Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study

Anand J. C. Eijlers, Quinten van Geest, Iris Dekker, Martijn D. Steenwijk, Kim A. Meijer, Hanneke E. Hulst, Frederik Barkhof, Bernard M. J. Uitdehaag, Menno M. Schoonheim and Jeroen J. G. Geurts

Cognitive decline is common in multiple sclerosis and strongly affects overall quality of life. Despite the identification of cross-sectional MRI correlates of cognitive impairment, predictors of future cognitive decline remain unclear. The objective of this study was to identify which MRI measures of structural damage, demographic and/or clinical measures at baseline best predict cognitive decline, during a 5-year follow-up period. A total of 234 patients with clinically definite multiple sclerosis and 60 healthy control subjects were examined twice, with a 5-year interval (mean = 4.9 years, standard deviation = 0.9). An extensive neuropsychological evaluation was performed at both time points and the reliable change index was computed to evaluate cognitive decline. Both whole-brain and regional MRI (3 T) measures were assessed at baseline, including white matter lesion volume, diffusion-based white matter integrity, cortical and deep grey matter volume. Logistic regression analyses were performed to determine which baseline measures best predicted cognitive decline in the entire sample as well as in early relapsing-remitting (symptom duration < 10 years), late relapsing-remitting (symptom duration ≥ 10 years) and progressive phenotypes. At baseline, patients with multiple sclerosis had a mean disease duration of 14.8 (standard deviation = 8.4) years and 96/234 patients (41%) were classified as cognitively impaired. A total of 66/234 patients (28%) demonstrated cognitive decline during follow-up, with higher frequencies in progressive compared to relapsing-remitting patients: 18/33 secondary progressive patients (55%), 10/19 primary progressive patients (53%) and 38/182 relapsing-remitting patients (21%). A prediction model that included only whole-brain MRI measures (Nagelkerke $R^2 = 0.22$, $P < 0.001$) showed cortical grey matter volume as the only significant MRI predictor of cognitive decline, while a prediction model that assessed regional MRI measures (Nagelkerke $R^2 = 0.35$, $P < 0.001$) indicated integrity loss of the anterior thalamic radiation, lesions in the superior longitudinal fasciculus and temporal atrophy as significant MRI predictors for cognitive decline. Disease stage specific regressions showed that cognitive decline in early relapsing-remitting multiple sclerosis was predicted by white matter integrity damage, while cognitive decline in late relapsing-remitting and progressive multiple sclerosis was predicted by cortical atrophy. These results indicate that patients with more severe structural damage at baseline, and especially cortical atrophy, are more prone to suffer from cognitive decline. New studies now need to further elucidate the underlying mechanisms leading to cortical atrophy, evaluate the value of including cortical atrophy as a possible outcome marker in clinical trials as well as study its potential use in individual patient management.

1 Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
2 Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
3 Department of Neurology, Amsterdam Neuroscience, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
4 Institutes of Neurology and Healthcare Engineering, UCL, London, UK

Received March 27, 2018. Revised May 29, 2018. Accepted June 15, 2018. Advance Access publication July 26, 2018
© The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
For permissions, please email: journals.permissions@oup.com
Introduction

Multiple sclerosis is an inflammatory, demyelinating and neurodegenerative disease of the CNS. It affects an estimated 2.5 million people worldwide, and is the primary cause of disability in young adults in developed countries (Dutta and Trapp, 2011; Dendrou et al., 2015). Besides physical disability, cognitive deficits are present in 40–70% of patients with multiple sclerosis and have a severe impact on daily functioning (Chiaravalloti and DeLuca, 2008; Benedict et al., 2017b). The most commonly affected cognitive domains include information processing speed and episodic memory, with impairments in executive function, verbal fluency and visuospatial memory also frequently detected (Sumowski et al., 2018). Multiple sclerosis pathology in the form of focal lesions, normal-appearing tissue damage and atrophy affects both the white and grey matter tissue compartments and can be visualized using MRI (Wattjes et al., 2015). While white matter lesions and diffuse damage as well as deep grey matter atrophy already occur early in the disease, cortical demyelination and atrophy seem to precede in later stages (Bergslund et al., 2012; Haider et al., 2014; Schoonheim et al., 2014; Steenwijk et al., 2014).

How this apparent ordering of types of damage in different disease stages contributes to cognitive decline still remains incompletely understood. White matter lesions have been shown to only weakly to moderately relate to the severity of cognitive deficits, while stronger correlations have been observed for normal appearing white matter damage and grey matter atrophy (Benedict and Zivadinov, 2011; Schoonheim et al., 2014). In addition to the relevance of measuring aggregate damage to white and grey matter tissue compartments to unravel substrates of cognitive impairment, a number of studies have evaluated the significance of damage to specific, cognitively relevant, brain regions or connections. These (mainly cross sectional) studies highlighted thalamic (Minagar et al., 2013), hippocampal (Damjanovic et al., 2017) and cortical regions such as the posterior cingulate cortex as particularly relevant for cognitive decline (Steenwijk et al., 2016). Longitudinal studies investigating cognitive functioning in multiple sclerosis remain scarce, but have shown that cognitive decline is concomitant with progressing lesion volumes (Camp et al., 2005) and whole-brain (Zivadinov et al., 2001) grey and white matter atrophy (Rocca et al., 2018). There still is an urgent clinical need, however, to be able to predict more accurately whether a patient will progress based on baseline measurements, in order to optimize disease management and treatment strategies.

Only a few studies investigated such predictors of cognitive decline in multiple sclerosis, suggesting predictive power of early changes in lesions (Summers et al., 2008b), whole brain atrophy (Summers et al., 2008a; Deloire et al., 2011) and tissue integrity (Deloire et al., 2011; Filippi et al., 2013), all studying relatively early multiple sclerosis cohorts, small sample sizes, 1.5 T scanners and no regional MRI measures. Therefore, in the present study, we first retrospectively assessed whether patients demonstrated a decline in cognitive functioning during a 5-year follow-up and subsequently compared baseline characteristics (i.e. MRI, demographic and clinical measures) between cognitively stable and declining patients. Secondly, we investigated which baseline measures best predicted future cognitive decline, with separate models evaluating whole-brain and regional MRI predictors. Finally, cross-sectional and longitudinal predictors of cognitive impairment and decline were compared, in order to disentangle predictive and correlative markers. These questions were addressed in a large cohort of 234 patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis, as well as 60 healthy control subjects, who received extensive neuropsychological evaluations and advanced 3 T MRI at baseline and identical neuropsychological testing after 5 years.

Materials and methods

Participants

For this prospective study, a total of 332 patients with clinically definite multiple sclerosis (Polman et al., 2011), part of the Amsterdam Multiple Sclerosis Cohort (Eijlers et al., 2017; Meijer et al., 2017), and 96 healthy controls received MRI and cognitive evaluation at baseline and 234/332 patients (70%) and 60/96 healthy control subjects (63%) returned for an identical cognitive evaluation at follow-up. Only the 234 patients with multiple sclerosis (32% male, age 47.61 ± 11.02 years, symptom duration 14.6 ± 8.4 years) and 60 healthy control subjects (42% male, age 46.45 ± 9.91 years) that received a cognitive follow-up were retained for the current study. The average interval time between baseline and follow-up visits was 4.80 years [standard deviation (SD) = 0.85] for patients with multiple sclerosis and 5.46 years (SD = 1.08) for healthy control subjects. Clinical phenotypes at baseline included 181 patients with relapsing-remitting, 33 with secondary progressive and 20 with primary progressive multiple sclerosis. Disease-modifying treatments at baseline included β-interferons (n = 57), glatiramer acetate (n = 13), natalizumab (n = 12) or other immunosuppressive therapy (n = 5). The highest level of education attained was assessed using a scale between 1, did not
finish primary school; and 7, acquired university degree or higher. Overall disability of patients with multiple sclerosis was assessed using the Expanded Disability Status Scale (Kurtzke, 1983). Patients were relapse-free and without steroid treatment for at least 2 months prior to both baseline and follow-up visits. The study was approved by the institutional ethics review board of the VU University Medical Center and participants gave written informed consent prior to participation.

Neuropsychological evaluation

Participants underwent extensive neuropsychological evaluation at both time points using an expanded Brief Repeatable Battery of Neuropsychological tests (Rao, 1990) as previously described (Schoonheim et al., 2015). Executive functioning was assessed using the concept shifting test (Van der Elst et al., 2006), with the ascending number ordering, alphabetical letter ordering and alternating letter and number ordering conditions corrected for motor speed, converted into Z-scores and then averaged to create a domain Z-score. Verbal memory was assessed using the selective reminding test (Buschke, 1973), with the average long-term storage of the first trial, total long-term recall and delayed recall scores converted into Z-scores and averaged. Verbal fluency was assessed using the word list generation test (Boringa et al., 2001), with the total number of correct responses in 60 s converted into a Z-score. Information processing speed was assessed using the symbol digit modalities test (Smith, 1982), with the total number of correctly substituted symbols in 90 s converted into a Z-score. Visuospatial memory was assessed using the spatial recall test (Boringa et al., 2001), with the total score on three immediate recall trials and the score on the delayed recall trial converted into Z-scores and averaged. Attention was assessed using the Stroop colour-word test (Stroop, 1992), with the time to complete the first, second and third trial as well as the time to complete the third trial corrected for the time to complete the first and second trials converted into Z-scores and averaged. Finally, working memory was assessed using the memory comparison test (Brand and Jolles, 1987), with the time taken to complete the per cent sign, one-, two-, three-, and four-letter trials converted into Z-scores and averaged. The cognitive scores of all subjects were corrected for effects of sex, age and education observed in the healthy controls, using a previously published method (Amato et al., 2006). Patients were classified as cognitively impaired if performance was below $Z < -1.5$ on two or more cognitive domains, grouping together mildly and severely impaired patients (Eijlers et al., 2017).

Cognitive change during follow-up: reliable change index

To assess cognitive change in the patients with multiple sclerosis during the follow-up period, the modified practice adjusted reliable change index (Iverson, 2001) was computed, which corrected for practice effects as observed in the healthy control group. Next, reliable change index scores for each cognitive domain were divided by each individual subject's time interval between baseline and follow-up, obtaining a 'yearly rate of change on each cognitive domain'. These rates of change were then averaged across domains to obtain an 'averaged yearly rate of cognitive change' for each patient. To separate patients into 'cognitively stable' and 'cognitively declining' groups, two different approaches were explored. The first approach was similar to the commonly used criterion to classify patients as cognitively impaired in cross-sectional studies, and was based on a decline on at least two separate cognitive domains (Louapre et al., 2014; Schoonheim et al., 2015). The second approach was based on another commonly used measure in cross-sectional studies, namely, applying a threshold to average cognitive functioning (using the above-mentioned average rate of cognitive change). The final approach to define 'cognitive decline' was chosen based on the most optimal combination of having high sensitivity to detect cognitively declining patients (i.e. a minimal residual decline in the remaining cognitively stable patients with a yearly rate of cognitive change <0.01) and high specificity (i.e. a low number of healthy controls incorrectly classified as cognitively declining). The different approaches were explored with incremental steps in the rate of cognitive change of 0.05 and the best performing criterion was selected and used to classify patients as 'cognitively declining' for further analyses.

MRI

All subjects were scanned on a 3 T whole-body magnetic resonance system (General Electric Signa-HDxt), using an eight-channel phased-array head coil. The protocol included a 3D T_1-weighted fast spoiled gradient echo sequence for volumetric measurements (repetition time $= 7.8$ ms, echo time $= 3$ ms, inversion time $= 450$ ms, flip angle $= 12^\circ$, 1.0 mm sagittal slices, $0.9 \times 0.9 \text{ mm}^2$ in-plane resolution), a 3D fluid attenuated inversion recovery (FLAIR) sequence for white matter lesion segmentation (repetition time $= 8000$ ms, echo time $= 125$ ms, inversion time $= 2350$ ms, 1.2 mm sagittal slices, $0.98 \times 0.98 \text{ mm}^2$ in-plane resolution) and a diffusion tensor imaging sequence for white matter integrity assessment, covering the entire brain (five volumes without directional weighting, i.e. b0, and 30 volumes with non-collinear diffusion gradients, echo planar imaging, $b = 1000 \text{ s/mm}^2$, repetition time $= 13000$ ms, echo time $= 91$ ms, flip angle $= 90^\circ$, 53 contiguous axial slices of 2.4 mm, in-plane resolution $2 \times 2 \text{ mm}$).

Whole-brain, regional and voxel-wise measures of damage

White matter lesions

White matter lesions were automatically segmented on the FLAIR images using k-nearest neighbour classification with tissue type priors (Steenwijk et al., 2013) and used to compute whole-brain lesion volume. Regional lesion volumes were defined as the percentage of white matter within individual tracts affected by lesions, which was computed within each of the 10 tract masks part of the JHU-ICBM tracts atlas (part of FSL 5) after non-linear registration of individual lesion maps to Montreal Neurological Institute (MNI)-152 standard space. Finally, to detect voxel-wise differences in lesion location between cognitively stable and declining groups, individual lesion maps were smoothed with a 5 mm Gaussian filter, followed by a voxel-wise group comparison using RANDOMISE (part of FSL 5) (Winkler et al., 2014), with the analysis constrained to areas with a 5% lesion.
probability for the entire group (Dalton et al., 2012; Filli et al., 2012).

White matter integrity

Diffusion-weighted data were preprocessed using FSL 5, including motion and eddy current correction on images and gradient vectors followed by diffusion tensor fitting. To assess white matter integrity, fractional anisotropy maps were computed and non-linearly registered to the FMRIB58_FA brain. Next, fractional anisotropy maps were averaged across subjects and skeletonized to obtain the main white matter tracts common to the group using the standard Tract-Based Spatial Statistics pipeline (part of FSL 5) (Smith et al., 2006). Subsequently, individual subject fractional anisotropy values were projected onto this skeleton and the mean skeleton fractional anisotropy was computed for each individual as a measure of whole-brain white matter integrity. To assess regional white matter integrity damage, the integrity of individual white matter tracts was computed for each subject, based on the same approach as for lesions. The 10 tract masks part of the JHU-ICBM tracts atlas were overlaid on the individual fractional anisotropy skeletons and the mean integrity within each mask was computed. Z-scores representing effect sizes of damage were then computed for each tract in every patient relative to the healthy control group. Finally, voxel-wise fractional anisotropy values within the white matter skeleton were compared between cognitively stable and declining patients using RANDOMISE.

Deep grey matter atrophy

Before tissue segmentation, white matter lesion masks were registered to the 3D T1-weighted images to enable lesion filling using LEnsion Automated Pre-processing (Chard et al., 2010). Whole-brain, grey matter and white matter volumes were calculated on the lesion-filled images using SIENAX (Smith et al., 2002), following the previously published pipeline (Popescu et al., 2012) and deep grey matter volumes were obtained using FIRST (Paternaude et al., 2011) (both part of FSL 5). All volumes were normalized for head size using the V-scaling factor derived by SIENAX. Individual deep grey matter volumes were summed to obtain a whole-brain deep grey matter volume. To assess atrophy of individual deep grey matter regions, left and right volumes were summed and Z-scores reflecting the atrophy effect sizes were computed for each region and each patient relative to the healthy control group. Finally, the shape of individual deep grey matter regions was assessed using the FIRST vertex analysis pipeline (part of FSL 5) in MNI152 standard space and compared between cognitively stable and declining patients using RANDOMISE.

Cortical grey matter atrophy

To calculate whole-brain cortical grey matter volume, individual FIRST deep grey matter segmentation images were subtracted from the SIENAX grey matter segmentation images using Fprintf. To assess regional atrophy of individual cortical lobes, the MNI structural atlas (part of FSL 5) was first non-linearly registered to the lesion filled 3D T1-weighted images in subject space. Next, lobar structural atlas masks were overlaid on the grey matter segmentation images from SIENAX to compute lobar grey matter volumes (left and right volumes were summed). Z-scores reflecting the effect sizes of regional atrophy were then computed for each cortical lobe in each patient relative to the healthy control group. Finally, voxel-wise cortical grey matter density was compared between cognitively stable and declining patients using the standard voxel-based morphometry pipeline (part of FSL 5) (Good et al., 2001). This includes non-linear registration of grey matter images to MNI152 standard space, multiplication by the Jacobian of the warp field to correct for this non-linear deformation (Douaud et al., 2007) and smoothing with a 4 mm Gaussian filter followed by a voxel-wise group comparison using RANDOMISE.

Statistical analysis

Statistical analyses of the demographic, clinical and whole-brain MRI variables were performed in SPSS version 22 (Armonk, NY, USA). All demographic, clinical and volumetric MRI variables were checked for normality using the Kolmogorov-Smirnov test and histogram inspection; lesion volumes were log-transformed. Non-parametric testing was used to assess group differences for not normally distributed demographic variables and EDSS. A Wilcoxon signed rank test was used to assess longitudinal changes in EDSS and a two-tailed one-sample t-test to assess whether the average rate of cognitive change in patients with multiple sclerosis was significantly different from zero. Multivariate general linear model analyses were performed to assess group differences in normally distributed demographic, whole-brain MRI and cognitive variables, with sex, age and education entered as covariates. Group comparison P-values < 0.05 were considered statistically significant after Bonferroni correction for multiple comparisons; corrected P-values were reported. All voxel-wise group comparisons were performed using RANDOMISE (part of FSL 5) with 5000 permutations and included sex, age and education as covariates. Here, multiple comparisons correction was performed using threshold free cluster enhancement and family-wise error correction, with statistical significance threshold of P < 0.05.

To investigate which baseline measures relate to cross-sectional cognitive impairment as well as predict subsequent longitudinal cognitive decline, logistic regression analyses with conditional backward selection were performed using baseline measures only. In the first two regression analyses, the correlative and predictive value of whole-brain MRI measures for cross-sectional cognitive impairment and longitudinal cognitive decline were evaluated. Additionally, the effects of disease phenotype were investigated by separately running the aforementioned model in early relapsing-remitting multiple sclerosis (symptom duration < 10 years, n = 92), late relapsing-remitting multiple sclerosis (symptom duration ≥10 years, n = 90) and progressive multiple sclerosis (pooling primary and secondary progressive phenotypes, n = 52). This analysis was performed for global cognitive decline as described above, but also for information processing speed decline, given the clear clinical importance of this domain in multiple sclerosis. Decline of this domain was based on the recently established criterion for clinically meaningful decline, i.e. a loss of four points on the symbol digit modalities test (Benedict et al., 2017a). Next, the predictive value of regional MRI measures for longitudinal global cognitive decline was evaluated in four separate regression analyses; a model that included individual cortical lobar volumes, deep grey matter volumes, white matter tract integrities and white matter tract lesion percentages, after which significant regional MRI predictors of these four models were included in a final combined regional model. Initially, all models included the same clinical and demographic variables, namely: symptom duration, multiple sclerosis phenotype (relapse onset versus primary progressive and relapsing-remitting versus progressive multiple...
sclerosis), medication usage (yes/no), and, only in the case of longitudinal prediction, average baseline cognitive functioning, while sex, age and education were always entered as covariates. The threshold for including predictors was set at $P < 0.10$ and predictors with $P < 0.05$ were considered statistically significant.

Data availability

Anonymized data, not published in the article, will be shared on reasonable request from a qualified investigator.

Results

Clinical and cognitive characteristics at baseline and follow-up

The baseline characteristics for patients with multiple sclerosis and healthy control subjects are shown in Table 1. During the follow-up period, median EDSS increased from 3.0 at baseline to 3.5 at follow-up ($P < 0.01$) and 23/182 patients with relapsing-remitting multiple sclerosis (13%) converted to secondary progressive multiple sclerosis. Average cognitive functioning in the patient group at baseline was $Z = -0.88$ (SD = 0.89) and patients performed worst on working memory ($Z = -1.29$) information processing speed ($Z = -1.24$) and executive functioning ($Z = -1.01$) as published previously (Eijlers et al., 2017). A total of 96/234 (41%) patients were classified as cognitively impaired at baseline. A decrease in average cognitive performance was observed in patients with multiple sclerosis between baseline and follow-up of -0.24 (SD = 0.51, annualized to -0.05/year, SD = 0.11, $P < 0.001$) as shown in Fig. 1 and Supplementary Table 1. Subdividing patients based on baseline disease phenotype showed an approximately three times faster average cognitive decline for patients with primary (-0.10/year) and secondary progressive (-0.10/year) multiple sclerosis than patients with relapsing-remitting multiple sclerosis (-0.03/year, $P < 0.01$ and $P = 0.03$, respectively, Fig. 1B).

Classifying cognitively stable and declining patients

Classifying individual patients into ‘stable’ or ‘declining’ resulted in 66/234 cognitively declining patients (28%).

<table>
<thead>
<tr>
<th>Table 1 Baseline demographics, clinical and MRI characteristics</th>
<th>Healthy controls (n = 60)</th>
<th>Multiple sclerosis (n = 234)</th>
<th>Cognitively stable (n = 168)</th>
<th>Cognitively declining (n = 66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>29 (48)</td>
<td>75 (32)*</td>
<td>52 (31)</td>
<td>23 (35)</td>
</tr>
<tr>
<td>Age, years</td>
<td>46.45 (9.91)</td>
<td>47.61 (11.02)</td>
<td>47.77 (11.02)</td>
<td>49.77 (10.80)</td>
</tr>
<tr>
<td>Symptom duration, years</td>
<td>14.77 (8.43)</td>
<td>14.29 (8.39)</td>
<td>15.99 (8.47)</td>
<td></td>
</tr>
<tr>
<td>EDSS*</td>
<td>3 (0–8)</td>
<td>3 (0–8)</td>
<td></td>
<td>3.5 (0–8)*</td>
</tr>
<tr>
<td>Disease phenotype (RRMS/SPMS/PPMS)</td>
<td>182/33/19</td>
<td>144/15/9</td>
<td></td>
<td>38/18/10*</td>
</tr>
<tr>
<td>White matter damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesion volume, mlb</td>
<td>9.22 (4.89–18.75)</td>
<td>8.33 (4.48–15.60)</td>
<td>13.37 (7.20–22.82)*</td>
<td></td>
</tr>
<tr>
<td>White matter integrity</td>
<td>0.42 (0.02)</td>
<td>0.40 (0.03)*</td>
<td>0.40 (0.02)</td>
<td>0.38 (0.03)*</td>
</tr>
<tr>
<td>Brain volumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain volume, l</td>
<td>1.51 (0.06)</td>
<td>1.46 (0.08)*</td>
<td>1.47 (0.07)</td>
<td>1.42 (0.09)*</td>
</tr>
<tr>
<td>White matter volume, l</td>
<td>0.70 (0.03)</td>
<td>0.67 (0.04)*</td>
<td>0.67 (0.03)</td>
<td>0.66 (0.04)</td>
</tr>
<tr>
<td>Cortical grey matter volume, l</td>
<td>0.78 (0.05)</td>
<td>0.75 (0.05)*</td>
<td>0.76 (0.05)</td>
<td>0.73 (0.05)*</td>
</tr>
<tr>
<td>Deep grey matter volume, ml</td>
<td>62.70 (3.51)</td>
<td>56.65 (6.34)*</td>
<td>57.56 (5.89)</td>
<td>54.34 (6.89)*</td>
</tr>
<tr>
<td>Cognition (Z-scores versus healthy controls)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executive functioning</td>
<td>0.00 (0.76)</td>
<td>-1.01 (1.67)*</td>
<td>-0.95 (1.73)</td>
<td>-1.17 (1.48)</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>0.00 (0.91)</td>
<td>-0.63 (1.15)*</td>
<td>-0.63 (1.15)</td>
<td>-0.62 (1.16)</td>
</tr>
<tr>
<td>Inf. processing speed</td>
<td>0.00 (1.00)</td>
<td>-1.24 (1.29)*</td>
<td>-1.13 (1.26)</td>
<td>-1.52 (1.33)</td>
</tr>
<tr>
<td>Verbal fluency</td>
<td>0.00 (1.00)</td>
<td>-0.55 (0.96)*</td>
<td>-0.56 (0.94)</td>
<td>-0.52 (1.01)</td>
</tr>
<tr>
<td>Visuospatial memory</td>
<td>0.00 (0.94)</td>
<td>-0.76 (1.22)*</td>
<td>-0.79 (1.26)</td>
<td>-0.70 (1.13)</td>
</tr>
<tr>
<td>Working memory</td>
<td>0.00 (0.85)</td>
<td>-1.29 (1.49)*</td>
<td>-1.24 (1.47)</td>
<td>-1.42 (1.53)</td>
</tr>
<tr>
<td>Attention</td>
<td>0.00 (0.65)</td>
<td>-0.71 (1.05)*</td>
<td>-0.67 (0.99)</td>
<td>-0.82 (1.21)</td>
</tr>
<tr>
<td>Average cognition</td>
<td>0.00 (0.48)</td>
<td>-0.88 (0.89)*</td>
<td>-0.84 (0.89)</td>
<td>-0.98 (0.89)</td>
</tr>
</tbody>
</table>

Baseline demographic, clinical and MRI characteristics were compared between patients and controls (left) and between cognitively stable and declining patients (right). All values represent means and SD, unless otherwise denoted. EDSS = Expanded Disability Status Scale; PPMS = primary-progressive multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.

*Median and range.

**Significant difference between patients with multiple sclerosis and healthy controls at $P < 0.05$.

*Significant difference between cognitively stable and declining patients at $P < 0.05$.

Table 1 Baseline demographics, clinical and MRI characteristics

Downloaded from https://academic.oup.com/brain/article-abstract/141/9/2605/5059057 by guest on 27 November 2018
and 168/234 cognitively stable patients (72%), with only 1/66 healthy controls (2%) fulfilling this criterion for cognitive decline. This was based on the criterion that best separated cognitively declining patients from both stable patients and controls, which was a yearly rate of cognitive change < -0.25 on two or more cognitive domains (Supplementary Table 2). The baseline demographic and clinical characteristics of the cognitively stable and declining patient groups are shown in Table 1. The cognitively declining patients showed an average cognitive change during follow-up of -0.72 (SD = 0.48, annualized to -0.16/year, SD = 0.10), while the cognitively stable patients and controls had change scores of < 0.01/year by definition. The cognitively declining patient group did not differ from the cognitively stable group on baseline demographic variables and baseline cognitive functioning (average cognition $Z = -0.98$ versus $Z = -0.84$, respectively, $P = 0.67$), but did show more severe physical disability at baseline (median EDSS 3.5 versus 3.0, respectively, $P < 0.01$) and contained a larger proportion of progressive patients (42% versus 14%, respectively, $P < 0.01$).

Whole-brain MRI differences between cognitively stable and declining patients

Compared to the cognitively stable patients, the cognitively declining patients showed more severe structural damage at baseline on four MRI measures (Table 1), including a higher lesion volume (13.37 ml versus 8.33 ml, $P < 0.01$), a lower white matter integrity (0.38 versus 0.40, $P < 0.01$), lower cortical grey matter volume (0.73 l versus 0.76 l, $P < 0.01$) and deep grey matter volume (54.34 ml versus 57.56 ml, $P < 0.01$). As a post hoc analysis, patients were split into quartiles based on the amount of whole-brain structural damage at baseline for each of these four MRI measures separately, after which the yearly rate of cognitive change was computed for each quartile. For the groups based on baseline white matter lesions and integrity, a gradual pattern was observed, with an increase in yearly rate of cognitive decline when moving from minimal to high white matter damage, which was significant after Bonferroni correction between the extreme quartiles only (Fig. 2A and B). For groups based on deep and cortical grey matter, a different pattern was observed with an (approximately two to three times) faster yearly rate of cognitive decline for patients in the lowest volume quartile (i.e. the most grey matter atrophy) compared to the other quartiles (Fig. 2C and D). However, only the differences between the lowest and second-lowest quartiles survived the stringent Bonferroni correction.

Regional MRI differences between cognitively stable and declining patients

Regional lesion volume is shown as percentages of tract volume for cognitively declining and stable patients in...
Fig. 3A, which was similar between patient groups. Regional integrity damage within tracts is shown in Fig. 3B as Z-scores relative to controls, showing the most severe damage in the forceps major. Atrophy of individual deep grey matter regions (Fig. 3C) and atrophy of individual cortical lobes (Fig. 3D) showed a consistent pattern of more severe regional damage in declining compared to stable patients, which was significant for all regional atrophy measures, except for amygdala volume. Overall, most severe atrophy was visible in the thalamus. Comparing the effect sizes of all regional MRI measures, largest relative differences between cognitively stable and declining patients were observed for cortical volumes.

Figure 2 Relation between baseline structural damage and yearly cognitive decline. To further delineate the relation between baseline structural damage and the yearly rate of cognitive change during follow-up, the patient group was split into four quartiles for each MRI measure separately based on the amount of damage at baseline. For each quartile, the average yearly rate of cognitive change was computed. (A) Relation between baseline lesion volume and yearly rate of cognitive change. (B) Relation between baseline white matter integrity and yearly rate of cognitive change. (C) Relation between baseline deep grey matter volume and yearly rate of cognitive change. (D) Relation between baseline cortical grey matter volume and yearly rate of cognitive change. Bars reflect group means and whiskers reflect SEM. FA = fractional anisotropy; RCI = reliable change index. Note: value ranges for each quartile represent rounded numbers, not the exact thresholds used to demarcate groups. *Significantly different between groups.
Figure 3 Baseline regional differences between cognitively stable and declining patients. Regional MRI damage effect sizes at baseline were compared between cognitively stable and declining patients. (A) Percentage of individual white matter tracts that was occupied by lesions in cognitively declining and stable patients. (B) Integrity damage of individual white matter tracts in cognitively declining and stable patients. (C) Atrophy in individual deep grey matter regions in cognitively declining and stable patients. (D) Lobar cortical grey matter atrophy in cognitively declining and stable patients. Boxes reflect median and interquartile range and whiskers reflect the 5 and 95 percentiles. Ant. = anterior; HC = healthy controls; Hip = hippocampus; Inf. = inferior; Rad. = radiation; Sup. = superior. *Significantly different between cognitively stable and declining patients.
Voxel-wise MRI differences between cognitively stable and declining patients

To further localize the precise areas where brain damage differed between cognitively stable and declining patients at baseline, voxel-wise analyses were performed. The voxel-wise lesion location comparison showed significantly more lesions in declining patients primarily in the forceps major and inferior occipitofrontal fasciculus (Fig. 4A). The voxel-wise tract integrity comparison showed most extensive involvement in the forceps major and minor, as well as in the superior and inferior longitudinal fasciculi (Fig. 4B). The deep grey matter shape analysis revealed more atrophy in cognitively declining patients near the ventricles, i.e. in the medial thalamus, lateral hippocampus, the medial caudate nucleus, but also on the medial side of the left pallidum (Fig. 4C). Finally, the voxel-based morphometry analysis showed lower cortical grey matter volume in the cognitively declining patients mainly in the bilateral superior and medial temporal gyri, right inferior temporal gyrus, bilateral medial and lateral occipital lobe and bilateral inferior frontal lobe (Fig. 4D).

Prediction of cognitive impairment and decline

The cross-sectional logistic regression analysis to find baseline correlates of cognitive impairment (Nagelkerke $R^2 = 0.29$, $P < 0.01$) contained deep grey matter volume, multiple sclerosis phenotype (relapse onset versus primary progressive) and level of education as significant variables (Table 2). The longitudinal logistic regression analysis to predict cognitive decline using baseline whole-brain MRI measures (Nagelkerke $R^2 = 0.22$, $P < 0.01$) included cortical grey matter volume, multiple sclerosis phenotype (relapsing-remitting versus progressive) and age as significant predictors (Table 2). The disease stage specific models showed that cognitive decline in early relapsing-remitting multiple sclerosis was predicted (Nagelkerke $R^2 = 0.10$) by white matter integrity only, whereas cognitive decline in late relapsing-remitting as well as in progressive multiple sclerosis was predicted by cortical atrophy only (Nagelkerke $R^2 = 0.15$ and 0.12, respectively). Similarly, information processing speed decline ($n = 76$) in early relapsing-remitting multiple sclerosis was predicted (Nagelkerke $R^2 = 0.28$) by deep grey matter atrophy, medication usage and baseline test score, in late relapsing-remitting multiple sclerosis (Nagelkerke $R^2 = 0.39$) by cortical atrophy and baseline test score and in progressive multiple sclerosis (Nagelkerke $R^2 = 0.22$) by cortical atrophy and symptom duration.

The four regression analyses that evaluated regional MRI measures are shown in Supplementary Table 3. Significant regional MRI measures in these models were occipital and temporal grey matter volume for the cortical model (Nagelkerke $R^2 = 0.24$, $P < 0.01$), caudate nucleus volume for the deep grey matter model (Nagelkerke $R^2 = 0.16$, $P < 0.01$), anterior thalamic radiation and superior longitudinal fasciculus integrity for the white matter tract integrity model (Nagelkerke $R^2 = 0.23$, $P < 0.01$) and forceps major and superior longitudinal fasciculus lesion percentages for the white matter tract lesion percentage model (Nagelkerke $R^2 = 0.19$, $P < 0.01$). The final regional MRI regression model (Nagelkerke $R^2 = 0.35$, $P < 0.01$), included anterior thalamic radiation integrity, superior longitudinal fasciculus lesion percentage, temporal cortical volume, multiple sclerosis phenotype (relapsing-remitting versus progressive) and age as significant predictors for cognitive decline (Table 2).

Discussion

In this study, we investigated cognitive decline during a 5-year follow-up period in a large cohort of patients with multiple sclerosis. A significant decline in cognitive functioning was observed between baseline and follow-up, which was three times faster in progressive patients compared to relapsing-remitting patients. Next, an individualized classification approach of cognitively stable and declining patients was developed, with 28% of patients classified as cognitively declining with high degree of certainty. A comparison between cognitively declining and stable patients on baseline characteristics showed that the cognitively declining patient group already demonstrated more severe structural damage at baseline, without differences on demographic or cognitive scores at that time. At baseline, the main cross-sectional MRI correlate of cognitive performance was deep grey matter volume, while the main baseline MRI predictor of future cognitive decline turned out to be cortical grey matter volume. Cognitive decline was primarily predicted by white matter integrity (global cognitive decline) and deep grey matter volume (information processing speed decline) in early multiple sclerosis, but by cortical atrophy in more advanced relapsing-remitting as well as progressive multiple sclerosis. The regression analysis that evaluated regional MRI measures of cognitive decline showed a substantially larger explained variance compared to the model that included whole-brain MRI predictors only, which suggests that the assessment of regional damage is valuable to pursue.

The predictive value of baseline demographic variables on cognitive decline was limited, with only age remaining as a significant predictor in the models. Although level of education strongly related to cognitive impairment in our cross-sectional model, as well as in previous studies (Bonnet et al., 2006; Martins Da Silva et al., 2015), it did not significantly predict future cognitive decline. A high level of education is thought to reflect a high cognitive reserve and possibly protects against cognitive decline (Sumowski et al., 2013). The lack of an effect of educational level on future cognitive decline could possibly suggest that this protective
Figure 4 Baseline voxel-wise differences between cognitively stable and declining patients. Voxel-wise comparisons were performed to more precisely localize baseline differences between cognitively stable and declining patients. (A) Differences in lesion location between cognitively stable and declining patients. (B) Differences in white matter tract integrity between cognitively stable and declining patients. (C) Differences in deep grey matter shape between cognitively stable and declining patients. (D) Differences in regional cortical density between cognitively stable and declining patients. L-Amy = left amygdala; L-Cau = left caudate; L-Hip = left hippocampus; L-Pal = left pallidum; L-Put = left putamen; L-Tha = left thalamus; R-Amy = right amygdala; R-Cau = right caudate; R-Hip = right hippocampus; R-Pal = right pallidum; R-Put = right putamen; R-Tha = right thalamus.
effect is largely depleted and most relevant in early disease stages as was also indicated in Alzheimer’s disease (Stern, 2012), but could also reflect a too limited assessment of cognitive reserve, with other components such as intellectual enrichment and leisure activities not taken into account. Disease phenotype was an important clinical measure in determining future cognitive decline, with both the probability as well as average rate of cognitive decline substantially higher in progressive phenotypes compared to relapsing-remitting multiple sclerosis. Although not surprising when considering that ‘progressive’ diagnoses rely on the steady progression of neurological disability (Thompson et al., 2018), a faster rate of decline was not as clearly described in literature for cognitive functioning. Interestingly, baseline cognitive functioning did not differ between cognitively stable and declining patients and did not significantly predict cognitive decline, which indicates that the assessment of a patient’s cognitive function might not be as valuable in predicting the likelihood of future cognitive decline as MRI measures.

More severe structural damage at baseline predicted a higher probability and rate of cognitive decline during follow-up. Especially baseline white matter integrity damage and deep grey matter atrophy seemed relevant in the prediction of cognitive decline in early relapsing-remitting multiple sclerosis and baseline cortical grey matter atrophy in late relapsing-remitting and progressive multiple sclerosis. While previous studies already showed the predictive value of global (Summers et al., 2008a; Deloire et al., 2011) and central atrophy (Deloire et al., 2011) as well as tissue integrity (Deloire et al., 2011; Filippi et al., 2013) for cognitive decline, these studies included relatively early multiple sclerosis cohorts, i.e. within 3 years after disease onset (Summers et al., 2008a), at a mean disease duration of 2 years (Deloire et al., 2011) or 4 years (Filippi et al., 2013). The order in which white matter integrity damage, cortical and deep grey matter atrophy occur in multiple sclerosis is a topic of great debate, with most results suggesting that white matter integrity damage and deep grey matter atrophy already start early, while cortical atrophy is more common in advanced disease stages.

Table 2 Logistic regression analysis for prediction of cognitive impairment and decline

<table>
<thead>
<tr>
<th>Model</th>
<th>Nagelkerke R^2</th>
<th>Chi-square P</th>
<th>Predictor</th>
<th>B (SE)</th>
<th>Wald P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicting cognitive impairment (whole-brain MRI measures)</td>
<td>0.29</td>
<td>55.71</td>
<td><0.01</td>
<td>Deep grey matter volume, ml</td>
<td>$-0.15 (0.03)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Level of education, 1–7</td>
<td>$-0.29 (0.09)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MS phenotype (1: relapse onset, 2: primary progressive)</td>
<td>1.48 (0.65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sex (1: female, 2: male)</td>
<td>0.37 (0.33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age, years</td>
<td>$-0.01 (0.02)$</td>
</tr>
<tr>
<td>Predicting future cognitive decline (whole-brain MRI measures)</td>
<td>0.22</td>
<td>37.92</td>
<td><0.01</td>
<td>Cortical grey matter volume, l</td>
<td>$-16.91 (4.38)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MS phenotype (1: relapsing-remitting, 2: progressive)</td>
<td>1.46 (0.43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age, years</td>
<td>$-0.05 (0.02)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average cognition, Z-score</td>
<td>0.37 (0.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Level of education, 1–7</td>
<td>$-0.10 (0.10)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sex (1: female, 2: male)</td>
<td>$-0.07 (0.35)$</td>
</tr>
<tr>
<td>Predicting future cognitive decline (regional MRI measures)</td>
<td>0.35</td>
<td>64.58</td>
<td><0.01</td>
<td>MS phenotype (1: relapsing-remitting, 2: progressive)</td>
<td>1.82 (0.50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anterior thalamic radiation integrity, FA</td>
<td>$-50.36 (16.05)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superior longitudinal fasciculus lesions, %</td>
<td>$-0.60 (0.20)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Age, years</td>
<td>$-0.06 (0.02)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Temporal cortical volume, ml</td>
<td>$-0.05 (0.02)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average cognition (Z-score)</td>
<td>0.46 (0.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Occipital cortical volume, ml</td>
<td>$-0.05 (0.03)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forceps major lesions, %</td>
<td>0.13 (0.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superior longitudinal fasciculus integrity, FA</td>
<td>26.30 (15.33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Level of education, 1–7</td>
<td>$-0.10 (0.11)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sex (1: female, 2: male)</td>
<td>0.22 (0.43)</td>
</tr>
</tbody>
</table>

Logistic regressions analyses with backward selection were performed to predict cognitive impairment at baseline for comparative purposes and to predict cognitive decline during follow-up using baseline measures. Note: average cognition was only included in the models to predict (future) cognitive decline to avoid circularity. The threshold for including predictors was set at $P < 0.10$ and predictors with $P < 0.05$ were considered statistically significant. B = predictor specific b-value; FA = fractional anisotropy; MS = multiple sclerosis; SE = standard error.
for future cognitive decline in early relapsing-remitting multiple sclerosis only, as well as the strong cross-sectional correlations with cognitive functioning at baseline in the entire patient group. The additional presence of cortical atrophy, which is predominant in late relapsing-remitting and progressive patients, would then potentially predispose to further cognitive decline. The almost three times faster yearly rate of cognitive decline for patients in the lowest cortical volume quartile further underscores this idea of an additive effect and could point to an acceleration of cognitive decline after patients cross a particular cortical volumetric threshold.

The underlying mechanisms responsible for cortical grey matter atrophy are still not fully understood. Several MRI studies have shown the relation between regional grey matter atrophy and damage to connected white matter tracts, possibly due to axonal transection followed by Wallerian degeneration (Henry et al., 2009; Jehna et al., 2013; Steenwijk et al., 2015). The central and highly connected nature of deep grey matter regions could perhaps explain why these regions are more prone to develop atrophy early in the disease, with white matter lesion accumulation already present in early multiple sclerosis (Lublin et al., 2014; Azevedo et al., 2018). Besides direct damage to connected tracts, other pathological processes, including local microglial activation, glutamate excitotoxicity and oxidative injury, have also been proposed to contribute to demyelination and neuroaxonal loss and ultimately grey matter atrophy (Klaver et al., 2015; Mahad et al., 2015; Popescu et al., 2015). These mechanisms do not depend on direct damage to connected tracts, but it remains unclear whether these are the main drivers of the pronounced cortical degeneration that is thought to accelerate in progressive multiple sclerosis and whether these processes are also the main culprits in driving cognitive decline in long-term disease.

Results of the four separate regional regression analyses showed the highest explained variance for the regional cortical volume model. This indicates that the model that focused on regional cortical atrophy was better able to predict cognitive decline, compared to models that focused on either deep grey matter atrophy, white matter tract integrity or white matter tract lesion percentages. However, all four models were able to significantly predict cognitive decline, indicating that cortical volume is not the only relevant MRI predictor. The final regional model that combined different types of regional damage showed that the combination of integrity loss in the anterior thalamic radiation, lesions in the superior longitudinal fasciculus and temporal cortical atrophy was best at predicting cognitive decline. As this model showed a substantially larger explained variance compared to the model that included whole brain MRI measures, this indicates the additional value of assessing regional damage. Previous studies have highlighted the relation between thalamic damage and cognitive impairment in multiple sclerosis (Minagar et al., 2013; Schoonheim et al., 2015). However, the finding that integrity damage to the anterior thalamic radiation, which connects the cognitively relevant anterior and dorsomedial thalamic nuclei to the prefrontal cortex (Coenen et al., 2012), can predict future cognitive decline was not previously shown.

A limitation of the current study is the potential (protective) effect of disease-modifying treatments. Besides a reduced rate of white matter lesion accumulation, a reduced atrophy rate has now also been established for a number of treatments (Vidal-Jordana et al., 2015). The protective effect on cognitive decline is less clear, although a few studies indicated such effect (Fischer et al., 2000; Kappos et al., 2016). The current study also indicated an effect of disease modifying treatment usage on information processing speed decline in early relapsing-remitting patients, which should now be further investigated for the continuously expanding range of disease modifying treatment options. Another limitation is the difficulty to disentangle low premorbid grey matter volumes from disease related atrophy. Since larger premorbid brain volume was previously indicated to protect against cognitive decline, a concept called brain reserve (Sumowski et al., 2013), low brain volumes could predispose to more severe cognitive decline. Although the cortical and deep grey matter volume measures used in the current study were normalized for head size, which to a large extent corrects for these effects, this effect of brain reserve could not be evaluated separately. Another possible limitation is the assumption that the curve and magnitude of a cognitive learning effect would be the same in patients and healthy controls, which still needs to be determined. A further point of improvement in future studies could be the application of a more sensitive cognitive assessment battery such as the Minimal Assessment of Cognitive Function In Multiple Sclerosis (MACFIMS) (Benedict et al., 2006) or the shorter Brief International Cognitive Assessment for Multiple Sclerosis (Langdon et al., 2012). While the current study primarily focused on global cognitive decline, cut-offs for clinically meaningful decline should be established for a larger number of cognitive tests, which will enable the comparison of decline predictors on individual cognitive domains. Finally, the assessment of longitudinal MRI changes is critically lacking in current literature. Combined with accurate longitudinal cognitive assessment, these studies have the potential to more precisely delineate the pathological substrates of observed changes in cognitive functioning.

To conclude, in a large cohort of patients with multiple sclerosis, we showed that over a period of 5 years, ~28% of patients demonstrated cognitive decline, which was most pronounced in progressive patients. At baseline, cognitively declining patients already showed more severe MRI measured brain damage. White matter integrity damage and deep grey matter atrophy were the main MRI predictors of future cognitive decline in early relapsing-remitting multiple sclerosis, whereas cortical atrophy was the main MRI predictor of future cognitive decline in both late relapsing-remitting as well as progressive multiple sclerosis. Future
studies should now further elucidate the underlying mechanisms that lead to cortical atrophy as well as its possible role in clinical trials and patient management.

Funding

This study was supported by the Dutch MS Research Foundation, grant numbers 08–650, 13–820 and 14–358e.

Supplementary material

Supplementary material is available at Brain online.

References

