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Abstract
During infection, the pathogen’s entry into the host organism, breaching the host immune defense, spread and multiplication are frequently 
mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host–pathogen interactions (HPIs) is a 
challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about 
these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein–protein interactions 
from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical 
literature is currently available. Here, we introduce a high-throughput literature-mining platform for extracting HPI data that includes the most 
comprehensive to date collection of HPIs obtained from the PubMed abstracts. Our HPI data portal, PHILM2Web (Pathogen–Host Interactions 
by Literature Mining on the Web), integrates an automatically generated database of interactions extracted by PHILM, our high-precision HPI 
literature-mining algorithm. Currently, the database contains 23 581 generic HPIs between 157 host and 403 pathogen organisms from 11 609 
abstracts. The interactions were obtained from processing 608 972 PubMed abstracts, each containing mentions of at least one host and one 
pathogen organisms. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also utilized PHILM to process 25 796 PubMed 
abstracts obtained by the same query as the COVID-19 Open Research Dataset. This COVID-19 processing batch resulted in 257 HPIs between 
19 host and 31 pathogen organisms from 167 abstracts. The access to the entire HPI dataset is available via a searchable PHILM2Web interface; 
scientists can also download the entire database in bulk for offline processing.
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Introduction
Infections are complex biological processes that are common 
among a variety of microbial pathogens, such as viruses, 
bacteria, fungi, protozoa, multicellular parasites and even 
proteins, (4, 25, 51) targeting host organisms from virtu-
ally all kingdoms of life. Infectious diseases dominated World 
Health Organization’s list of threats to global health (78) and 
have an adverse economic impact, costing billions of dollars 
every year (60). Human infections are also the largest part of 
the neglected diseases, a group of tropical diseases that are 
spread among the poorest segment of the world’s population 
(28, 29, 48). The 2019 novel coronavirus [causing coron-
avirus disease 2019 (COVID-19)] exemplified the devastation 
of a highly infectious disease spreading throughout the world 
via modern human mobility, resulting in more than 600 000 
deaths in the USA (12) and more than 4 million deaths world-
wide (79). Knowledge about animal infections also plays an 
important role in human disease discovery and prevention: 

many discovered infectious diseases of wild and domesticated 
animals pose a significant threat to human health (15, 30, 69). 
The pathogen’s strategy to enter host’s organism and breach 
its immune defenses often involves interactions between the 
host and pathogen macromolecules, including proteins, pep-
tides, RNAs and DNAs (24, 35, 62). Understanding the 
molecular mechanisms of host–pathogen interactions (HPIs) 
is a challenging task for both experimental and computa-
tional approaches and is critically dependent on the previous 
knowledge about these interactions (23, 61, 66, 68). In addi-
tion, important conclusions about such interactions can be 
drawn from the studies of other interactions between the 
related host and pathogen organisms, since the molecular 
mechanisms underlying related infectious diseases are often 
common (20). Recently, there have been several approaches 
to gather large datasets of HPIs, either by heuristic filter-
ing from existing protein–protein interaction (PPI) databases 
(6, 10, 11, 18, 37, 46, 53, 67, 80) or by manual curation of 
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HPIs from biomedical literature, primarily for selected hosts 
or pathogens (3, 7, 9, 17, 63, 81). However, an automated 
approach that accurately and comprehensively mines the HPI 
data by integrating heterogeneous sources is yet to be built. 
One of the principal data sources currently unexplored by the 
HPI-mining approaches is PubMed, a database of the peer-
reviewed biomedical literature, which includes more than 32 
million abstracts of research papers and books. This amount 
of data makes it infeasible to comprehensively detect HPI-
relevant abstracts and annotate the HPI manually, even with 
an expert-based search of the PubMed database. Therefore, 
there exists a need for a high-throughput system that not 
only mines HPI data quickly, but also facilitates a platform 
to navigate the mined information at scale. In this work, we 
assembled a high-precision, automated system that mined a 
comprehensive HPI database from PubMed abstracts. The rest 
of this paper is organized as follows: Related Work section 
discusses existing HPI databases and related text mining meth-
ods; Methods section presents our literature mining system 
and large scale information extraction from PubMed; Results 
section shows our database and its comparison against other 
popular databases; Discussion section analyzes characteris-
tics of our work; and Conclusion section summarizes our 
contribution.

Related Work
Curated Databases
During the last decade, a handful of resources that manu-
ally collected HPI data have emerged and can be categorized 
into four groups: (G1) targeting specific hosts or pathogens, 
(G2) targeting pathogen families, (G3) targeting host fam-
ilies and (G4) heterogeneous host and pathogen families. 
Group G1 includes HCVpro (41) for hepatitis C virus, HIV-
1 Human Interaction (2), Proteopathogen (73) for Candida 
albicans and HoPaCI-db (7) for Pseudomonas aeruginosa and 
Coxiella burnetii. Group G2 includes Viruses.STRING (17), 
VirHostNet (32) and VirusMINT (13) for virus pathogenic-
ity; PIG/PATRIC (76) for all types of bacteria; InnateDB (9) 
for immune response of humans, mices and bovines to micro-
bial infection and PHIDIAS (81) for virulence factors of 100 
pathogens. Group G3 includes PHISTO (22) for all pathogen 
types interacting with human, MorCVD (63) for cardiovas-
cular diseases and BioGrid (65) for interactions from Sac-
charomyces cerevisiae, Caenorhabditis elegans, Drosophila 
melanogaster and Homo sapiens. Group G4 includes PHI-
base (71) and HPIDB (3, 40), the largest HPI data source 
that integrated information from other databases. In rare 
databases that did include automated processing, text mining 
was often an insignificant, ad hoc component. For example, 
Viruses.STRING (17) had an entity detection module for virus 
species and proteins (16, 55) based on dictionary matching, 
PHISTO (22) had a custom text-mining module to extract 
names of the experimental methods. The work closest to ours 
is the HPIDB database, which contains manually curated HPIs 
at the macromolecular level. While HPIDB focuses on expert 
manual curation of task-specific HP–PPIs, our work focuses 
on large-scale automatic mining of HP–PPIs from scientific 
literature.

Literature Mining
Literature mining (or text mining) of PPIs can be categorized 
into two groups: (i) host–pathogen interspecies interactions 

and (ii) generic PPIs. A review of computational system biol-
ogy showed that literature mining of HPI was underdeveloped 
(21). For example, pathogen-specific text mining of HPI was 
only focused on Brucella (36). Simpler systems used infor-
mation retrieval search engine to find associations between 
human diseases, genes, proteins and drugs (47). Besides text 
mining, another group of approaches characterized the inter-
action structures by applying interaction network (49, 56, 72), 
interspecies homology (8), sequencing information (5) and 
microarray analysis (45). On the other hand, literature mining 
of generic PPIs has been well-studied, exemplified by a num-
ber of research community initiatives, such as BioCreAtIve 
and BioNLP, and ongoing meetings and workshops (34, 38, 
39, 44, 52, 59). Recent methodologies in this track made use 
of deep neural network architectures such as Convolutional 
Neural Networks (CNN) (14, 57), Long Short-Term Memory 
(LSTM) networks (1, 82), multi-head attention (1, 84) and 
transformers (75). Our work integrates the previous results of 
PHILM on general HPI (70) with recent interactions relat-
ing to COVID-19 from PubMed. Our text-mining method 
was based on pattern matching on the dependency graphs 
of parsed sentences, an approach proven to generate higher-
precision results than both the statistical learning and deep 
learning counterparts (70, 83).

Methods
Literature Mining of HPIs
We utilized an updated version of the original PHILM sys-
tem (70) to mine information about HPI from PubMed 
abstracts. PHILM used link grammars (31) to analyze depen-
dency structures of text sentences and then extracted HPI 
information using pattern matching. A HPI extraction system 
is similar to a general PPI extraction system, with additional 
challenges including (i) correct association of the organism 
for each protein, (ii) ensuring that the extracted interac-
tion is an inter- and not intraspecies interaction and (iii) 
combining the information about an HPI across multiple 
sentences. In this update, we replaced NLProt (50) gene 
normalization functionality by bridging BANNER (43) with
SR4GN (77).

PHILM consisted of four phases (Figure 1): (i) entity tag-
ging, where proteins/genes and organism names were iden-
tified and linked according to species–gene relationship; (ii) 
parsing sentences structure, where input text was parsed into 
dependency structures that allowed resolution of anaphora to 
pronouns, and splitting a complex sentence into simple sen-
tences; (iii) semantic assignment, where HPI roles of compo-
nents of a simple sentence were determined and (iv) extraction 
of HPI information, where both host and pathogenic parties 
of an interaction were localized, together with interaction key-
words, sentence index, uncertainty analysis of the interaction 
and normalizing the interaction across sentences. 

Entity Tagging
This phase identified proteins/genes names and names of 
organisms associated with the proteins/genes. PHILM was so 
sensitive to species association that it was crucial that the par-
ent organism of a protein (which can be either a host or a 
pathogen) was correctly identified. This phase consisted of 
four modules: protein/gene tagging using BANNER, species 
association using SR4GN, heuristic host/pathogen dictionary 
matching and postprocessing.
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Figure 1. Host–pathogen literature mining system. PHILM consisted of four phases: (i) entity tagging, where proteins/genes and organism names were 
identified and linked according to species-gene relationship; (ii) parsing sentence structure, where input text was parsed into dependency structures that 
allowed resolution of anaphors and splitting a complex sentence into simple sentences; (iii) semantic assignment, where HPI roles of components of a 
simple sentence were determined and (iv) extraction of HPI information, where both host and pathogen parties of an interaction were localized, 
normalized and analyzed for uncertainty.

BANNER
BANNER used conditional random field (42) together with 
a dictionary of 334 000 one-syllabus names to identify 
gene/protein names in biomedical text.

SR4GN
SR4GN used a species name dictionary combined with heuris-
tic rules to detect species mentioned in biomedical text. 
After that, species names were linked to gene/protein names 
detected by BANNER by heuristic rules.

Dictionary matching
Organisms found by SR4GN were scanned against our host–
pathogen dictionary to find their roles. To support mining 
COVID-19 information, our dictionary included species of 
the coronavirus genus as pathogen organisms. This module 
also grouped multiple mentions of the same protein/gene into 
a protein/gene entity with a unique UniProt accession num-
ber (6). Likewise, multiple mentions of the same organisms 
were grouped into an organism entity with a unique National 
Center for Biotechnology Information (NCBI) Taxonomy 
ID (26).

Postprocessing
This module used the phrasal structure generated by link 
grammar to (i) infer host/pathogen information not included 

in the dictionary and (ii) re-associate a protein/gene to a 
grammar-supported organism. In the first round, it searched 
for generic keywords (e.g. ‘host’, ‘pathogen’, ‘pathogenic’, 
‘pathogenesis’, etc.), in each phrase that contained uniden-
tified organism names. In the second round, the modules 
searched for co-existence of a protein/gene and an organism in 
a phrase that satisfies one of following two patterns and then 
overwrote the organism association suggested by SR4GN: 
Pattern 1: Organism name + protein name (e.g. ‘Arabidop-
sis RIN4 protein’) and Pattern 2: Protein name + preposition 
+ organism name (e.g. ‘RXLX of human’).

Parsing Sentence Structure
This phase leveraged the grammatical structure of a sentence 
to assist with information extraction. It consisted of four mod-
ules: link grammar, three-layer entity framework, anaphora 
resolution and syntactic extraction.

Link grammar
Link grammar (64) relied on dependency rules to link
pairs of related words. PHILM used link grammar 
implementation of AbiWord (http://www.abisource.com/pro
jects/link-grammar/) that incorporated the original link
grammar with an expansion to biomedical sublanguage,
BioLG (58).
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Three-layer entity framework
To support entity linking and normalization, PHILM imple-
mented a hierarchy consisting of three layers that connects 
textual entities (in middle layer with text sentences) down 
to real entities (in bottom layer with UniProt and NCBI 
Taxonomy identification numbers) and up to link grammar 
nodes (in top layer with link grammar parses). Any change in 
host/pathogen role of an organism or protein–organism asso-
ciation automatically propagated to related entities via the 
three-layer connections.

Anaphora resolution
This module linked entities (protein/gene/organism) with 
respective anaphoric pronouns using Hobbs’ algorithm (33). 
It helped with consolidating HPI information across multiple 
sentences.

Syntactic extraction
This module split a complex sentence into simple sentences 
with four components: Subject (S) + Verb (V) + Object (O) 
+ Modifying phrase of verb (M). The algorithm traversed the 
linkage structure of the complex sentence and extracted tuples 
of four connected link types: S link (connects a subject to a 
verb), RS link (connects a verb to a subject), O link (connects a 
verb to an object) and MV link (connects a verb to a modifying 
phrase).

Semantic Assignment
This phase assigned HPI-related, semantic roles to compo-
nents of a simple sentence. It consisted of two modules: 
interaction keyword tagging and role type matching.

Interaction keyword tagging
This module identified interaction keyword at stemming level. 
Stems were derived from both WordNet (27) lexical database 
and our manually curated dictionary.

Role type matching
This module assigned a role for each syntactic component (i.e. 
subject, verb, object and modifying phrase) of a simple sen-
tence. An elementary role signified that the component only 
contained a single host entity, a single pathogen entity or an 
interaction keyword. A partial role meant that the component 
contained two types of entities. A complete role meant that the 
component contained all three types of entities.

Interaction Extraction and Normalization
This phase was the end-point of PHILM that extracted and 
validated elements of identified host-pathogen interactions. It 
consisted of three modules: interaction extraction, uncertainty 
analysis and interaction normalization.

Interaction extraction
This module first grouped syntactic components so that each 
group jointly contained complete information about an HPI 
(i.e. host + pathogen + interaction keyword entities). After 
that, each group was matched against appropriate interaction 
patterns to extract HPI entities. For example, a pattern ‘S<E> 
V<E> O<E> = P<S> I<V> H<O>’ indicated that if three com-
ponents of a simple sentence were both elementary, then the 
sentence might contain (i) a pathogen entity in its subject; (ii) 
an interaction keyword in its verb and (iii) a host entity in 
its object. PHILM used seven templates that scanned through 

all syntactic components of a simple sentence: subject, verb, 
object and modifying phrase.

Uncertainty analysis
This module scanned the sentence against negation keywords 
(e.g. ‘does not’ and ‘cannot’) and uncertainty keywords (e.g. 
‘possibly’ and ‘may’). A negation/uncertainty keyword was in 
effect if there was a link connecting the keyword with any 
syntactic component of the simple sentence.

Interaction normalization
This module first collapsed duplicate entities that linked to 
the same real entity using UniProt and NCBI Taxonomy 
identification numbers. Then, it collapsed duplicate HPIs hav-
ing the same quadruple of host/pathogen proteins/genes and 
organisms. Furthermore, uncertainty evidence across multiple 
sentences describing the same HPI were aggregated to become 
a unified uncertainty flag.

Large-scale Mining from PubMed
Collecting PubMed abstracts that potentially contained 
general HPIs
We run two customized queries against the PubMed database. 
The first query searched for the presence of at least one host 
organism in the abstracts and it returned 5 008 750 PubMed 
IDs. The second query searched for the presence of at least one 
pathogen organism in the abstracts and it returned 1 459 547 
PubMed IDs. Computing set intersection on these two sets 
of PubMed IDs gave us 608 972 abstracts that contained at 
least both a host and a pathogen organism. We recorded those 
abstracts as potentially containing general HPI information.

Collecting PubMed abstracts that potentially contained 
COVID-19 HPIs
We run the same query used by the COVID-19 Open 
Research Dataset (74) on PubMed. The query retrieved 25 796 
abstracts containing species of the coronavirus genus, includ-
ing Novel Coronavirus (2019-nCoV), Severe Acute Respi-
ratory Syndrome-associated Coronavirus (SARS-CoV), and 
Middle East Respiratory Syndrome Coronavirus (MERS-
CoV). We recorded those abstracts as potentially containing 
COVID-19 HPI information.

High-throughput HPI mining
We run PHILM on our college’s high-performance comput-
ing cluster. The system run on 140 CPUs over 6 days to 
completely process 608 972 general HPI relevant abstracts 
and 25 796 COVID-19 relevant abstracts. Regarding general 
HPI information, the system extracted 23 581 HPI interac-
tions between 157 host and 403 pathogen organisms from 
11 609 relevant abstracts. Regarding COVID-19 HPI infor-
mation, the system extracted 257 interactions between 19 host 
and 31 pathogen organisms from 167 relevant abstracts. All 
found HPI information was transferred to PHILM2Web for 
community benefits.

PHILM2Web web interface
We employed a low-latency, searchable web interface 
(https://github.com/vividvilla/csvtotable) for easy investiga-
tion and analysis of the large number of HPIs extracted from 
the literature. The interface allows browsing though all inter-
actions, instantaneous filtering interactions by keywords and 
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Figure 2. Overlap between PhilmHPI and HPIDB.

downloading the entire interaction database for offline anal-
ysis. Search keywords are matched against both Pubmed 
ID, host organisms/proteins/genes, pathogen organisms/pro-
teins/genes and interaction keywords to facilitate flexible 
search. HPI database for PHILM2Web was extracted from 
PubMed abstracts and deposited automatically using our 
high-precision biomedical literature mining system developed 
specifically to handle the HPI information. PHILM2Web 
currently contains 23 581 general HPIs and 257 COVID-
19-related interactions extracted from 32 million PubMed 
abstracts.

Results
Database
Our HPI database contains 23 581 generic HPIs and 257 
COVID-19-related interactions from 11 609 relevant PubMed 
abstracts. Hereinafter, we denote the generic set of HPI inter-
actions as PhilmHPI and the COVID-19-related set of interac-
tions as PhilmCOVID. To gauge coverage of the HPI database, 
we compare it against two popular databases: HPIDB (3, 40) 
and IntAct (53). For coverage on HPI in general, we com-
pare PhilmHPI against HPIDB, the largest manually curated 
database on macromolecular HPIs. Since HPIDB does not 
contain a section for COVID-19, we compare PhilmCOVID 
against the COVID-19 section of IntAct, the largest manually 
curated database on generic PPIs. 

HPIDB contains 69 787 curated interactions from 4985 
PubMed IDs. Among those, 280 PubMed IDs overlap with 
PhilmHPI. The overlap is <2.5% of total number of abstracts 
mined in PhilmHPI (Figure 2). We further analyze 2046 inter-
action pairs found in the 280 overlapping PubMed IDs. More 
specifically, we take one interaction from PhilmHPI and one 
interaction from HPIDB originating from the same Pubmed 
ID and then we compare their host proteins, host species, 
pathogen proteins and pathogen species (Figure 2).

Under exact matching, two proteins (or species) are consid-
ered matched if their IDs are the same or there is at least one 

exact string match among the synonyms of their names. Syn-
onyms of a protein name are aggregated from three sources: 
(i) from HPIDB entry aliases derived from its respective source 
databases, (ii) if the HPIDB entry has a UniProt ID, then we 
retrieve UniProt’s recommended names, alternative names and 
submitted names and (3) similar to retrieving synonyms from 
UniProt, we also retrieve official symbol, official full name 
and ‘as known as’ sections from NCBI Gene ID. Results show 
that 10% of interactions in PhilmHPI do not match anything 
in HPIDB. We also observe that host/pathogen species pairs 
match much better than host/pathogen protein pairs. A prob-
able reason is that species names are less diverse than protein 
names, and human is the dominant common host species in 
both databases.

We observe that while HPIDB contains standardized names 
taken from source databases such as NCBI and UniProt, 
our PhilmHPI contains article-specific names extracted from 
the article text. For example, abstract 15328338 abbreviates 
human FVT-1 gene as hFVT-1 and mouse FVT-1 gene as 
mFVT-1. As a result, PHILM identifies hFVT-1 and mFVT-
1 as interactants. However, HPIDB links these interactants 
to gene IDs 2531 and 70 750, both having the same alias 
name FVT1. Exact matching fails because of the article-
specific prefixes ‘h’ and ‘m’, together with the extra dash ‘-’ in 
the gene names. We present common mismatch scenarios in
Table 1.

To alleviate this naming diversity issue, we also analyze 
databases overlap using partial matching. Like exact match-
ing, two proteins/species are considered matched if their IDs 
are the same. However, when IDs are unavailable, we compute 
names similarity as string edit distance. We use Natural Lan-
guage Toolkit (NLTK) implementation of edit distance with 
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡 = 2 and then normalized the result by the 
summation of lengths of both names. Two proteins/species 
names are considered partially matched if the normalized 
edit distance score is less than an user-specified threshold. 
We empirically used 0.5 as the partial matching threshold 
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Figure 3. Overlap between PhilmCOVID and IntAct COVID.

Table 1. Mismatch names of the same proteins/genes between PhilmHPI 
versus HPIDB and PhilmCOVID versus IntActCOVID.

PubMed ID PhilmHPI HPIDB Edit distance

15328338 hFVT-1 FVT1 0.2
mFVT-1 FVT1 0.2

9405152 Importin-beta Importin-90 0.25
12198176 E6 protein Protein E6 0.3
21900157 CLE/C14orf166 

protein
C14orf166 0.4

PubMed ID PhilmCOVID IntActCOVID Edit distance

21411533 hACE2 ACE2 0.11
18448518 EF1alpha EEF1AL 0.29
30209168 N protein Nucleocapsid 

protein
0.38

20861307 Small envelope 
protein (E)

E protein 0.49

after observing a large number of reasonably similar names 
retrieved by this threshold. 

IntAct’s COVID-19 section (IntAct COVID) contains 
7315 COVID-19-related, generic PPIs from 256 PubMed IDs. 
Among those, 15 PubMed IDs overlapped with PhilmCOVID. 
We used the host–pathogen species hierarchy in PHILM (70) 
(https://academic.oup.com/view-large/83412208) to filter
HPIs from IntAct COVID. Specifically, (i) NCBI taxonomy 
lineage of interactant species were retrieved, (ii) species were 
classified into different levels in accordance with the host–
pathogen species hierarchy and (iii) an organism from a higher 
level could only be a host of an organism from a lower 
level. After filtering and duplicate removal, we compared the 
remaining 62 interactions from IntAct COVID against Philm-
COVID using the same exact matching and partial matching 
strategies (Figure 3).

Web Interface
Our web interface presents HPI information in a tabular 
format with 12 columns for PubMed ID, host/pathogen inter-
actants, interaction keywords, indexes of sentences where the 
interactions occur and confidence level (Figure 4). Each row 
in the table represents one HPI interaction between one host 
protein/gene and one pathogen protein/gene. For easy refer-
ence, we link abstract IDs to PubMed, organism/species IDs 
to NCBI Taxonomy (26) and protein/gene IDs to UniProt (6). 
The entire database can be downloaded in JSON or CSV for-
mat by clicking corresponding buttons on the top-left corner. 
Investigators can use the search box on the top-right corner to 
instantaneously filter HPI interactions on the web. To report 
error, an investigator clicks the red exclamation mark button 
on the left of the interaction row to open an error reporting 
form displayed at the bottom of the web page. 

Evaluation
We evaluated the accuracy of our text mining system on 
two benchmarking sets: (1) GenericBenchmark contains 266 
generic HPI interactions in 175 PubMed abstracts obtained 
from the original PHILM evaluation (70) and (2) CovidBench-
mark contains 281 COVID-19-related interactions from 167 
PubMed abstracts in PhilmCOVID. The GenericBenchmark 
inherits human labeling from the original PHILM evalua-
tion (70). P.D.N., who holds a Ph.D. in biology, manually 
labeled interactions in CovidBenchmark. In calculating per-
formance measures, an exact match is counted when an 
extracted name (i.e. protein name, gene name or organ-
ism name) either matches exactly to a corresponding human 
labeled name or refers to the same biological entity deter-
mined by human expert. We also report performance mea-
sures on partial matching, that is when two names having a 
normalized edit distance <0.5. Table 2 presents full evalua-
tion results on individual gene/protein, individual organism, 
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Figure 4. PHILM2Web web interface.

Table 2. Accuracy of PHILM2Web assessed over two manually labeled datasets: GenericBenchmark and CovidBenchmark. P: precision, R: recall, F1: 
F1-score

 GenericBenchmark  CovidBenchmark

 Exact Match  Partial Match  Exact Match  Partial Match

 P  R  F1  P  R  F1  P  R  F1  P  R  F1

Gene/Protein Host 0.63 0.13 0.22 0.65 0.14 0.23 0.65 0.62 0.63 0.79 0.75 0.77
Pathogen 0.54 0.15 0.23 0.67 0.18 0.29 0.38 0.4 0.39 0.43 0.46 0.45
Pair 0.4 0.08 0.13 0.46 0.09 0.15 0.16 0.14 0.15 0.17 0.16 0.16

Organism Host 0.67 0.2 0.31 0.67 0.2 0.31 0.78 0.75 0.77 0.78 0.75 0.77
Pathogen 0.58 0.17 0.26 0.65 0.19 0.29 0.54 0.49 0.52 0.63 0.58 0.61
Pair 0.33 0.06 0.11 0.4 0.08 0.13 0.26 0.24 0.25 0.3 0.27 0.28

HPI Interaction 0.15 0.03 0.05 0.21 0.04 0.07 0.09 0.08 0.08 0.11 0.1 0.1

pairs of genes/proteins, pairs of organisms and complete HPI 
interaction.

First, we notice that PHILM2Web has lower F1-scores and 
recalls on GenericBenchmark than CovidBenchmark across 
all measurement categories. The reason is GenericBench-
mark includes multiple host and pathogen species that makes 
HPI information more diverse and complex. Second, par-
tial matching performance is higher than exact matching 
performance on both benchmarks due to the relaxed match-
ing requirement. Third, PHILM2Web excels in high pre-
cision, especially in GenericBenchmark where precision is 
about five times recall across all measurement categories. 
Given the high-throughout nature of PHILM2Web, higher 
precision is desirable to assist investigators in surfing the
literature.

Case Studies
To illustrate utility of the PHILM2Web database, we present 
several PubMed abstracts that exist in both PHILM2Web and 
either HPIDB or IntAct. We notice that PHILM2Web captures 
verbatim entity names reported by authors of the abstracts, 

while HPIDB and IntAct map the names to standardized 
vocabularies such as NCBI (26) and UniProt (6). As a con-
sequence, PHILM2Web is often more specific about pro-
tein/gene names than HPIDB and IntAct. We also present 
several abstracts that are exclusive to PHILM2Web to illus-
trate the coverage issue of manual curation pertaining to 
HPIDB and IntAct.

Case Study 1
PubMed abstract 5113910: Generic HPI found in
both PHILM2Web and HPIDB. In this abstract, both 
PHILM2Web and HPIDB capture H. sapiens as host organ-
ism and Hepatitis C virus as pathogen organism. While 
PHILM2Web detects human RNA helicase as the original 
wording about host protein in the abstract, HPIDB cap-
tures the same host protein aligned to a longer name 
probable ATP-dependent RNA helicase DDX5 in UniProt 
(6). Regarding pathogen protein, PHILM2Web detects the 
specific protein NS5B as HCV RNA-dependent RNA poly-
merase reported in the abstract, while HPIDB shows both 
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the specific NS5B protein and a vague genome polyprotein
that comprises several subgroup proteins including RNA-
dependent RNA polymerase.

Case Study 2
PubMed abstract 20484023: Generic HPI exclusive to 
PHILM2Web. In this abstract, PHILM2Web detects the 
plant host protein RPM1 in Arabidopsis thaliana and the 
pathogen virulence proteins AvrB in Pseudomonas syringae. 
Both HPIDB and IntAct have no information about this 
abstract.

Case Study 3
PubMed abstract 18448518: COVID-related HPI found 
in both PHILM2Web and IntAct. In this abstract, both
PHILM2Web and IntAct capture H. sapiens as host
organism and Severe acute respiratory syndrome-related coro-
navirus as pathogen organism. Regarding host protein, both 
PHILM2Web and IntAct detect the human elongation factor
1-alpha protein, but PHILM2Web keeps the name EF1alpha
reported in the abstract while IntAct shows a standardized 
name EEF1A2 from UniProt (6). Both PHILM2Web and 
IntAct detect N protein as pathogen protein.

Case Study 4
PubMed abstract 17581748: COVID-related HPI exclu-
sive to PHILM2Web. In this abstract, PHILM2Web iden-
tifies H. sapiens host protein Nab and pathogen protein 
SARS-CoV spike (S) glycoprotein in SARS coronavirus. Both 
HPIDB and IntAct have no information about this
abstract.

Discussion
Mechanistic understanding of HPI is important for
pathogenicity and infectious disease research. Our web-
enabled high-throughput database of HPIs extracted from 
PubMed abstracts provides an efficient tool for investigators 
to screen findings reported in the literature, thus avoiding 
unnecessary laboratory experiments and shortening the time 
to develop a cure. PHILM2Web database utilizes a high-
precision specialized text-mining system that emphasizes on 
the accuracy of extracted information. In this information-
overwhelming era, providing users with highly accurate HPI 
information helps save them from spending time and effort 
validating false-positive interactions. Nevertheless, our cur-
rent database only captures HPI information in scientific 
abstracts, leaving potentially relevant information in other 
sections of a scientific paper unexplored. We did not extract 
deep aspects of a macromolecular interaction such as inter-
action detection method, binding type and author-provided 
confidence score according to IMEx standard (54). Our data 
are equivalent to shallow interaction information that com-
prises primary components of an HPI. Finally, our database 
only covers HPI reported in PubMed, the official source of 
peer-reviewed, published papers. Information from non-peer-
reviewed, preprint sources such as bioRxiv, medRxiv and oth-
ers also carries value but is not yet processed by our method. 
In the future, we anticipate to customize neural network 
architectures such as BERT (19) to improve retrieval preci-
sion. Having a high-precision information extraction system is 

important to maintain users’ trust for an automated method. 
We will also explore HPI information in all sections of a full 
paper and extract-relevant IMEx aspects of a macromolecular 
interaction.

Conclusion
We presented PHILM2Web, a web-based, high-throughput 
tool for biologist and healthcare researchers to investi-
gate macromolecular HPIs reported in scientific literature. 
We focused on a high-precision literature-mining system 
to provide high-quality information and efficiently engage 
users. Comparison against other manually curated, expen-
sive human-labored databases (HPIDB and IntAct) showed 
that our database not only has healthy overlap with the man-
ual databases, but also contains a large number of HPI not 
included in the manual databases. Our database covers more 
than twice the number of PubMed IDs compared to HPIDB, 
and a slightly less number of COVID-19-relevant PubMed IDs 
compared to IntAct. To illustrate the accuracy and usefulness 
of the database, we validated it over two manually curated 
benchmarks and provided users’ case studies. We envision 
our contribution will accelerate research in infectious diseases, 
pandemic control and therapeutics.
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