Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans

Florian Henrich,* Walter Magerl,* Thomas Klein,† Wolfgang Greffrath and Rolf-Detlef Treede

*These authors contributed equally to this work.

See Sandkühler (doi:10.1093/brain/awv193) for a scientific commentary on this article.

Long-term potentiation in the spinal dorsal horn requires peptidergic C-fibre activation in animals. Perceptual correlates of long-term potentiation following high-frequency electrical stimulation in humans include increased sensitivity to electrical stimuli at the high frequency stimulation site (homotopic pain–long-term potentiation) and increased sensitivity to pinprick surrounding the high frequency stimulation site (heterotopic pain–long-term potentiation, equivalent to secondary hyperalgesia). To characterize the peripheral fibre populations involved in induction of pain–long-term potentiation, we performed two selective nerve block experiments in 30 healthy male volunteers. Functional blockade of TRPV1-positive nociceptors by high-concentration capsaicin (verified by loss of heat pain) significantly reduced pain ratings to high frequency stimulation by 47% ($P < 0.001$), homotopic pain–long-term potentiation by 71% ($P < 0.01$), heterotopic pain–long-term potentiation by 92% ($P < 0.001$) and the area of secondary hyperalgesia by 76% ($P < 0.001$). The selective blockade of A-fibre conduction by nerve compression (verified by loss of first pain to pinprick) significantly reduced pain ratings to high frequency stimulation by 37% ($P < 0.01$), but not homotopic pain–long-term potentiation (<5%). It had a marginal effect on heterotopic pain–long-term potentiation (<35%, $P = 0.059$), while the area of secondary hyperalgesia remained unchanged (<2%, $P = 0.88$). In conclusion, all nociceptor subclasses contribute to high frequency stimulation-induced pain (with a relative contribution of C > Aδ fibres, and an equal contribution of TRPV1-positive and TRPV1-negative fibres). TRPV1-positive C-fibres are the main inducers of both homotopic and heterotopic pain–long-term potentiation. TRPV1-positive A-fibres contribute substantially to the induction of heterotopic pain–long-term potentiation. TRPV1-negative C-fibres induce a component of homotopic self-facilitation but not heterotopic pain–long-term potentiation. TRPV1-negative A-fibres are the main afferents mediating pinprick pain and hyperalgesia, however, they do not appear to contribute to the induction of pain–long-term potentiation. These findings show that distinct peripheral fibre classes mediate induction of long-term potentiation-like pain amplification, its spatial spread to adjacent skin (i.e. secondary hyperalgesia), and the resulting enhanced sensitivity to pinprick in humans. Nociceptive afferents that induce pain amplification can be readily dissociated from those mediating pain. These findings add substantially to our understanding of the mechanisms of pain amplification, that form the basis for understanding the mechanisms of hyperalgesia encountered in patients.
Introduction

Persistent pain is a pathology affecting numerous patients. Traditionally chronic pains have been viewed as pathologies directly related to the precipitating diseases. Around the turn of the century, however, it has been pinpointed that a particular disease can yield different types of sensory changes including pain, and conversely, that the same patterns of changes are identified in different painful diseases. This concept implies that pain mechanisms may be independent of aetiology (Woolf et al., 1998; Finnerup and Jensen, 2006; Truini et al., 2013), and that mechanism-based treatment may allow individualized treatment rationales both within and across diseases (Woodcock et al., 2007). Amplification of the synaptic transmission from peripheral to central nociceptive neurons has been identified as one important aspect of persistent pain mechanisms in animals and humans, which affects a major proportion of pain patients (Maier et al., 2010; Schliessbach et al., 2013). Relevant aspects of this pathology can be studied using human surrogate models of pain (Klein et al., 2005).

Pain amplification at the spinal cord level encompasses several potential mechanisms such as increased synaptic strength, reduced intraspinal segmental or descending inhibition, and increased descending facilitation, which were filed under the umbrella term ‘central sensitization’ (Box 1) (Woolf and Salter, 2000), although the utility of this label has been debated (Sandkühler 2009; Woolf 2014). Increased synaptic efficacy of spinal nociceptive neurons can be reconceptualized as a spinal cord variety of the ubiquitous mechanisms of long-term potentiation (LTP) of synaptic transmission (Ji et al., 2003; Zeilhofer, 2005; Cooke and Bliss, 2006; Klein et al., 2008; Ruscheweyh et al., 2011). The primary afferent fibre types involved in induction and signalling of human LTP-like increases in pain perception are currently unknown, but important for translating cellular neurobiological findings to their presumed clinical application (Woolf and Salter, 2000; Zeilhofer, 2005; Sandkühler, 2009). We will use the term pain-LTP to describe long-lasting pain amplification induced by afferent input but are aware that additional mechanisms may contribute.

High-frequency electrical stimulation (HFS) of C-nociceptors elicits LTP of synaptic transmission in rat spinal dorsal horn (Randic et al., 1993; Lozier and Kendig, 1995; Vikman et al., 2001; Ikeda et al., 2003; Ji et al., 2003; Cooke and Bliss, 2006; Tan and Waxman, 2012), and enhanced pain sensitivity in human skin at the HFS-conditioned site (homotopic pain-LTP) and in adjacent skin (heterotopic pain-LTP, which is equivalent to secondary hyperalgesia; Klein et al., 2004, 2008; Lang et al., 2007; van den Broeke et al., 2011). Pain-LTP lasts for several hours consistent with early LTP (LTP1), but may in some subjects transit to late LTP (LTP2), making it a candidate for persistent hyperalgesia in patients with chronic pain (Rygh et al., 2005; Klein et al., 2006; Wilder-Smith and Arendt-Nielsen, 2006; Pfau et al., 2011; Ruscheweyh et al., 2011).

We previously identified the mechanisms of human secondary hyperalgesia following capsaicin injection, which involved two mutually exclusive primary afferent pathways, namely capsaicin-sensitive (i.e. TRPV1-positive) C-nociceptors for induction and capsaicin-insensitive (i.e. TRPV1-negative) Aδ-mechanonociceptors for signalling this state of pain amplification (Ziegler et al., 1999; Magerl et al., 2001). This model of pain amplification has previously been shown to be due to central sensitization of spinal nociceptive neurons (Simone et al., 1991) to their unchanged peripheral input (Baumann et al., 1991). However, this model had shortcomings limiting its generalization to other types of hyperalgesia related to central sensitization. First, due to the TRPV1-selective agonist capsaicin it excluded hyperalgesia induction by TRPV1-negative nociceptors (Brenneis et al., 2013), such as MRGRPD-positive nociceptors mediating mechanical pain (Zylka et al., 2005; Cavanaugh et al., 2009; Zhang et al., 2013), MRGPR4-positive nociceptors mediating itch (Qu et al., 2014), or MRGPRB4-positive fibres mediating pleasant touch (Vrontou et al., 2013). Second, our model did not address homotopic pain-LTP, which may include a component of C-fibre-induced self-facilitation (Randic et al., 1993; Klein et al., 2004; Ikeda et al., 2006; Hansen et al., 2007). Third, differential sensitivity of C- and Aδ-nociceptors to capsaicin (Szolcsányi, 1987; Lawson et al., 1997; Ringkamp et al., 2001; Lawson et al., 2002; Bachy et al., 2011) and to pinprick stimuli...
(Garell et al., 1996; Andrew and Greenspan, 1999; Slugg et al., 2000) may have biased our analysis.

The present study aimed at an unbiased view for both induction and testing of hyperalgesia by using epicutaneous electrical stimuli exciting Aδ and C-nociceptors equally with no preference (Kress et al., 1992; Messlinger et al., 1995; Peng et al., 1999) combined with selective elimination protocols for TRPV1-positive nociceptors by sustained exposure to high concentration capsaicin (Nolano et al., 1999; Magerl et al., 2001; Rage et al., 2010; Anand and Bley, 2011; Cavanaugh et al., 2011), and A-fibre-selective conduction blockade by nerve compression (Ziegler et al., 1999; Magerl et al., 2001). We hypothesized to corroborate the predominant role of TRPV1-positive C-nociceptors for induction of secondary hyperalgesia, and to disclose the potential contribution of other nociceptive afferents to homotopic and heterotopic pain-LTP, and hence close the gap between animal models of LTP and changes in human pain sensitivity.

Box 1 Central sensitization

The term ‘central sensitization’ is agreed terminology as defined by the International Association for the Study of Pain (IASP): ‘Increased responsiveness of nociceptive neurons in the central nervous system to their normal or subthreshold afferent input.’ (c.f. http://www.iasp-pain.org/Taxonomy). From the same website: This may include increased responsiveness due to dysfunction of endogenous pain control systems. Peripheral neurons are functioning normally; changes in function occur in central neurons only. This is a neurophysiological term that can only be applied when both input and output of the neural system under study are known, e.g. by controlling the stimulus and measuring the neural event. Clinically, sensitization may only be inferred indirectly from phenomena such as hyperalgesia or allodynia.

Materials and methods

Volunteers

Thirty-five healthy male volunteers (24 ± 3 years) participated in the study. Restriction to male subjects was chosen to avoid interference with female hormonal cycle, which may be an uncontrolled source of response variability (for reviews see Greenspan et al., 2007; Martin 2009). Our preliminary data suggest that females differ from males in the decay but not the induction of pain-LTP (Plau et al., 2011 and unpublished data). Further exclusion criteria were current medical treatment, chronic pain, psychological disorders, or past drug abuse. Local ethics committee approval had been obtained.

Twenty volunteers participated in the first experiment with LTP induction in capsaicin-desensitized skin. Fifteen volunteers were enrolled in screening for the second experiment with LTP induction under A-fibre conduction-blockade, three of which were excluded because of lack of autonomous innervation territory of the superficial radial nerve. Two volunteers participated in both experiments.

LTP induction with high frequency electrical stimulation

Trains of electrical stimuli applied through 10 punctate stainless-steel electrodes (diameter: 250 μm each) were used to induce pain-LTP (Klein et al., 2004) using a constant current stimulator (DS7H, DigitimerTM). In the first experiment the electrical detection threshold (EDT) of the first day before capsaicin treatment was used because capsaicin desensitization increased EDTs. In the second experiment the EDT was determined at the beginning of the experiment before induction of the compression block.

Pain-LTP was induced by HFS with five 1-s trains of 100 Hz stimuli of 2 ms duration at 10 × the EDT. HFS was expected to mimic injury-induced high-frequency discharge and hence to induce changes in synaptic efficacy similar to a real injury. In each experiment, two skin sites were stimulated by HFS (one within the selective nerve block region, one outside); a third skin site served as unconditioned control without HFS. Test areas in the first experiment (LTP induction in capsaicin-desensitized skin) were the upper forearm for capsaicin treatment, the contralateral forearm for vehicle treatment and the distal forearm near the wrist as unconditioned control without HFS (Fig. 1). In the second experiment (LTP induction under A-fibre conduction-blockade of the superficial radial nerve) the test areas were on the hand dorsum (Fig. 2). Experiments were separated by at least 4 months to allow for regeneration of capsaicin-treated skin (Nolano et al., 1999; Rage et al., 2010). The starting site for HFS was balanced over the study. Volunteers were instructed to rate perceived pain for every HFS train on a numerical rating scale (NRS, anchored at 0 = no pain, 100 = most intense pain imaginable). Volunteers were trained in the rating procedure for 5 min in a fourth skin site before EDT.

Electrical and mechanical test stimuli

Homotopic pain-LTP was tested with single electrical stimuli (2 ms duration, 10 × EDT) through the electrode used for HFS, and rated on the 0–100 NRS to estimate electrical pain sensitivity. Heterotopic pain-LTP was tested with mechanical stimuli applied by calibrated weighted pins of 250 μm diameter and seven forces ranging from 8–512 mN (MRC Systems); mean NRS rating across these stimuli indicated mechanical pain sensitivity. The presence of pain to stroking light touch, i.e. dynamic mechanical allodynia (DMA) was tested with cotton wool, a calibrated Q-Tip, and a soft brush that were moved across the skin in 1–2 cm strokes, and average NRS to tactile stimuli quantified DMA. Homo- and heterotopic test stimuli were applied at the three test sites every 5 min, eight times before HFS (baseline) and 16 times after HFS. One area was treated with nerve block and HFS, one area with HFS only and the third area was an unconditioned control without HFS to monitor habituation or other fluctuations of pain sensitivity.

Areas of secondary hyperalgesia to a pinprick stimulus of 128 mN were mapped along eight tracks (all separated at a 45° angle) at 45 and 90 min after HFS, by moving the test site in small steps of a few millimetres. Testing started from far outside the hyperalgesic skin and slowly moved towards the HFS site. The border of the secondary hyperalgesia area was identified by an abruptly increased painfulness of the pinprick
stimulus and mapped to the precision of 1 mm by moving the test stimulus inside and outside of the hyperalgesia border.

Induction and monitoring of desensitization of TRPV1-positive afferents by topical capsaicin

For the first experiment, a 4.5 cm² area on one proximal forearm was pretreated with an 8% capsaicin patch (Qutenza®) for 2 × 22 h on two consecutive days (Fig. 1). We did not use the clinical routine of pretreatment with local anaesthetics for three reasons: (i) the capsaicin-treated area was small, and thus spatial summation effects of pain very weak; (ii) accordingly, we expected that capsaicin-induced pain would be moderate as found in previous experiments (Magerl et al., 2001); and (iii) local anaesthetics only effectively control capsaicin-induced pain at low concentration (0.075%; Yosipovitch et al., 1999), but not at higher concentrations of capsaicin (1%; Fuchs et al., 1999). As expected capsaicin-induced pain upon application of the first Qutenza® patch was mild with an average pain rating across the 22 h period of 17.9 (on a 0–100 NRS; log10: 1.256 ± 0.080). Pain dropped significantly to less than half upon application of the second Qutenza® patch, to 6.8 (log10: 0.841 ± 0.141, P < 0.001), which indicated substantial reduction of capsaicin sensitivity already after the first patch. Moreover, maximal pain ratings during the 22 h period for the first and second patch were also mild to moderate (on average 32.4 and 18.9). LTP induction was performed 24 h after removal of the second patch, to allow for a decline of primary and secondary hyperalgesia. The contralateral forearm was treated with a vehicle patch.

Three tests were done on both sites to verify the desensitization of TRPV1 positive fibres: (i) heat pain threshold, measured with a Thermal Sensory Analyzer (TSA, Medoc Ltd) and a small Peltier thermode (1.6 × 1.6 cm²) by 1°C/s heat
(i) ramps; (ii) pain ratings to three suprathreshold heat pain stimuli (starting and ending at 34°C with an increase and decrease of 8°C/s and 4 s plateau at 50°C with the same thermode); and (iii) pain ratings to nine single thulium laser pulses (470 mJ, 1 ms, Themis®, Starmedtec) were applied in a 3 × 3 spatial pattern. These tests were done before the first patch was applied, after patch removals on Days 2 and 3, and after pain testing and HFS at Day 4. Indirect assessment of functionality, like nociceptor-dependent blood flow responses, was not chosen, since we have previously shown that a similar treatment protocol eliminated blood flow responses almost completely. Moreover, for sustained time courses of days we observed that psychophysical measures recovered faster than blood flow responses (Magerl et al., 1987).

Induction and monitoring of compression block of myelinated A-fibres

For the second experiment, A-fibre signalling from the innervation territory of the superficial radial nerve in one hand was reversibly blocked as described previously (Ziegler et al., 1999). The opposite hand served as untreated (naïve) control (Fig. 2). The non-dominant arm was placed into a custom-made groove and fixed with small cushions to avoid movements of the arm and hand. A 2.5-cm wide rubber band was placed on the wrist to compress the superficial radial nerve against the underlying bone. The band was loaded with a 1.3 kg hanging weight generating a slowly developing but rapidly reversible conduction block (LaMotte and Thalhammer, 1982; Bromm et al., 1983; Ziegler et al., 1999; Magerl et al., 2001). The volunteers were advised to keep the hand still during block induction.

The development and recovery of the conduction block was monitored at 30, 50, 70, 90 and 110 min after compression onset, and a few minutes after block release. If the block was not complete after 110 min (see criteria below), the experiment was terminated for safety reasons and the volunteer was excluded from further investigation. After the block was established, areas with loss of tactile and cold perception (Sinclair et al., 1952) and increase of reaction time were marked on the skin,
traced and photographed digitally. The monitoring sequence consisted of measuring tactile, warm and cold detection and the reaction time for mechanical pain stimuli (Sinclair and Stokes, 1964; Ziegler et al., 1999). Tactile detection was tested 20 times in a 4 × 5 cm area by 4 mN von Frey hairs (1.1 mm diameter). Twenty warm and cold stimuli were randomly applied with water-filled glass tubes kept at 57°C and 7°C (effective skin temperatures 40° and 20°). Volunteers had to close their eyes and answer if stimuli felt either ‘warm’, ‘cold’, ‘tactile’ or ‘unclear’. Mechanical pain stimuli were applied in the same area with 128 mN pinprick (MRC Systems) starting a stopwatch, which was stopped by the volunteers with the free dominant hand when perceived. To avoid misses when stimuli were perceived only weakly, each pinprick was preceded by an auditory cue.

The criteria for accepting a selective and complete A-fibre block were an 3 × 3 cm² area with loss of tactile detection, cold detection and an increase of reaction time to pinprick to >500 ms, but preservation of warm detection (Ziegler et al., 1999). Loss of warm detection implied comprised C-fibre function and was a criterion for exclusion. The autonomous innervation area of the superficial radial nerve had been identified in a screening session to identify an area for electrode placement in the main experiment. The autonomous innervation area was stable over time (Campero et al., 2005).

Data evaluation and statistics

Statistics were calculated with SPSS 20 (IBM®) and Excel 2010 (Microsoft®). To obtain secondary normal distribution of rating data, for all NRS ratings a constant of 0.1 was added to avoid loss of zero ratings and then they were log₁₀-transformed (Magerl et al., 1998). All log₁₀-ratings were normalized to the baseline (first eight ratings before HFS). Mechanical and electrical pain sensitivity were additionally normalized to the unconditioned control site (by taking the difference of the log values). DMA rating data were not normalized as these tactile stimuli normally do not evoke pain.

Ratings of HFS-induced pain, laser pain and 50°C heat stimuli were also log₁₀-transformed after adding 0.1. Geometric mean was also calculated for reaction times in A-fibre block monitoring and EDT. All statistical differences were assessed with ANOVA and paired t-tests. Data are shown either as geometric mean, and additionally mean and SEM of non-log-transformed data, or for reaction time data and pain ratings as geometric mean, and additionally mean and SEM of log₁₀-transformed data.

Results

First experiment monitoring: capsaicin desensitization

Capsaicin desensitization for 2 × 22 h followed by a 24 h rest period raised heat pain thresholds and eliminated pain to brief suprathreshold heat stimuli (Fig. 1). The initial heat pain threshold was almost the same for both sides with 45.6°C in the test forearm versus 45.5°C in the control forearm (P = 0.63). In vehicle-treated skin, heat pain threshold remained constant for four consecutive days (paired t-test, P > 0.71, Fig. 1B). In capsaicin-treated skin, the heat pain threshold rose from 45.5 to 49.9 (P < 0.001) and was above the upper cut-off limit in most subjects (19/20). Pain to suprathreshold contact heat stimuli (50°C, 4 s plateau) was identical on Day 1 for both sides with 40/100 NRS. For the vehicle-treated skin it remained unchanged (39/100), whereas for the capsaicin site it decreased to 0.12/100 on Day 4 (paired t-test P < 0.001, Fig. 1C). Pain ratings to 470 mJ laser stimuli were similar on both sides before application of vehicle (28.6/100) and capsaicin patches (27.7/100). In vehicle-treated skin, laser-induced pain stayed nearly the same from the first to the last day (P = 0.53, Fig. 1D), but decreased in capsaicin-treated skin to 0.12/100 (P < 0.001, paired t-test).

Second experiment monitoring: A-fibre blockade

Monitoring of A-fibre conduction blockade is shown in Fig. 2. The median time to reach all criteria for full block (area of at least 3 × 3 cm with no cold and tactile perception, and increased reaction time to >500 ms for pinprick, but no loss of warm perception) was ~70 min (range: 30–110 min). Three volunteers did not reach the block criteria after 110 min in the screening and were excluded from the main experiment. Note that A-fibre blockade was released immediately after HFS, so both pre- and post-HFS sensory testing were done in skin with intact A-fibre conduction.

HFS-induced pain

HFS-pain ratings exhibited a smooth increase over the five trains under all experimental conditions (Fig. 3). In the first experiment (capsaicin desensitization), HFS-pain in vehicle-treated skin started with a mean NRS of 29.5/100 NRS and rose to 37.2/100 NRS. Pain ratings in capsaicin-treated skin were substantially reduced: they started at 14.5/100 NRS and rose to 37.2/100 NRS. Pain ratings in capsaicin-treated skin across all trains in normal skin was 35.2 NRS (log₁₀: 1.547 ± 0.076) and was reduced by 47% in capsaicin-treated skin to 16.9 NRS (log₁₀: 1.227 ± 0.101; P < 0.001). The increase of pain over HFS trains did not differ between vehicle and capsaicin-desensitized skin (ratio: 1.57 ± 0.35 versus 2.12 ± 0.76; P = 0.46).

In the second experiment (A-fibre conduction blockade), HFS-induced pain in naïve skin of the hand dorsum started at 32.4/100 and gradually increased to 47.5/100. After complete and selective blockade of A-fibre conduction, pain was reduced to 19.3/100 (first train) and 31.2/100 (fifth train). Mean HFS-induced pain across all trains in normal skin was 35.2 NRS (log₁₀: 1.547 ± 0.076) and was reduced by 47% in capsaicin-treated skin to 16.9 NRS (log₁₀: 1.227 ± 0.101; P < 0.001). The increase of pain over HFS trains did not differ between naïve skin and skin with functional A-fibre blockade (ratio: 1.53 ± 0.10 versus 1.74 ± 0.15; P = 0.23).
Homotopic pain-LTP

Pain ratings to electrical stimuli at the HFS site (homotopic pain-LTP, Fig. 4) were increased abruptly by HFS in vehicle-treated skin to 2.29-fold of the control site (mean \(\Delta \log_{10} \) 0.360 \(\pm \) 0.114; \(P < 0.01 \)). In skin pretreated with the high concentration capsaicin patch (Fig. 4A), the magnitude of homotopic pain-LTP was reduced by 71% compared to the vehicle site (\(P < 0.01 \)). However, there was still a significant pain increase to 1.38-fold of control following HFS (mean \(\Delta \log_{10} \) 0.141 \(\pm \) 0.076; \(P < 0.05 \)), but at no time during the baseline period (all at least \(P > 0.20 \) for capsaicin-treated or vehicle-treated or unconditioned control, and for capsaicin-treated versus vehicle-treated skin).

In contrast to the capsaicin experiment, A-fibre conduction blockade left HFS-induced homotopic pain-LTP almost unaltered (Fig. 4B). Pain ratings to electrical stimuli after HFS in naïve skin increased to 1.91-fold of control (mean \(\Delta \log_{10} \) 0.281 \(\pm \) 0.048, \(P < 0.001 \)). Pain ratings to electrical stimuli in A-fibre block skin increased to 1.86-fold of control (mean \(\Delta \log_{10} \) 0.270 \(\pm \) 0.059, \(P < 0.001 \)). Differences of pain ratings to electrical stimuli after HFS (A-fibre blocked skin versus naïve) were only \(~5\%\) and were not significant (\(P = 0.78 \)).

Heterotopic pain-LTP

Pain ratings to pinprick stimuli (Fig. 4C) surrounding the HFS site in vehicle-treated skin in the first experiment increased to 2.19-fold of control (mean \(\Delta \log_{10} \) 0.342 \(\pm \) 0.062, \(P < 0.001 \)). Pain ratings to pinprick stimuli in capsaicin-desensitized skin (Fig. 4C) increased to 1.11-fold of control (mean \(\Delta \log_{10} \) 0.050 \(\pm \) 0.020, \(P < 0.05 \) versus control), but the magnitude was reduced by 92% compared to the vehicle site (\(P < 0.01 \)). Moreover, the increase in pain ratings to pinprick stimuli in capsaicin-desensitized skin was significant only from the second to the fourth post-HFS point (1.18-fold, \(P = 0.058 \); 1.28-fold \(P < 0.001 \); 1.14-fold \(P < 0.05 \)), suggesting short-term potentiation rather than long-term potentiation. Moreover, the area of secondary hyperalgesia to pinprick on the ventral forearm was reduced by 76% from 39.0 \(\pm \) 8.9 cm\(^2\) to 9.3 \(\pm \) 2.4 cm\(^2\) (\(P < 0.001 \); Fig. 4E).

Pain ratings to pinprick stimuli around the HFS site in naïve skin in the second experiment increased to 1.80-fold of control (mean \(\Delta \log_{10} \) 0.255 \(\pm \) 0.070, \(P < 0.001 \) versus baseline). Pain ratings to pinprick stimuli in A-fibre blocked skin (Fig. 4D) increased to 1.52-fold of control (mean \(\Delta \log_{10} \) 0.180 \(\pm \) 0.065, \(P < 0.05 \) versus baseline). The reduction in HFS-induced heterotopic pain-LTP by 35% was of marginal significance (\(P = 0.59 \), naïve versus A-fibre blocked skin). In contrast, the area of secondary hyperalgesia to pinprick, which was much smaller on the hand dorsum, remained undiminished (10.0 \(\pm \) 1.9 cm\(^2\) to 9.8 \(\pm \) 2.1 cm\(^2\); \(P = 0.88 \); Fig. 4F).

Dynamic mechanical allodynia

After HFS in normal skin, most subjects (16/20) perceived some of the light stroking stimuli adjacent to the HFS site on the forearm as slightly painful (dynamic mechanical allodynia, Fig. 5). Accordingly after HFS, pain to dynamic light tactile stimuli increased significantly compared to pain ratings in normal skin of the unconditioned control site (mean pain rating: 0.163; \(\log_{10} \) 0.788 \(\pm \) 0.076, \(P < 0.05 \) versus control, Fig. 5A). In capsaicin-desensitized skin (Fig. 5A) DMA was significantly reduced versus vehicle (\(-66\%\), \(P < 0.01 \)) and not significant versus control.

In the second experiment on the hand dorsum only a minority of the subjects (2/12) experienced dynamic
mechanical allodynia. Accordingly, mean ratings were low (mean pain rating: 0.116; log10: −0.934 ± 0.065) and did not differ significantly from unconditioned normal skin where allodynia was fully absent (P = 0.17). Under the condition of a fully developed compression block (Fig. 5B) HFS-induced dynamic mechanical allodynia in these two subjects remained completely unchanged (mean pain rating: 0.118 log10: −0.928 ± 0.066, P = 0.15 versus control and P = 0.12 versus HFS in normal skin, Fig. 5B).

Figure 4 Homotopic pain-LTP to electrical stimuli and heterotopic pain-LTP to pinprick stimuli: time courses and average magnitudes. Areas of secondary hyperalgesia to pinprick stimuli (lower panel; E and F): shapes of secondary hyperalgesia areas (left panels) and average areas (right panels). (A) Homotopic pain-LTP in capsaicin-treated skin was significantly reduced by 71% versus vehicle-treated skin (P < 0.01). The remaining homotopic pain-LTP in capsaicin-treated skin was significant versus unconditioned control (P < 0.05). (B) Homotopic pain-LTP in A-fibre-blocked (AFB) skin was only slightly reduced by 5% versus naive skin (n.s.). Homotopic pain-LTP in A-fibre-blocked skin was significant versus unconditioned control (P < 0.01). (C) Heterotopic pain amplification was almost impossible to establish with HFS in capsaicin-treated skin compared to vehicle-treated skin (~92%). The increase of pain in capsaicin-treated skin (13%) was significant versus control for only 30 min, consistent with TRPV1-negative fibre-mediated short-term potentiation. (D) Secondary hyperalgesia in A-fibre-blocked skin was reduced by 35% compared to naive skin (P = 0.059). Secondary hyperalgesia was significant versus unconditioned control (P < 0.001) and A-fibre-blocked skin (P < 0.05). (E) Area of secondary hyperalgesia following HFS in capsaicin-treated skin of the ventral forearm was strongly diminished compared to HFS in vehicle-treated skin. (F) Area of secondary hyperalgesia following HFS in A-fibre-blocked skin of the hand dorsum did not differ from naive skin. Geometric mean ± SEM. Note logarithmic y-axis. Data normalized to both baseline and unconditioned control site; sliding averages across three data points. (*)P = 0.059, *P < 0.05, **P < 0.01, and ***P < 0.001, paired t-test for capsaicin-treated skin or A-fibre-blocked skin versus vehicle-treated or naive skin. (•)P = 0.058, •P < 0.05, ••P < 0.01, and •••P < 0.001, paired t-test for capsaicin or A-fibre blockade versus unconditioned control site. Red circles/bars indicate capsaicin pretreatment (Caps); blue circles indicate A-fibre blockade (AFB); open circles/bars indicate vehicle treated (Veh) or naive.
Estimation of primary afferent fibre types

The two nerve block experiments provide information on relative contributions of TRPV1-positive and TRPV1-negative fibres, and C- and A-fibres to the induction of HFS pain, homotopic pain-LTP and heterotopic pain-LTP. The observed percentage decreases can be conceived as percentage contribution by the fibre type that was selectively blocked, and the remaining percentage change versus control can be conceived as the contribution by the fibre types that were not blocked. These percentages are equivalent to row- or column sums in 2×2 tables (Table 1); however, these sums are consistent with many different combinations of individual percentages in these 2×2 tables. Table 1 shows two possible solutions, one with the maximum contribution by TRPV1-positive C-fibres (A) and another with their minimum contribution (B), leading to the range estimates at the bottom of the table (C). For HFS pain, these ranges are wide and all four fibre types may have contributed to this sensation. For homotopic pain-LTP we obtained evidence that only C-fibres (TRPV1-positive and TRPV1-negative) contributed to its induction. For heterotopic pain-LTP, our data suggest that only TRPV1-positive primary afferents (A- and C-fibres) contributed to its induction.

Discussion

Using electrical stimuli that non-specifically activate all peripheral nerve fibres and two selective nerve block procedures in humans allowed us to differentiate the relative contributions to the induction of pain-LTP by A-fibre versus C-fibre nociceptors and by TRPV1-positive versus TRPV1-negative nociceptor subpopulations. Our homotopic pain-LTP experiments confirmed the predicted self-facilitation of TRPV1-positive C-fibre input (Ikeda et al., 2006; Hansen et al., 2007), but also disclosed a significant self-facilitation of TRPV1-negative C-fibre input—a novel finding not yet described in dorsal horn electrophysiology. In addition, heterotopic pain-LTP experiments suggested that LTP of TRPV1-positive C-fibres caused secondary hyperalgesia to pinprick stimuli, which requires the interaction of at least two different pathways (Torsney, 2011), as pinprick pain is predominantly mediated by TRPV1-negative A-fibre nociceptors (Ziegler et al., 1999; Magerl et al., 2001). Moreover, not only TRPV1-positive C-fibre input but also TRPV1-positive A-fibre input contributed to induction of heterotopic pain-LTP, another novel finding of this study. No secondary hyperalgesia was seen after capsaicin desensitization, and accordingly TRPV1-negative A and C-fibre nociceptors do not contribute to its induction.

Fibre populations activated by HFS through punctate electrodes

Consistent with the non-specific activation of intraepidermal nerve fibres by epicutaneous electrical stimuli, all nociceptors appeared to contribute to HFS-induced pain. According to capsaicin desensitization, TRPV1-positive and TRPV1-negative fibres contributed about equally; according to selective A-fibre conduction blockade, C-fibres contributed more than A-fibres.

Whereas transcutaneous electrical stimulation of nerve trunks preferentially activates Aβ-fibres, intraepidermal electrodes have a more selective action on Aδ fibres at low intensities (i.e. $2 \times$ threshold; Mouraux et al., 2010; Inui and Kakigi, 2012), when high current densities are restricted to the epidermis that does not contain any Aβ-fibres. Our epicutaneous 10-contact point electrode activates peptidergic C-fibre afferents in the skin, because it...
Table 1 Estimated percentages of fibre type contributions to perceived pain

<table>
<thead>
<tr>
<th>Fibre type</th>
<th>HFS pain</th>
<th>Homotopic LTP</th>
<th>Heterotopic LTP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>A</td>
<td>Sum</td>
</tr>
<tr>
<td>A</td>
<td>TRPV1-pos</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TRPV1-neg</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>B</td>
<td>TRPV1-pos</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>TRPV1-neg</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>C</td>
<td>TRPV1-pos C</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>TRPV1-neg C</td>
<td>16</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>TRPV1-pos A</td>
<td>0-37</td>
<td>0-5</td>
</tr>
<tr>
<td></td>
<td>TRPV1-neg A</td>
<td>0-37</td>
<td>0-5</td>
</tr>
</tbody>
</table>

(A and B) Mean percentages from Figs 3–5 led to the row sum percentages (from Experiment 1) and column sum percentages (from Experiment 2) in these 2 × 2 table. Individual cell percentages are ambiguous, but as soon as one cell is known the others can be calculated precisely. HFS pain: lowest contribution (8%) is by A-fibres, which may be all TRPV1-negative (A) or all TRPV1-positive (B) or somewhere in between. Homotopic LTP: lowest contribution (5%) is by A-fibres, which may be all TRPV1-negative (A) or all TRPV1-positive (B) or in between. Heterotopic LTP: lowest contribution (8%) is by TRPV1-negative fibres, which may be all A-fibres (A) or all C-fibres (B) or in between. (C) Range estimates from parts A and B indicate which fibres make significant (bold) and which ones make insignificant contributions to the phenomena studied.

elicits neurogenic inflammation (Klein et al., 2004) and a burning pain quality (Hansen et al., 2007). The vast majority of fibres in any type of nerve are unmyelinated C-fibres (72–81%; Ochoa and Mair, 1969; Schmalbruch, 1986; Heppelmann et al., 1988; Hines et al., 1996). Amongst the remaining myelinated afferents ~70–80% are thinly myelinated Aδ-fibres (Ochoa and Mair, 1969; Heppelmann et al., 1988). Thus in skin nerves the proportions of afferents are ~80:15:5% for C, Aδ, and Aβ-fibres. The major proportion of C and Aδ-fibres are nociceptive, a minor proportion are tactile afferents or innocuous thermoreceptors (Adriaensen et al., 1983; Treede et al., 1998; Vallbo et al., 1999; Campero and Bostock, 2010). Thus, our findings that C-fibres predominate over Aδ-fibres in mediating HFS-induced pain may simply reflect the different population sizes of peripheral nociceptors. On the other hand, the stimulus frequency used in our experiments (100 Hz) may favour A-fibre activation due to their better ability to follow high frequency stimulation than C-nociceptors, which are more prone to conduction failure. Ability to follow high frequency stimulation than C-nociceptors (100 Hz) may favour A-fibre activation due to their better sensitivity without affecting mechanically-induced pain (Raymond et al., 1990; Weidner et al., 1999; Serra et al., 2012). In our data, the ratio of C versus Aδ-nociceptor mediation of pain was ~2:1, whereas the fibre count ratios were 5:1. This difference supports the concept that A-fibres may contribute more to the magnitude of sensation than C-fibres (Bromm et al., 1983; Magerl et al., 1999; Cavanaugh et al., 2009). However, the better frequency-following properties of A-fibre nociceptors may have moderately magnified the A-fibre component in relation to the C-fibre component, thereby favouring it’s uncovering.

The population size of TRPV1-expressing dorsal root ganglion (DRG) neurons in cell cultures from avulsed human ganglia ranged from 35% to 71% (Anand et al., 2006). In human microneurographical recordings, the vast majority of C-fibre nociceptors were excited by capsaicin, including all mechano-sensitive and numerous mechano-insensitive ones (Schmelz et al., 2000). Similar results were obtained in primates (Baumann et al., 1991; Ringkamp et al., 2001). In rodents, TRPV1 receptors are expressed in both the peptidergic subgroup that contain substance P and/or calcitonin gene-related peptide (CGRP), and in the non-peptidergic subgroup that bind the lectin IB4 (Snider and McMahon, 1998). In rats, 85% of the substance P-expressing DRG neurons and 60–80% of the IB4-positive neurons co-express TRPV1 (Tominaga et al., 1998; Guo et al., 1999). In the mouse, TRPV1 expression is more restricted to peptidergic C-fibre nociceptors with about twice as much capsaicin-sensitivity than in IB4-binding DRG neurons (Dirajlal et al., 2003; Hjerling-Leffler et al., 2007; Lawson et al., 2008; Cavanaugh et al., 2009).

Acute ablation of capsaicin-sensitive mouse DRGs induced a complete and selective loss of acute heat-pain sensitivity without affecting mechanically-induced pain (Cavanaugh et al., 2009). Furthermore, ablation of TRPV1-expressing neurons depleted the substance P-expressing population in mice (Hsieh et al., 2012). More than 90% of the mouse IB4-positive cells also express the sensory neuron-specific G protein-coupled receptor Mrgrp (Cavanaugh et al., 2009) and Mrgrp-expressing neurons account for essentially all non-peptidergic cutaneous afferents (Zylka et al., 2005). This mainly capsaicin-negative subpopulation of nociceptors is essential for the detection of noxious mechanical stimuli, the development of mechanical hyperalgesia induced by inflammation but does not contribute to detection of painful cold and heat (Cavanaugh et al., 2009). Thus, there is evidence for modality specificity in peripheral C-fibre nociceptors: TRPV1-expressing peptidergic nociceptors mediate heat-sensitivity, and Mrgrp-positive non-peptidergic neurons mediate mechano-sensitivity. Previous capsaicin-desensitization studies in humans are consistent with this concept (Nolano et al., 1999; Magerl et al., 2001). There may be an even finer functional distinction of mechanosensitive C-nociceptor subclasses as suggested recently (Wooten et al., 2014).
In rodents, about one-third of TRPV1-expressing nociceptors were A-fibre nociceptors (Ma, 2002; McCoy et al., 2012; Mitchell et al., 2014); in turn, 20% of the Aδ fibre neurons co-expressed TRPV1 (Bachy et al., 2011; Cavanaugh et al., 2011). In guinea pigs, about one-third of the A-fibre nociceptors also expressed substance P (Lawson et al., 1997). In primates many A-fibre nociceptors respond to capsaicin (Baumann et al., 1991; Meyer et al., 1991; Ringkamp et al., 2001) and about one-third of them exhibit a rapid response to heat that is likely mediated by TRPV1 (Treede et al., 1998). Electrophysiological experiments directly investigating human Aδ fibre nociceptors are rare; capsaicin-sensitivity was not determined in those (Adriaensen et al., 1983; Bromm et al., 1984). Nonetheless, it is likely that also in humans there is a population of TRPV1-expressing A-fibre nociceptors that may also be able to release substance P, and that are blocked by capsaicin treatment.

In conclusion, across species there are TRPV1-expressing heat-sensitive and peptidergic A- and C-fibre nociceptors, TRPV1-negative mechano-sensitive and non-peptidergic nociceptors, and there may be a small population (~15–23%) of substance P-positive nociceptors that do not express TRPV1 (Tominaga et al., 1998; Guo et al., 1999; Valtchanoff et al., 2001). Our next question is to what extent these populations may contribute to the conditioning and the facilitated pathways in human LTP.

Nociceptors contributing to homotopic pain-LTP

Homotopic pain-LTP in our study was unaffected by complete and selective A-fibre conduction blockade, demonstrating that high-frequency firing only in C-fibres was sufficient to induce this type of pain amplification. This is consistent with data from rat spinal cord slice preparations, where recruitment of C-fibres was obligatory for induction of nociceptive LTP (Sandkühler, 2007). LTP in lamina I neurons induced by HFS of C-fibres depends on co-activation of NMDA receptors by glutamate and neurokinin 1 receptors (NK1-R) by substance P, and resulting activation of T type calcium channels (Ikeda et al., 2003; Heinke et al., 2004; Naka et al., 2013). Substance P acting at NK1-R in the superficial dorsal horn of rats is also essential for central sensitization induced by capsaicin through activation of TRPV1-positive afferents (Nichols et al., 1999; Khasabov et al., 2002; Vierck et al., 2003; Rygh et al., 2006). Because the majority of peptidergic nerve fibres express TRPV1 across species one can assume that in our study, those neurons were eliminated by capsaicin preincubation. Thus, as in the rat, the induction of spinal LTP in humans relies mostly on peptidergic neuron signalling in the dorsal horn, suggesting that TRPV1-positive afferents and spinal NK1-R significantly contribute to the induction of chronic pain states in humans.

Homotopic pain-LTP was also induced via fibres not expressing TRPV1 since after capsaicin treatment significant pain-LTP remained. Two explanations may account for this phenomenon: (i) substance P-containing TRPV1-negative fibres may induce LTP via the known neurokinin pathway. In rat, there may be a small population (~15–23%) of substance P-positive nociceptors that do not express TRPV1 (Tominaga et al., 1998; Guo et al., 1999) and hence may be able to release substance P after capsaicin desensitization. However, these findings were not replicated recently, and the persistence of substance P and/or calcitonin gene-related peptide release in capsaicin-desensitized animals has not been shown functionally; (ii) induction of LTP is at least partly independent of NK1-receptor signalling. Brain-derived neurotrophic factor (BDNF) was detected in non-peptidergic C-fibre neurons in rats and contributes to spinal LTP of C-fibre-evoked field potentials (Zhou et al., 2008, 2011). Thus BDNF release may be an alternative to substance P release for induction of homotopic spinal LTP (Ren and Dubner, 2007). Moreover, our psychophysical findings may in part also be explained by supraspinal rather than spinal mechanisms (descending facilitation or lowered descending inhibition; Pertovaara, 1998; Urban and Gebhart, 1999).

Nociceptors contributing to heterotopic pain-LTP

LTP of spinal nociceptive transmission and secondary hyperalgesia can be induced by HFS as well as by injection of the TRPV1 agonist capsaicin indicating that TRPV1-expressing nociceptors contribute, at least in part, to induction of these types of pain amplification (Simone et al., 1989; LaMotte et al., 1991; Ziegler et al., 1999; Magerl et al., 2001; Ikeda et al., 2003, 2006). The absence of a significant heterotopic pain-LTP in capsaicin-treated skin suggests that TRPV1-expressing nociceptors are essential for this type of pain amplification. However, a very short-lived (<30 min) potentiation of pinprick pain remained after HFS in capsaicin-desensitized skin suggesting that TRPV1-negative fibres can induce short-term potentiation of pain (pain-STP; Shyu and Vogt, 2009; Rahn et al., 2013).

In a previous study, the magnitude of secondary hyperalgesia remained unaltered when capsaicin was injected under selective A-fibre conduction blockade interpreted as absence or occlusion of a potential contribution of Aδ-fibre nociceptors to the induction of pain amplification at central nociceptive neurons (Ziegler et al., 1999). However, the relative role of A-fibre nociceptors may have been underestimated in the capsaicin injection model by their lower sensitivity to capsaicin (Szolcsányi, 1987; Lawson et al., 1997, 2002; Ringkamp et al., 2001). In the electrical HFS model the complete block by capsaicin desensitization and a moderate 35% decrease by A-fibre conduction blockade revealed that TRPV1-bearing Aδ-fibre nociceptors (AMH II
polymodal nociceptors) contribute substantially to induction of heterotopic pain-LTP. Thus, heterotopic pain-LTP (secondary hyperalgesia) is triggered collectively by TRPV1-positive A and C fibre nociceptors, but not by TRPV1-negative nociceptors.

Dynamic mechanical alldynia (pain to light touch), a companion symptom of secondary hyperalgesia, followed a similar pattern and was also completely absent when HFS was performed in capsaicin-desensitized skin and thus induction of allodynia also depended completely on TRPV1-positive nociceptors. The very mild level of dynamic mechanical alldynia as seen previously (Ziegler et al., 1999; Klein et al., 2004; Lang et al., 2007) precluded conclusions on the potential contribution of Aδ-nociceptors to its induction.

Conclusions and outlook

Consistent with the concept that epicutaneous electrical pulses can activate all intradermal nerve endings, we found that all nociceptors contributed to HFS-induced pain (with a relative contribution of C > Aδ fibres, and an equal contribution of TRPV1-positive and TRPV1-negative fibres). As predicted from animal experiments, TRPV1-positive C-fibre nociceptors made the largest contribution to induction of both homotopic and heterotopic pain-LTP (secondary hyperalgesia). TRPV1 negative C-fibres induced homotopic self-facilitation but not heterotopic pain-LTP, likely related to MRGPRD-expressing afferents (Zhang et al., 2013), which needs further study in spinal cord electrophysiology. TRPV1-positive A-fibres made a minor contribution to induction of heterotopic pain-LTP not seen with capsaicin-induced secondary hyperalgesia (Magerl et al., 2001), hence it may require HFS-induced high discharge frequency that is not reached by chemical stimulation. Although TRPV1-negative A-fibres are the main primary afferents mediating pinprick pain that was strongly facilitated in heterotopic pain-LTP, they do not appear to contribute to the induction of pain-LTP. These findings highlight that distinct peripheral fibre classes mediate induction of pain-LTP, its expansion to adjacent skin, and the resulting enhanced sensitivity to pinprick in humans.

TRPV1 receptors are upregulated after various types of nerve injury, particularly in uninjured axons (Hudson et al., 2001; Facer et al., 2007; Kim et al., 2008; Wang et al., 2011). In neuropathic pain, hyperalgesia was only present in patients carrying wild-type TRPV1 alleles, but not in those with a presumed lack-of-function TRPV1 single nucleotide polymorphism (Binder et al., 2011). TRPV1 is upregulated in several human diseases, like vulvodynia (Tympanidis et al., 2004), post-mastectomy pain (Gopinath et al., 2005), post-traumatic skin hyperalgesia (Facer et al., 2007), irritable bowel syndrome (Akbar et al., 2010), rectal hypersensitivity and faecal urgency (Chan et al., 2003), burning mouth syndrome (Yilmaz et al., 2007), or in postoperative pain following skin incisions (Pogatzki-Zahn et al., 2005; Banik and Brennan, 2009; Barabas and Stucky, 2013; Mitchell et al., 2014). These observations suggest that those patients may be more prone to hyperalgesia related to pain amplification of the pain-LTP type.

Conversely, the main clinical effect of TRPV1-antagonists may be to prevent the transition from acute to chronic pain by heterotopic LTP and central sensitization, while acute pain sensitivity is only partly affected (cf. Patapoutian et al., 2009). Accordingly, the recent introduction of a high concentration capsaicin patch for the treatment of neuropathic pain, which defunctionalizes nociceptive epidermal nerve fibres (Malmberg et al., 2004; Kennedy et al., 2010; Anand and Bley, 2011) reduced sensory abnormalities in patients with neuropathic pain, but primarily so in patients with short disease duration (<6 months), while patients with more chronic neuropathic pain exhibited much weaker pain reduction (Backonja et al., 2008; Simpson et al., 2008; Derry et al., 2013; Höper et al., 2014; Malinmüller and Heskamp, 2014). Based on the present findings we propose that an early and more sustained treatment schedule may be more effective in both prevention and reversal of chronic neuropathic pain through a more complete functional elimination of those nociceptor populations that induce and maintain pain amplification.

Our findings may also help explain a major translation gap in pain medicine. Most drugs are developed to counteract enhanced evoked pain in animal models of nociceptive or neuropathic pain. All of these models of pain amplification likely contain an element of central sensitization. While ongoing pain in humans is mediated by some combination of all types of primary afferent nociceptors, animal models that include central sensitization of the homotopic pain-LTP type will miss the contribution of A-fibre nociceptors, while models including central sensitization of the heterotopic pain-LTP type will miss the contribution of TRPV1-negative nociceptors.

Acknowledgement

Capsaicin patches (Queniza®) and drug-free vehicle patches were kindly provided by Astellas.

Funding

This study was funded by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft DFG - Tr236/19-1, Ma1251/9-2) and the DFG-funded Heidelberg-Mannheim Center Research Grant on Pain Research (Subproject B09 of SFB 1158).
Conflicts of interest

Johannes Gutenberg University Mainz holds a patent on pinprick stimulators used in this study (Pinprick patent DE/10.07.03/DEA10331250), for which W.M. and R.D.T. are named inventors and for which they receive royalties for marketing of production licenses.

References

Cavanagh DJ, Cheset AT, Braz JM, Shah NM, Julius D, Basbaum AI. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci 2011; 31: 10119–27.

Sinclair DC, Stokes BAR. The production and characteristics of 'second pain'. Brain 1964; 87: 609–18.

Torsney C. Inflammatory pain unmask heterosynaptic facilitation in lamina I neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2011; 31: 5158–68.

Downloaded from https://academic.oup.com/brain/article-abstract/138/9/2505/309720 by guest on 12 February 2019
Woolf CJ. What to call the amplification of nociceptive signals in the central nervous system that contribute to widespread pain? Pain 2014; 155: 1911–12.

