), which respond to mouse IL1B by expressing a reporter gene (SEAP). HEK-Blue™ IL1B reporter cells were incubated overnight and the supernatant of HEK-Blue™ IL1B reporter cells was then incubated with QUANTI-Blue™ for 1 h at 37°C. Induced SEAP levels were measured by spectrophotometry at 620 nm. The intensity of the colour reaction is proportional to the amount of IL1B in the supernatant from hippocampal lysates. IL1B levels in the supernatant were determined by the standard curve.

Results

Deficiency of Cx3cr1 in hTau mice lead to epitope-specific tau hyperphosphorylation and aggregation at 2 months of age

We performed an age-based study to determine how early tau pathology begins and how it progresses at different stages of disease in hTauCx3cr1−/− mice. Two groups of mice were analysed: (i) hTau mice (Andorfer et al., 2003), which are deficient for endogenous mouse tau and express all six isoforms of non-mutant human tau; and (ii) hTau mice lacking the microglial receptor, Cx3CR1 (hTauCx3cr1−/− mice). Separate groups of mice were aged to 2, 6, 12 or 24 months and the hippocampi were processed for western blot and immunohistochemical analysis to determine tau phosphorylation and activation of p38 MAPK.

Tau phosphorylation on the AT8 (pS202), AT180 (pT231) and PHF-1 (pS396/S404) sites were elevated in hTauCx3cr1−/− mice as early as 2 months of age compared to hTau mice. Consistent with our prior observations (Bhaskar et al., 2010), 6-month-old hTauCx3cr1−/− mice showed elevated levels of tau phosphorylated at AT8, AT180 and PHF-1 sites (Fig. 1A) compared to other groups. Upon quantification, we observed AT8, AT180- and PHF-1-site tau phosphorylation was significantly higher in hTauCx3cr1−/− mice compared to hTau at 2- and 6-months of age (Fig. 1B-D). By 12 months of age, the hTau mice showed AT8 and PHF-1 site tau phosphorylation that were indistinguishable from that of hTauCx3cr1−/− mice (Fig. 1A-D). Interestingly, there was an overall reduction in AT8, AT180 and PHF-1 site phosphorylation at older age groups of both genotypes compared to younger groups.

In a previous study, we identified significantly increased activation of p38 MAPK in hTauCx3cr1−/− mice at 6 months of age (Bhaskar et al., 2010). A biphasic response was observed for active p38 MAPK (phosphorylated at T180/Y182) in the hippocampus of hTau and hTauCx3cr1−/− mice (Fig. 1E). Notably, active p38 MAPK was already present in 2-month-old hTau and hTauCx3cr1−/− mice. The level of active p38 MAPK was significantly reduced to undetectable levels in hTau mice at 6 months of age, but remained elevated in hTauCx3cr1−/− mice (Fig. 1A and E). At later stages (12- and 24-months of age), a modest but stable increase in the level of phospho-p38 MAPK was observed in hTau mice (Fig. 1A and E). Unlike p38 MAPK, we did not detect any significant alterations in the levels of activated ERK/JNK kinases across ages or between the two groups.

Consistent with the biochemical studies, immunohistochemical analysis revealed the presence of AT8+ neurons in the dentate gyrus of hTau mice at 6 months of age and continued to exist until 24 months of age, but with a small dip at 12 months (Fig. 2A and C). A significant increase in the AT8+ cells in the hilus of the dentate gyrus in hTauCx3cr1−/− mice was apparent as early as 2 months of age (Fig. 2A and C) and stayed elevated through to 24 months of age (Fig. 2A). A similar pattern of immunoreactivity was also observed for AT180 (Fig. 2B) with elevation of AT180 positive neurons in the hilus of dentate gyrus in 2-month-old hTauCx3cr1−/− mice compared to hTau mice (Fig. 2B and 2C; lower magnification images are in Supplementary Fig. 2). Notably, the CA3 region of the hippocampus also displayed a similar increase in AT8 and AT180 immunoreactive neurons in hTauCx3cr1−/− mice as early 2 months of age (Supplementary Fig. 1A and B). Overall, we observed a consistent immunoreactive pattern between biochemical (western blot) and immunohistochemical analysis for AT8 and AT180. For example, there was a small drop in the overall AT8/AT180 immuno-reactive area at older ages compared to younger groups (Fig. 2C). However, correlating the tau immunoreactivity in different subregions of the hippocampus (dentate gyrus and CA3) with those observed in the entire hippocampus via western blot analysis suggest subregion-specific variability in tau phosphorylation in hTau and hTauCx3cr1−/− mice with increasing age.

To determine whether 2-month-old hTauCx3cr1−/− mice display any signs of pathological aggregation of tau, we performed Gallyas silver staining—a standard method for the detection of aggregated tau, pre- and mature tangles (Braak and Braak, 1991). In comparison to our previous study where we observed silver positive mature tangles in 6-month-old hTauCx3cr1−/− mice (Bhaskar et al., 2010), a majority of the neurons in the CA1 region (Fig. 2D) displayed granules of silver aggregates within their cell bodies in 2-month-old hTauCx3cr1−/−, but not in age-matched hTau mice (Fig. 2D). No silver positive granulations were observed in 2-month-old non-transgenic and Cx3cr1−/− mice (data not shown). To confirm the pre-tangle
Figure 1 CX3CR1 deficiency accelerates tau hyperphosphorylation and p38 MAPK activation in hTau mice at early stages of development. (A) Western blot analysis of hippocampal lysates shows elevated tau phosphorylation on AT8, AT180 and PHF-1 sites and activation of p38 MAPK (pT180/pY182) in hTau Cx3cr1−/− mice at 2 months of age. No significant alterations in total tau (Tau5 antibody) or total (t) p38 MAPK levels. GAPDH was the loading control. Lysates from tau knockout mice were included in the Mapt−/− lane and show no expression of tau. (B–E) Quantification of western blots for AT8, AT180, PHF-1 and phospho (p)-p38 MAPK reveal a statistically significant [n = 5 per group for 2, 12 and 24-month-old groups; n = 6 for 6-month-old group; mean ± SEM integrated density value ratio for respective epitopes (*P < 0.05 and **P < 0.01; two-way ANOVA Bonferroni's multiple comparisons test)] increase in AT8 (B), AT180 (C), PHF-1 (D) and p-p38 MAPK (E) at 2-, 6- and/or 24-months of age in hTauCx3cr1−/− mice compared to hTau mice. For p-p38 MAPK, both hTau and hTauCx3cr1−/− mice show a biphasic response (overall increase at 2-, 12- and 24-months, reduction at 6 months).
Figure 2: Early onset and progression of tau pathology in the hippocampus of hTau_Cx3Crt1^−/− mice. (A and B) Immunohistochemical analysis (using Sigma-Fast DAB with CoCl2-metal enhancement therefore appears dark purple) shows presence of numerous AT8+ and AT180+ neurons in the dentate gyrus of 2- and 6-month-old hTau_Cx3Crt1^−/− mice compared to age-matched hTau mice. By 6 months of age, hTau mice also show both AT8+ and AT180+ neurons. Scale bar = 50 μm (A and B). (C) Quantitative morphometric analysis shows a significant increase in AT8+ and AT180+ neurons in hTau_Cx3Crt1^−/− mice from 2- to 12-months of age with an overall drop in AT8+ neurons at 12 months and AT180+ neurons at 24 months of age mean ± SEM immunoreactive area ratio of respective epitopes (C). (D) Gallyas silver positive pre-tangle aggregates (appeared intraneuronal) are evident in the CA1 neurons of hippocampus of 2-month-old hTau_Cx3Crt1^−/− mice compared to hTau mice. Scale bar = 10 μm. (E) Sarkosyl insoluble tau is evident in the hippocampi of 2-month-old hTau_Cx3Crt1^−/− mice compared to age-matched hTau mice.
aggregation of tau, we performed Sarkosyl insoluble assay in the hippocampus of 2-month-old hTau and hTauCx3cr1−/− mice. Notably, while the total tau (Tau5+) was present in the Sarkosyl soluble fractions of both hTau and hTauCx3cr1−/− mice (Fig. 2E), Sarkosyl-insoluble tau was present only in hTauCx3cr1−/− mice (Fig. 2E). Taken together, these results suggest that deficiency of microglial CX3CR1 in hTau mice leads to enhanced tau phosphorylation and pre-tangle aggregation as early as 2 months of age.

Reduced SNAP25 levels, abnormal CA1 neuronal architecture and spatial memory impairment and neuronal loss in the hTauCx3cr1−/− mice

To determine whether build-up of pathological tau in the hTauCx3cr1−/− mice results in altered synaptic and neuronal structure, we assessed the expression of various synaptic proteins (synaptophysin, syntaxin, synapsin and SNAP25) and the neuronal marker NeuN within the hippocampus. Although we did not detect significant alterations in the levels of synaptophysin, syntaxin and synapsin, the level of SNAP25 was significantly reduced from 6 months to 12 months only in the hTauCx3cr1−/− mice compared to hTau mice (Fig. 3A and B). Notably, the thickness of NeuN+ cells in a stereologically identical region of the CA1 subfield was markedly thinner in hTauCx3cr1−/− mice at 2 months of age compared to age-matched hTau and non-transgenic mice (Fig. 3C). Finally, as the hTauCx3cr1−/− mice aged, the wet weight of the hippocampus was significantly reduced compared to hTau mice (Fig. 3D). Together, these data suggest that the hippocampus is affected in hTauCx3cr1−/− mice as early as 2 months of age and this worsens with age.

We have previously demonstrated that Cx3cr1 deficiency leads to working memory impairment in the 6-month-old hTau mice (Bhaskar et al., 2010). To further assess hippocampal-dependent learning and memory, hTau and hTauCx3cr1−/− mice were compared with non-transgenic mice for spatial memory in the Morris Water Maze at 6 and 12 months of age. First, the mice were trained for 3 days to escape to a visible platform in a cued paradigm (the mice use visual cues to seek the platform) and the escape latency (time to reach the platform) was calculated. Both hTau and hTauCx3cr1−/− mice displayed longer escape latencies on the second day of training (Fig. 3E, ‘Visible Platform’). Notably, statistical analysis with group-wise comparisons revealed that on Day 2, both hTau and hTauCx3cr1−/− mice took a significantly longer time to learn to reach the platform as compared to non-transgenic mice (Fig. 3E). By the third day, there was no difference observed in the escape latency among different groups. For the next four consecutive days, we tested these mice in the hidden-platform paradigm of Morris Water Maze. While non-transgenic animals showed a decrease in escape latency (time required to reach the hidden platform), hTau and hTauCx3cr1−/− mice took much longer to reach the hidden platform (Fig. 3E). Two-way ANOVA followed by Tukey’s multiple comparisons revealed statistically significant delays in finding the hidden platform for hTau (on Day 4) and hTauCx3cr1−/− mice (on Day 7) compared to non-transgenic control groups (Fig. 3E). Interestingly, two-way ANOVA with repeated measures comparing the mean latency between different testing days within each genotype suggested that non-transgenic and hTau mice showed differences in latency with highest statistical significance (**P < 0.0001) compared to hTauCx3cr1−/− mice (*P < 0.05) between Days 4 and 7, suggesting that the latency in hTauCx3cr1−/− mice plateaus from Day 5 to Day 7 (Fig. 3E). Furthermore, no significant differences were observed with respect to swim speed, total distance travelled, proximity to platform and probe test among different groups of mice tested. In summary, these results suggest that while hTau and hTauCx3cr1−/− mice display variations in their learning abilities compared to non-transgenic mice; their latencies appear to plateau (primarily for hTauCx3cr1−/− mice on Day 7), suggesting a possible impairment in retention or consolidation in hTauCx3cr1−/− mice at 6 months of age.

Next, we tested 12-month-old cohorts of mice on both cued and hidden versions of the Morris Water Maze. Notably, no significant difference was observed in the escape latency when two-way ANOVA with multiple comparisons were performed. However, both hTau and hTauCx3cr1−/− mice displayed significant impairment (Fig. 3F) in proximity to platform [referred to as ‘Proximity Measure’ or ‘Gallagher’s measure’ (Gallagher et al., 1993)], which is one of the most sensitive tests to assess cognitive function (Maeti et al., 2009). Finally, in the probe test, only hTauCx3cr1−/− mice spent less time in the target quadrant (Fig. 3G) and displayed a statistically significant impairment compared to age-matched non-transgenic controls (Fig. 3H). Taken together, these results suggest that deficiency of Cx3cr1 in hTau mice leads to notable alterations in the spatial memory function as early as 6 months of age, which is more pronounced at 12 months of age.

To assess if the behavioural impairment observed in hTauCx3cr1−/− mice was related to neuronal cell loss, we performed immunohistochemistry and quantitative morphometry for the neuron-specific antigen NeuN in 12-month-old non-transgenic, hTau and hTauCx3cr1−/− groups of mice (Supplementary Fig. 3). Earlier studies have suggested that hTau mice show significant reductions in the number of neurons in the piriform cortex at 17 months of age (Andorfer et al., 2005). Based on this, we performed immunohistochemical and quantitative analysis in layer II of the piriform cortex. The NeuN+ neurons were dense with several layers of cells in 12-month-old non-
Figure 3 Reduced SNAP25 levels, neuronal abnormality and impaired spatial memory in the hTauCx3cr1−/− mice. (A and B) Western blot analysis of hippocampal lysates reveal reduced SNAP25 levels in the 6-month-old hTauCx3cr1−/− mice. Quantification of western blots for SNAP25 and GAPDH revealed a statistically significant (*P ≤ 0.05 for 12-month-old hTauCx3cr1−/− mice versus 6-month-old hTau mice; n = 3; mean ± SEM of SNAP25/GAPDH ratio; unpaired t-test) decrease in the SNAP25 from 6 months to 12 months of age in hTauCx3cr1−/− mice. (C and D) Thickness of the NeuN+ CA1 layer appears reduced in the identical region of the CA1 subfield in the 2-month-old hTauCx3cr1−/− mice. Scale bar = 20 μm. Wet weights of hippocampi were significantly (*P ≤ 0.05; n = 5; mean ± SEM; unpaired t-test) lower in the 24-month-old hTauCx3cr1−/− mice compared to age-matched hTau mice. (E–H) Visible and hidden platform versions of the Morris Water Maze. (E) At 6-months of age: mean latency to escape to a visible or hidden platform across training days was assessed from Day 1 through to Day 7. Note statistically significant differences (**P < 0.01 for hTauCx3cr1−/− and *P < 0.05 for hTau mice versus non-transgenic mice on Day 1).
transgenic brains (Supplementary Fig. 3A), whereas the NeuN+ neurons in hTau mice appeared dysmorphic, but the density was only slightly lower compared to non-transgenic piriform cortex (Supplementary Fig. 3B). There was a reduced density of NeuN+ cells in hTauCx3cr1−/− mice compared to non-transgenic and hTau mice (Supplementary Fig. 3C). Upon quantification of the NeuN+ area fraction, there was a statistically significant decrease in the 12-month-old hTauCx3cr1−/− mice compared to non-transgenic controls (Supplementary Fig. 3D). These results, along with thinner CA1 layer in the 2-month-old hTauCx3cr1−/− mice (Supplementary Fig. 3C), suggest that deficiency of microglial CX3CR1 in hTauCx3cr1−/− mice induces neurodegeneration, which occurs several months prior to significant neuronal loss demonstrated in the hTau mice (12 months versus 17 months of age) (Andorfer et al., 2005).

Microglial activation in pre-pathological hTauCx3cr1−/− mice

To determine whether microglial activation precedes or follows tau hyperphosphorylation and aggregation, we performed immunohistochemical and biochemical analysis in 2-month-old hTau and hTauCx3cr1−/− mice. Iba1+ microglia displayed activated morphology in the CA3 regions of hTauCx3cr1−/− mice at 2 months of age compared to hTau mice (Fig. 4A). Based on our previous observation that IL1R1 knockout (Il1r1−/−) mice were resistant against lipopolysaccharide-induced tau hyperphosphorylation and that blocking IL1R1 prevented microglia-induced tau phosphorylation *in vitro* (Bhaskar et al., 2010), we next studied the mRNA and protein levels of active IL1B. Notably, quantitative real-time PCR analysis revealed a significant increase in Il1b mRNA levels in hTauCx3cr1−/− mice compared to non-transgenic control mice at 2 months of age (Fig. 3B). Three distinct steps tightly control the production of IL1B (Burns et al., 2003). The first step involves the production of the pro-IL1B protein (p35); this is followed by cleavage of pro-IL1B by caspase 1 to produce the active IL1B protein (p17); which then is released into the extracellular space (Burns et al., 2003). The processing of pro-IL1B involves the activation of a caspase 1-activating complex, known as the ‘inflammasome’ (Lamkanfi and Dixit, 2009). Similar to IL1B, caspase 1 itself undergoes cleavage to produce p20 (20 kDa) and p10 (10 kDa) activation forms that are recruited to the inflammasome complex for the processing of pro-IL1B. Elevated levels of pro-IL1B were observed in both hTau and hTauCx3cr1−/− mice at 2 months of age (Supplementary Fig. 4A). Upon quantification, an increase in the mean ratio of pro-IL1B/GAPDH was observed in both hTau and hTauCx3cr1−/− mice compared to non-transgenic mice (Supplementary Fig. 4A and B), but the hTauCx3cr1−/− mice differed with higher statistical strength than hTau mice (Supplementary Fig. 4B). While the levels of cleaved (active form) IL1B were indistinguishable from 2-month-old hTauCx3cr1−/− mice compared to hTau mice on a western blot analysis, the levels of p10 cleaved fragment of active caspase 1 were significantly higher in 2-month-old hTauCx3cr1−/− mice compared to age-matched hTau mice (Supplementary Fig. 4A and C). To confirm that activation of caspase 1 is leading to maturation of IL1B, we performed an active IL1B assay using HEK-Blue™ reporter cells. The HEK-Blue™ reporter cell assay (Invivogen) uses a cell line that expresses IL1R1 (interleukin 1 receptor, type 1), a cognate receptor exclusively for mature IL1B (Fig. 4C). The activation of IL1R1 leads to engagement of MYD88 adapter protein and activation of NF-kB complex to lead to the transcription of SEAP reporter (Fig. 4C) in the media. Levels of SEAP in the media reflect the absolute level of IL1B in the test samples. This assay is considerably more sensitive than western blot analysis. Soluble lysate from 2-month-old hTauCx3cr1−/− mice displayed a significant increase in the levels of active IL1B HEK-Blue™ reporter cell assay compared to age-matched non-transgenic mice (Fig. 4D), suggesting the activation of the IL1B pathway in hTauCx3cr1−/− mice as early as 2 months of age.

Next we assessed the expression of CD68—a surface marker of phagocytic cells. There was no difference in the CD68 immunoreactivity in 2-month-old hTauCx3cr1−/− mice compared to 2-month-old non-transgenic via immunohistochemical analysis (Supplementary Fig. 4D and E). The 24-month-old hTauCx3cr1−/− mice showed a marked increase in CD68 in the hippocampus compared to age-matched non-transgenic mice (Supplementary Fig. 4D and E). Upon quantification, the CD68 immunoreactive area was significantly higher in 24-month-old hTauCx3cr1−/− mice compared to age-matched non-transgenic mice (Supplementary Fig. 4E). A statistically significant increase in the CD68 mRNA levels was observed in 2-month-old hTauCx3cr1−/− mice compared to age-matched non-transgenic mice in the...
Together, these results suggest that Iba1+ microglial activation, caspase-1 (inflammasome) activation, maturation of IL1B and CD68 expression, correlate with early stages of tau pathology in the hTau\textsubscript{Cx3cr1}\textsubscript{+/+} mice.

Microglial activation correlates with the spread of tau pathology in the anatomically connected regions of the hippocampus

Recent evidence suggests that pathologically misfolded and hyperphosphorylated tau can spread like ‘prions’ via anatomically connected regions of the brain (Frost \textit{et al.}, 2009; Liu \textit{et al.}, 2012). To determine if microglial activation correlates with the spread of tau pathology we examined the subicular region of the hippocampus in 2- and 24-month-old hTau\textsubscript{Cx3cr1}\textsubscript{+/+} mice. The subiculum (Sb) acts as a relay centre between the projections from the CA1 and the entorhinal cortex (Fig. 4E). The axonal projections from CA1 neurons to the subiculum and onward to the entorhinal cortex form the principal output for the hippocampus and follow a strict anatomical layout. The distal end of the CA1 neurons projects to the proximal end (dendrites) of subiculum neurons (Fig. 4E) thus it provides an opportunity to study the anterograde-based spread of tau pathology. First, only the CA1 neurons of the...
hippocampus were positive for AT180 in the 2-month-old hTauCx3cr1−/− mice, while the subiculum showed very few neurons positive for AT180 (Fig. 4F and Supplementary Fig. 2A). Adjacent sections stained with CD45, a cell surface marker for activated microglia (Ho et al., 2005), showed a substantial number of CD45+ microglia within the identical subregions of the subiculum (Fig. 4F). By 24 months of age, a majority of subiculum neurons displayed AT180 immunoreactivity (Fig. 4F) in the hTauCx3cr1−/− mice and this was spatiotemporally correlated with substantial CD45 immunoreactivity in the identical region (Fig. 4F, CD45 and AT180). Notably, a majority of CD45+ microglia displayed activated morphology (Fig. 4F). Finally, quantitative analysis revealed that the per cent area immunoreactive for CD45+ in the subiculum of hTauCx3cr1−/− mice was significantly higher as early as 2 months of age than those from age-matched non-transgenic group (Fig. 4G). Interestingly, while a very small portion of AT180 positive neurons were present in the subiculum of 2-month-old hTauCx3cr1−/− mice, their number was not significantly higher than those in the non-transgenic group (Fig. 4H). We observed a similar trend in AT8+ neurons in the subiculum of 2- versus 24-month-old hTauCx3cr1−/− mice. Notably, the subiculum of hTauCx3cr1−/− mice was devoid of any AT8+ neurons at 2 months of age (Supplementary Fig. 5)—a time point at which numerous CD45+ cells are already present in the subiculum (Fig. 4F and G). Together, these results suggest that microglial activation may precede the spreading of pathological AT180+ and AT8+ tau in anatomically connected regions of the hTauCx3cr1−/− mouse hippocampus. Therefore, microglia may participate in 'seeding' and/or 'spreading' of pathological (specifically AT8+ and AT180+) tau species.

Activated microglia induce tau pathology

If CD45+ microglial activation precedes the induction of AT8/AT180 site tau phosphorylation, then isolation and administration of such reactive microglia (independent of other CNS cell types) may also be able to induce tau hyperphosphorylation and aggregation inside the brains of naïve, non-transgenic mice. To test this, a series of adoptive transfer experiments were performed. First, Cx3cr1−/− microglia (GFP positive because of targeted insertion of GFP into Cx3cr1 locus—Fig. 5A) derived from primary microglial cultures were directly injected in to the brains of 2-month-old non-transgenic mice. Seventy-two hours following microglial administration, recipient brains were examined for the presence of GFP+ donor microglia. Numerous AT8+ dystrophic neurites/processes and cell bodies were detected around the needle track (Fig. 5B). No significant alterations in the AT8 immunoreactivity were observed in the contralateral side (data not shown).

In the next set of experiments, microglia from 6-month-old non-transgenic, hTau and hTauCx3cr1−/− mice were purified using an established protocol (Bergmann et al., 1999) with minor modifications that included CD11b antibody mediated enrichment of reactive microglia/macrophages (Bhaskar et al., 2014) (Fig. 5C). Purified microglia were microinjected (50,000 cells/injection) into the cortical layer VI of 6-month-old non-transgenic (isogenic) recipient mouse brain (Fig. 5C). Seventy-two hours after adoptive transfer, recipient brains were analysed for the presence of donor microglia within 1–2 mm radius of the needle track. Recipient mice that received hTauCx3cr1−/− microglia displayed numerous GFP+ donor microglia within several millimetres surrounding the tip of the needle track (small white square in Fig. 5D) and they appear activated (Fig. 5D, square inset). Interestingly, the majority of injected microglia have localized to layer VI of the cortex, dorsal caudate-putamen and several of them tangentially migrated via the corpus callosum (Fig. 5D, rectangle inset). Immunohistochemical analysis in the caudate-putamen area of the non-transgenic mice that received vehicle revealed very few AT8+ dystrophic neurites (due to needle-injury induced dystrophy) AT8 and no obvious cellular labelling of AT8 (Fig. 5E). On the other hand, non-transgenic recipients that received microglia derived from non-transgenic donors displayed some AT8+ dystrophic neurites and some AT8 immunoreactivity appeared intracellular (Fig. 5F). Notably, an increase in AT8+ dystrophic neurites and cellular staining was observed in non-transgenic recipients that received microglia from hTau donors (Fig. 5G). This trend was more robust in the recipients that received microglia from hTauCx3cr1−/− donor mice (Fig. 5H). Notably, some of the pyramidal neurons around the needle track in the cortical region also showed intracellular AT8 labelling (Fig. 5H, inset). To determine if adoptive transfer of reactive microglia also induced AT180-site phosphorylation in the mouse tau within the brains of non-transgenic mice, adjacent brain sections of non-transgenic recipients that received hTauCx3cr1−/− microglia were stained for AT180. Robust AT180 reactivity was present inside striatal and layer VI of cortical neurons (Supplementary Fig. 6A and B) of recipient mice. Furthermore, similar to AT8+ dystrophic neurites, numerous AT180+ dystrophic neurites were observed at the site of injection within the striatum (Supplementary Fig. 6C).

Next, to test whether AT8 immunoreactivity spatially overlapped with the presence of reactive microglia from hTauCx3cr1−/− donors within the brains of recipients, we performed confocal double immunofluorescence analysis for GFP and AT8 (Fig. 5I–K). Interestingly, AT8+ dystrophic neurites and cellular structures spatially co-existed near GFP+ donor microglia (Fig. 5I–K). Notably, many of the AT8+ cells were neurons in the layer VI of the cortex (Supplementary Fig. 7A and B). Confocal 3D reconstruction of 15-μm thick brain slice of the field shown in Supplementary Fig. 7B suggested a clear induction of AT8
Figure 5 Adoptive transfer of purified microglia from hTau Cx3cr1−/− mice induces tau hyperphosphorylation in vivo. (A) GFP+ Cx3cr1−/− microglia 14 days in vitro in primary culture. Scale bar = 20 μm. (B) A representative image showing AT8 immunoreactivity in the striatum of a naïve non-transgenic recipient mouse that received GFP+ Cx3cr1−/− microglia from primary cultures. Scale bar = 20 μm. (C) Schematic showing the magnetic-based isolation of CD11b+ microglia and intracerebral injections of purified microglia into the recipient mouse brain. (D) A representative low magnification image showing a needle track from the brain surface through layer VI of the cortex and parts of the corpus callosum. GFP+ microglia from hTau Cx3cr1−/− mice are viable, appear activated and have migrated several hundreds of microns away from
site hyperphosphorylation of endogenous mouse tau within several neurons that surround GFP + microglia from hTauCx3cr1−/− donor mice (Supplementary Video 1). Based on our previous work (Bhaskar et al., 2010) and present observation (Fig. 4B–D) that IL1B secreted from activated microglia may drive inflammation-induced tau hyperphosphorylation, we tested the effect of intereleukin-1 receptor antagonist (IL-1Ra or Kinere®), which is known to compete with IL1B and block IL-1R activation (Clark et al., 2008). Inclusion of IL-1Ra with the inoculum of hTauCx3cr1−/− microglia resulted in complete elimination of AT8 immunoreactive structures within the recipient mouse brain (Fig. 5L). Next, to determine whether hyperphosphorylation of endogenous tau within the recipient mouse brain leads to the formation of silver positive pre-or mature-tangles, we performed Gallyas silver staining. Non-transgenic mice receiving either vehicle or microglia from non-transgenic donors did not display any silver positive structures/cells (Supplementary Fig. 7C and D). While 72 h post-inoculation is too early to expect any silver positive neurons/dystrophic neurites within the recipient mouse brain, we did observe diffuse peri-nuclear staining in a small population of striatal neurons of the mice receiving microglia from hTau donors (Supplementary Fig. 7E). The intensity of silver staining was more obvious in the striatal and cortical neurons of the recipient mice that received microglia from hTauCx3cr1−/− donors (Supplementary Fig. 7F and inset). However, these silver positive neurons were very few in number (in the striatum right around the area of needle tip) and appeared to contain early stages of tau aggregates compared to typical tangle-bearing neurons found in human Alzheimer’s disease brain (Supplementary Fig. 7G and inset). Notably, the mice inoculated with hTauCx3cr1−/− donor microglia along with IL-1Ra showed no silver positive cells/dystrophic neurites (Supplementary Fig. 7H). Next, we performed quantitative analysis of multiple coronal free-floating brain sections from the recipient mice to examine AT8+ neurons/intracellular immunoreactivities. We scored four random fields 1–2 mm area on either side of the needle track in four sections per mouse (n = 3–5 recipient mice per group). Recipients that received Cx3cr1−/− microglia derived from primary cultures showed 20–40 AT8+ neurons per mm², while those that received vehicle alone or microglia from non-transgenic donors displayed <10 AT8+ neurons within the same defined area (Fig. 5M). Remarkably, microglia derived from hTau mice resulted in a notable increase in the number of AT8+ neurons. The most significant increase was observed in the recipients of hTauCx3cr1−/− microglia that show a statistically significant increase in the number of AT8+ neurons compared to those receiving vehicle or non-transgenic microglia (Fig. 5M). Inclusion of IL1-Ra into the hTauCx3cr1−/− microglial inoculum reduced the number of AT8+ neurons by nearly 50% (Fig. 5M). Finally, to determine if the effect of IL-1Ra on reduced AT8 and AT180 site tau phosphorylation is mediated via downregulation of p38 MAPK, we performed immunohistochemical and triple immunofluorescence analysis for p-p38 MAPK alone or with DAPI and GFP+ donor microglial cells. Notably, numerous p-p38 MAPK positive cells (majority of them non-neuronal) were apparent in the area around the needle track (Fig. 6A) and surrounding GFP+ donor microglia (Fig. 6C) in the non-transgenic mice receiving hTauCx3cr1−/− microglia. In contrast, mice receiving hTauCx3cr1−/− microglia + IL-1Ra displayed markedly reduced number of p-p38 MAPK positive cells in the identical region around the needle track (Fig. 6B). Notably, such reduction in p-p38 MAPK immunoreactivity was also observed around GFP+ donor microglia (Fig. 6D). Quantification of the percent area positive for p-p38 MAPK (from the bright field immunohistochemical images) reveals a statistically significant reduction in the mice receiving hTauCx3cr1−/− microglia + IL-1Ra compared to hTauCx3cr1−/− microglia alone (Fig. 6E). Taken together, these results suggest that reactive microglia derived from either an in vitro source or from hTauCx3cr1−/− mice are sufficient and can directly induce AT8 and AT180 site hyperphosphorylation of endogenous mouse tau that can be blocked by an IL-1Ra via reduced activation of p38 MAPK.
In the current study we demonstrate that genetically enhancing microglia-specific neuroinflammation significantly accelerates the onset and progression of tau pathology, cognitive dysfunction and neurodegeneration in hTau Cx3cr1−/− mice. Second, we observe that microglial activation may contribute to the spread of tau pathology through anatomically connected neurons of the hippocampus. Finally, adoptive transfer of microglia from hTau Cx3cr1−/− mice can induce hyperphosphorylation of endogenous mouse tau within the recipient mice brains.

We performed an age-based study to assess the effect of microglial neuroinflammation in 2-, 6-, 12- and 24-month old hTau Cx3cr1−/− mice. Intriguingly, this corresponds to 7-, 16-, 33- and 65-years of age in humans (Demetrius, 2006). Evidence of increased neuroinflammation leading to tau pathology is relevant because of the occurrence of brain inflammation often observed in children and young adults following CNS infections with the likelihood of cognitive problems in areas of executive function and working memory. For example, children affected with encephalitis have been observed to display problems with anxiety, executive and cognitive function (Fowler et al., 2013). Similarly, memory impairment is often encountered as a result of closed head injury and/or resulting inflammatory responses in younger children (Capruso and Levin, 1992) involved in contact sports (reviewed in McKee et al., 2013). Therefore, the current study provides a basis for some of these human conditions with enhanced brain inflammation, which eventually lead to impairments in a number of cognitive domains.

Several previous studies have suggested that neuroinflammation precedes tau pathology and leads to cognitive impairment in chronic neurodegenerative mouse models such as Alzheimer’s disease. First, induction of systemic inflammation with lipopolysaccharide (Kitazawa et al., 2005) or PolyI:C (Krstic et al., 2012) in young or pre-natal 3xTg mouse model of Alzheimer’s disease, respectively, resulted in enhanced microglial activation and synaptic loss in the P301S mouse model of tauopathy (Yoshiyama et al., 2007). Notably, in the same study administration of FK506, an anti-inflammatory compound, not only reduced tau pathology, it also prolonged the lifespan of P301S mice. Finally, in our previous study, deficiency of CX3CR1 in hTau mice resulted in tau hyperphosphorylation and aggregation as well as impaired

Figure 6 Inclusion of IL-1Ra in the microglial inoculum reduces overall reactivity for phosphorylated p38 MAPK within the recipient mouse brain. (A, B and E) Immunostained brain sections displaying overall reduced phosphorylated (p)-p38 MAPK (pT180/pY182) immunoreactivity around the needle track when the IL-1Ra was included with microglia from 6-month-old hTau Cx3cr1−/− donor mice (B) compared to those receiving hTau Cx3cr1−/− donor microglia alone (A). Scale bar = 30 μm. Quantification of percentage p-p38 MAPK immunoreactive area revealed a statistically significant (*P < 0.05; n = 3 animals per group; three sections per mice and four fields per section were used; mean ± SEM; unpaired t-test) decrease in the p-p38 MAPK + area in the brains of non-transgenic mice that receiving microglia from hTau Cx3cr1−/− donor mice (E). (C and D) Triple immunofluorescence analysis revealing EGFP + donor microglia within the recipient mouse brain. The area surrounding such microglia display relatively less p-p38 MAPK immunoreactivity (red in D) when the IL-1Ra was included with hTau Cx3cr1−/− microglial inoculum. Scale bar = 20 μm.
working memory at 6 months of age (Bhaskar et al., 2010). These studies suggest that microglial activation and brain inflammation may worsen the disease by exacerbating tau pathology. Appearance of hyperphosphorylated tau, maturation of IL1B, activation of Iba1+ microglia and increased CD68 expression in hTauCx3cr1−/− mice as early as 2 months of age in the present study also supported this possibility.

As microglia-mediated neuroinflammation seems to be an early event in the progression of the disease, and manipulation of inflammatory pathways changes the course of the disease, it is very likely that once the inflammatory alterations have begun, they lead to a feed-forward activation of disease-related pathways (Wyss-Coray, 2006). In support of this, recent evidence suggests that there are altered inflammatory components in Alzheimer’s disease. First, inflammatory cells (microglia and astrocytes), cytokines, chemokines, and complement components are elevated in Alzheimer’s disease compared to control brains (McGeer and McGeer, 2001). Second, these inflammatory changes occur before the deposition of amyloid-β (Dudal et al., 2004; Kitazawa et al., 2005) and pathological aggregation of tau (Yoshiyama et al., 2007) in several different mouse models of Alzheimer’s disease. Third, patients receiving sustained treatment with non-steroidal anti-inflammatory drugs (NSAIDs) during mid-life exhibited a >50% decreased risk of Alzheimer’s disease in retrospective studies (McGeer et al., 1996). Although prospective studies with NSAIDs have been unsuccessful—reviewed in McGeer and McGeer (2007)—this may reflect that NSAIDs offer pre-morbid, but not therapeutic protection. Fourth, a recent genome-wide association study (GWAS) identified a single-nucleotide polymorphism within the CR1 locus, encoding the complement component (3b/4b) on chromosome 1, to be associated with sporadic Alzheimer’s disease (Lambert et al., 2009). Notably, CD33 and M54A4/M54A6E, genes related to the regulation of the immune system, have been shown to have a significant association with sporadic Alzheimer’s disease (Hollingworth et al., 2011; Naj et al., 2011). Finally, an arginine-to-histidine substitution at amino acid 47 (R47H) in the triggering receptor expressed on myeloid cells 2 (TREM2) gene, which regulates microglial function in the CNS, increased the risk of developing late-onset Alzheimer’s disease by 3-fold (Guerreiro et al., 2013; Jonsson et al., 2013). Collectively, these studies suggest that inflammatory pathways directly contribute to the development and progression of Alzheimer’s disease.

An initial increase (at 2 months of age) and subsequent decrease (at 12 and 24 months of age) in the levels of AT8, AT180 and PHF-1 positive tau in hTauCx3cr1−/− mice may be attributed to the onset of neuronal loss in hTau mice around 12–14 months of age (Andorfer et al., 2005). Furthermore, modest reduction in the number of phosphorylated tau positive neurons was evident in the immunohistochemical analysis. In support of this possibility, the CA1 layer appeared thinner as early as 2 months of age, a significant reduction in the NeuN+ cells at 12 months of age and reduced hippocampal weight at 24 months of age in hTauCx3cr1−/− mice.

An interesting pattern of activation of p38 MAPK was observed during the course of disease in hTauCx3cr1−/− mice. First, p38 MAPK was initially activated in hTau and hTauCx3cr1−/− mice at 2 months of age and then it was reduced at 6 months of age. A secondary phase of activation was observed between 12 and 24 months of age. Age-related alterations in the activation of p38 MAPK have been previously described (Zhen et al., 1999). Second, p38 MAPK has been demonstrated to be a cytokine inducer (Lee et al., 1994), an important regulator of embryonic development and cancer (Bradham and McClay, 2006) as well as neurogenesis (Sato et al., 2008). Finally, p38 MAPK has been shown to phosphorylate tau in several mouse models of tauopathy (Li et al., 2003; Lambourne et al., 2005; Kelleher et al., 2007; Bhaskar et al., 2010). While the active p38 MAPK levels correlate with early-stage tau phosphorylation in hTauCx3cr1−/− mice at 2 months of age, further studies are necessary to differentiate developmental versus disease-specific activation of p38 MAPK at these early ages.

Adding to the complexity is the CX3CL1-CX3CR1 signalling within the CNS, which is a complex and highly regulated process (Ransohoff and Cardona, 2010; Reaux-Le Goazigo et al., 2013). This is further complicated by the type and severity of the insult causing damage to the CNS (Sheridan and Murphy, 2013). For example, many studies have suggested CX3CR1 deficiency exacerbates the pathology (Cho et al., 2011), whereas other studies suggest that CX3CR1 deficiency is protective (Denes et al., 2008). Notably, two previous studies have documented opposite effects on synaptic and cognitive function in CX3CR1 deficient mice (Maggi et al., 2011; Rogers et al., 2011). In Rogers et al. (2011), the gene dose effect of CX3CR1 deficiency on memory impairment was linked to the elevated levels of IL1B. Blocking IL1b signalling via IL-1Ra treatment in Cx3cr1−/− hippocampal slices restored long-term potentiation. Similarly infusing IL-1Ra into the ventricles of live Cx3cr1−/− mice rescued hippocampal-dependent learning (Rogers et al., 2011). On the other hand, Maggi et al. (2011) observed increased hippocampal plasticity and spatial memory in Cx3cr1−/− mice. While these two studies are contradictory, they suggest the complexity of CX3CL1-CX3CR1 signalling due to gender and hormonal systems, as only males were used in Rogers et al. (2011) and only females were used in Maggi et al. (2011) studies. In contrast to these two studies, we used mice with mixed gender and observed a significant delay in finding the hidden platform on different days for hTau and hTauCx3cr1−/− mice when we performed day-wise comparisons with non-transgenic mice (Fig. 3E). This would suggest a possible impairment in retention or consolidation of spatial memory at 6 months of age. However, at 12-months of age, only hTauCx3cr1−/− mice showed significant impairment in
the probe test compared to age-matched non-transgenic mice (Fig. 3F–H).

Our results from adoptive transfer studies have suggested that microglia derived from the highly pro-inflammatory milieu of the hTauCx3cr1−/− mouse brain are sufficient to induce AT8 site phosphorylation and a ‘pre-tangle-type’ aggregation of endogenous mouse tau within the recipient mouse brain. In a previous study, we used a similar strategy to demonstrate that microglia derived from lipopolysaccharide-administered Cx3cr1−/− mice was capable of inducing apoptosis within the recipient mouse brain (Cardona et al., 2006). Notably, adoptive transfer of Cx3cr1−/− microglia into the brains of Ili1r1−/− mice did not cause neurotoxicity, suggesting that this microglial-specific effect is mediated via the IL-1R pathway. Several previous studies have implicated the IL1B–p38 MAPK pathway in inducing tau pathology. First, a polymorphism in the IL1B gene is associated with human Alzheimer’s disease (Di Bona et al., 2008; Payao et al., 2012; Yuan et al., 2013; Flex et al., 2014). Second, impregnation of IL1B pellets within the rat brain significantly increased the levels of p38 MAPK and tau phosphorylation (Sheng et al., 2001). Third, numerous studies have documented an overstimulation of TLR/IL-1R/IL-1R-associated kinases/NF-kB signalling pathway present within the brains of different tauopathies (Colangelo et al., 2002; Lukiw, 2004; Cui et al., 2007). Fourth, enhancing or blocking IL1B expression exacerbates (Ghosh et al., 2013) or inhibits (Kitazawa et al., 2011) tau pathology, respectively, and the latter rescues cognition in 3xTg-Alzheimer’s disease mice (Kitazawa et al., 2011). Finally, our previous study demonstrated that microglial neuroinflammation exacerbates tau pathology in part mediated via activation of the neuronal IL-1R–p38 MAPK pathway (Bhaskar et al., 2010). These studies, together with the results from the present study, suggest that IL1B secreted from activated microglia is sufficient to drive tau pathology within the naive mouse brain.

Finally, our data suggest that alterations in microglial morphology may prime the brain microenvironment that is destined to participate in the propagation of misfolded tau within the anatomically connected regions of the brain. It is still unclear whether microglia will be involved in the uptake and transfer of tau proteins between neurons. It is conceivable to expect this may be true based on recent studies, which suggest that misprocessed tau may be released from neurons via exosomes (Saman et al., 2012), which would most likely be taken up by microglial cells. Clear co-localization of AT8+ tau with Iba1+ microglia has also been observed in a rodent model of tauopathy (ZilkA et al., 2012).

In conclusion, this study provides a comprehensive view on the progression of tau pathology in response to genetic induction of brain inflammation in a mouse model of tauopathy. Our study also suggests that reactive microglia are sufficient to promote tau pathology in a cell-autonomous manner. Future therapeutic strategies targeting CX3CL1-CX3CR1 and/or IL1B signalling will be beneficial against the pathological progression of tau pathology.

Supplementary material
Supplemental material is available at Brain online.

Acknowledgements
We thank Megan Konerth for initial adoptive transfer and behavioural studies. Dr Steve Stohlman and Dr Timothy Pharres for assisting us with the microglial isolation, Dr Susan Staugaitis for providing human Alzheimer’s disease brain tissue and Dr Vojo Deretic for sharing HEK-Blue™ IL1B cells. Dr Bryce Chackerian for reading the manuscript and for comments. We thank UNM Cancer Centre Microscopy Core Facility for their assistance in generating high quality images and quantitative morphometric analysis.

Funding
This work was supported by CurePSP (#472-09), UNM CoBRE P30 Pilot and UNM SOM RAC Awards, Alzheimer’s Association (NIRG-11-204995) and NIH/NINDS (R21NS077089 and R01NS083704) funding to K.B. Alzheimer’s Association (MCPG to B.T.L and R.M.R) and Bright Focus Foundation Pilot Award (AHAF0311KB to K.B/B.T.L), DOD (ERMS#12109018 to B.T.L) and NIH (AG023012 to B.T.L.; NS074804 to B.T.L and R.M.R; GM095426-02 to A.C.).

References

Li Y, Liu L, Barger SW, Griffin WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on