Index

A
absolute value, see amplitude
accommodation space equation, 261
acoustic
body waves, 27
model of earth, 61
reflection, 14
tangent velocity model concept, 22
wave equation, 20
wave phenomena, 17
acoustic impedance (AI), 31, 282
acquisition acreage, 96
cost, 97
footprint, 119
fringe, 115
gondola, 84
parameters, 103
surface, 90
action integral, 19
A/D converter, see analog-to-digital converter (A/D converter)
adapting time sampling, 104
AGC, see automatic gain control (AGC)
AI, see acoustic impedance (AI)
air-gun array, 134
aliasing, 104
Kirchhoff operator, 202
spatial, 105–107, 195, 196, 307
American Petroleum Institute (API), 53
amplitude, 285, 292, 300
balancing, 163
behavior, 31
calibrated rock model for Glenn Sand, 287
corrections, 147
data, 6
predictive rock model, 286–287
spectrum, 301, 304, 306
stack amplitude and R_o, 285–286
TL3D, 292–294
amplitude variation with offset (AVO), 104, 163, 217, 271, 294, 296
A-B crossplotting, 297
analysis, 70, 201, 230
CIG, 295
classes, 297
classification scheme, 296
connection with impedance contrast, 297
physical basis, 295
synthetic CIG gather, 295
analog-to-digital converter (A/D converter), 87, 131–132
angular acoustic reflection coefficient, 34
angular reflection coefficient, 33–34
anisotropy, 70–71, 209, 219–220
annualized rate of return, 98
API, see American Petroleum Institute (API)
application areas in seismic attributes, 272
ASCII line header, 121
attenuation processes, 77
absorption and related processes, 79
amplitude effects related to subsurface properties, 78
tan attenuating media velocity, 80–81
autocorrelation, 165
automatic gain control (AGC), 163
AVO, see amplitude variation with offset (AVO)
azimuth angle, 111–112
distribution, 113, 134–135
B
Backus average, 23–25
bandwidth, 106
beam migration, 202
bin(s), 114, 152
anatomy, 156–158
effects of fold and offset variation, 154–156
size, 126, 152–154
bin-to-bin variations, 155
binning
and CMP stacking, 154
filtering and noise removal, 148–151
migration, 148
seismic data processing, 147
taveltime corrections to seismic data, 147
Biot-Gassmann theory, 291
Biot theory, 75
birefringence, 70
blackbody radiation, 102
body waves, 3, 17
boomer device, 133
borehole problems, 220
brine, 55; see also gas; oil
bulk modulus, 58
tan bulk modulus and velocity, 56–57
density, 56
tan bulk modulus, 18
buried channel system, 265
C
cable feathering, 136, 137
cabling, 90–92, 117–120
calibrated rock model for Glenn Sand, see Glenn Sand calibrated rock model
calibration process, 74
Canadian Department of Fisheries and Oceans (DFO), 139
carbonate(s), 267–269
lithofacies prediction, 272
rock, 101
CDP, see common depth point (CDP)
check shots without sonic, 214
CIGs, see common image gathers (CIGs)
classic data processing, 147
classification analysis algorithms, 202–203
tan kinds of migration, 199–201
tan clastic lithofacies prediction, 272
climate change, 101–102
clustering of data points, 251
CMP, see common midpoint (CMP)
cohesion, 273, 278–280
common depth point (CDP), 91
tan common image gathers (CIGs), 208, 295
flattening, 208
common midpoint (CMP), 114, 193
common midpoint stacking (CMP stacking), 109, 141, 163, 179–180, 199, 235, 285
deconvolution, 163–168
dip moveout, 178–179
dip, 163, 164
NMO, 170–177
sorting, 168–169
statics, 180–184
2D marine seismic data, 181
common offset gather, 91
common offset section (COS), 91
common receiver gather, 91
common reflection point (CRP), 91
compressional wave, 75
computing
geophysics, 159
processing speed, 160–161
RAM and disk storage, 159–160
single-processor computer system, 160
speed and 3D migration, 161–162
3D survey, data storage for, 160
2D survey, data storage for, 160
confining pressure, 51
constant-velocity
bin, 197
migration and modeling pairs, 185–187, 188
relationship, 187
continuous velocity variations, 22
continuous wavelet transform (CWT), 280, 281
conversion factors, 309
convolution, 303; see also deconvolution model, 217, 218
COS, see common offset section (COS)
critical angles, 14, 38, 66–67
crooked-line 2D, 120
cross-spread method, 112–114
cross-spread shooting, 113
bins and fold, 114
crossed array method, 112
CRP, see common reflection point (CRP)
curvature attributes, 276, 278
curve of maximum convexity, 42
CWT, see continuous wavelet transforms (CWT)

D

damping factor, 78
data
aliasing, 109
panel, 6, 7
storage for 2D survey, 160
storage for 3D survey, 160
2D subsets, 236–238
data dimensionality and components
multiple-vintage prestack 3D data set, 142
ultimate seismic experiment, 143
3D prestack data, 141–142
2D prestack data set, 141
data volume, 235
combined horizon time structure and amplitude, 238
data 2D subsets, 236–238
event tracking in, 237
interpretation products, 238–240
loading sheet for 3D seismic survey, 236
seismic data display, 238–240
3D image volume, 235
3D prestack data, 235
decibels (dB), 15
decimal ratio, 15
deconvolution, 163, 303; see also convolution
autocorrelation, 165–166
frequency functions, 164
gap deconvolution, 166
resolution and reliability of data, 167–168
spiking deconvolution, 165
synthetic deconvolution, 167
2D marine common offset data, 168
wavelength, 166
density, 17
depth, 73
correction, 251, 252
depth-weighted average, 23
migration, 200, 202, 210
slices, 238
depth of penetration (DOP), 133
detuning, 224
DFO, see Canadian Department of Fisheries and Oceans (DFO)
DGPS, see differential global positioning system (DGPS)
DHI, see direct hydrocarbon indicator (DHI)
differential global positioning system (DGPS), 135
diffraction events, 41–43
dilatation, 62
dimension, 272
dimensionality, 199
dip
attributes, 276, 278
from seismic slope, 187–188
dip moveout (DMO), 148, 169, 178–179, 199, 209; see also normal moveout (NMO)
Dirac delta function, 301, 302
direct airwaves, 30
direct arrival velocity equation, 28
direct hydrocarbon indicator (DHI), 289

directivity, 11
direct method, 126
direct P-wave, 27, 28
direct velocity information, 23
discrete wavelet transforms (DWT), 280
disk storage, 159–160
dispersion, 77
absorption and related processes, 79
amplitude effects related to subsurface properties, 78
attenuating media velocity, 80–81
displacement, 63
dissolved gas, 57
DMO, see dip moveout (DMO)
dollar value, 97
DOP, see depth of penetration (DOP)
double-square-root equation, 43, 186
downgoing transmission coefficient, 221
DWT, see discrete wavelet transforms (DWT)

E

E&P companies, see petroleum exploration and production companies (E&P companies)
earth, 17
model, 21, 185, 213–214
EBDIC, see Extended Binary Coded Decimal Interchange Code
经济模型, 96
critical equation, 12, 205, 206
elastic
behavior, 17
material, 61
parameters, 4, 62–63
property, 18
wave theory, 61
elastic reflection coefficient, 67
elastic P-P reflection coefficients (R_p), 285–286, 295
elastic R_m reflection coefficient, 69
P- and SV-wave speeds, 68–69
petroleum seismic data, 70
Zoeppritz equations, 68
electromagnetic energy (EM energy), 102
EM energy, see electromagnetic energy (EM energy)
empirical relationships, 73–74
Endangered Species Act (ESA), 139
energy, 102
approach, 19
EM, 102
head-wave, 41
total reflection, 39
equations of motion, 63–64, 75
ESA, see Endangered Species Act (ESA)
Euler-Lagrange equations, 19, 64, 75
Eustatic sea level, 261
causes of change in, 262
exaslop, 161
exploding reflector model, 188–189
exploration process, 96
Extended Binary Coded Decimal Interchange Code (EBCDIC), 93
extreme velocity variation, 259

F
fast and slow S-waves, see shear waves (S)
fast Fourier transform (FFT), 201, 305
fault detection and mapping, 243, 272
depth and fault throw, 245
dip calculation, 245–246
fault throw calculation, 244
faulting, 243
horizontal section faults, 243–244
jump correlation across fault, 245
qualitative fault interpretation, 244
strike and dip relationships, 246
vertical section faults, 243
FC visibility, see fluid contact visibility
(FC visibility)
FD techniques, see finite-difference techniques (FD techniques)
Fermat’s principle, 12–13
FFT, see fast Fourier transform (FFT)
field procedure, 90
roll and cabling, 90–92
vertical stack, 90
filtering process, 148
band-pass filtering on seismic Lena, 150
Lena image, 148
slope filtering, 149
2D FT, 148
fine layering, 23–25
finite-difference techniques
(FD techniques), 202
five-parameter anisotropy, 4
fixed-receiver systems, 136–138
f-k migration, see Stolt migration—theory
flattening, 248–249
flip-flop shooting, 135, 136
floating-point processing speed units, 161
fluid(s), 4, 17
bulk modulus and velocity, 58–59
density, 58, 75
fluid-fluid angular reflection coefficient, 34
substitution, 286
fluid contact visibility (FC visibility), 293
fluid mixture, 57
bulk modulus and velocity, 58–59
density, 58
velocity calculation, 59
water saturation, 57–58
fold, 117–120
CMP stack, 114, 179
fringe, 115
vertical stack, 86
forward Fourier transform, 299
fossil fuels, 100–102
four-dimensional (4D)
seismic, see time-lapse 3D seismic (TL3D)
time-lapse, 142
Fourier amplitude spectra, 79
Fourier transform (FT), 299–300
detection of periodic signals, 305–306
discrete case, 304–305
frequency domain, 300–301
migration by, 201
properties, 302–304
spike input, 301–302
2D FT, 306–307
two spikes, 304
fracture prediction, 272
frequency, 185, 213
domain, 300–301, 305
Fresnel zone, 35
20-Hz Gaussian cosine wavelet, 39
20-Hz Ricker wavelet, 38
geometry in 2D and 3D, 37
phase changes, 36
radius, 36
total reflection energy, 39
fringe, 115
FT, see Fourier transform (FT)
fundamental receiver unit, 86
gains, 97
gas, 17, 51; see also brine; oil
“bright-spot” effect, 58
density, 51–52
gas specific gravity, 51
in Glenn Sand, 288–289, 292
modulus and velocity, 52–53
saturation, 58
specific gravity, 51
Gassmann theory, 76–77, 286, 287, 290
Gazdag migration, 202
general seismic attributes, 271–272
coherence, 278–279, 280
complex amplitude gradient attributes, 279
complex trace attributes, 275–276, 277
dip, azimuth, curvature, and gradient, 276, 278
impedance, 282–284
SD, 279–282, 283
good body algorithm, 289, 290
extraction, 288
geologic age, 73
geologist, 101
geometric spreading, 14–16, 163
gophone, 87, 131
array, 110
ghost effect, 44, 45
notch, 132
reflection, 43–45
glacial cycles, 101
Glenn Sand calibrated rock model, 287; see also time-lapse 3D seismic (TL3D)
gas, 288–289, 292
lateral and time-lapse effects, 287–288
oil saturation, 290, 292
P-wave velocity and density plots, 287
permeability, 291
porosity, 289–290, 292
reservoir properties and seismic amplitude, 288
sandstone-clay, 290–291
sandstone-limestone, 290
temperature, 290
Glenn Sand reservoir, 290
global positioning system (GPS), 90
global warming, 101
GPS, see global positioning system (GPS)
gravity attributes, 276, 278
glacial cycles, 101
head wave, 38
equation, 41
event, 40
Lamb’s problem, 39
relative amplitude plots of data, 40–41
time, 39
time-integrated version of wavelet, 39–40
Hilbert transform, 276
Hooke’s law, 62–63
Hooke’s law plus Newton’s law, 19
horizon attributes, 273
horizon flattening applications, 248–249
for structural interpretation, 250
horizontal transverse isotropy (HTI), 70
horizontal tracking, 246
in faulted terrain, 247–248
in unfaulted terrain, 246
horizon flattening applications, 248–249
3D seismic horizon, 246
workflow, 246–247
HPT, see hydrocarbon pore thickness (HPT)
HTI, see horizontal transverse isotropy (HTI)
Kirchhoff depth migration methodology, 203–206, 210
Kirchhoff depth migration, 202
Kirchhoff operator aliasing, 202

L
Lagragian function, 19
Lagragian mechanics, 19
land 3D design optimization, 123
assumptions, target variables, and constraints, 125–126
direct method, 126
examples, 127–128
hybrid method, 126–127
optimization and inversion, 123–125
land shooting geometry
cabling, 117–120
coordinates and related quantities, 111–112
crooked-line 2D, 120
cross-spread method, 112–114
fold, 117–120
fringe, 115
perimeter shooting, 115–117
SEGY format extension to 3D, 120–121
swath method, 114–115
template shooting, 117–120
Laplacian operator, 20
large-scale industry trends, 100
lateral and time-lapse effects, 287–288
lateral resolution (LR), 192–193
layer thickness estimation, 272
least time principle, 13
linear velocity functions, 22
liquid, 17
list time, 104–105
lithology, 229–230
lithostatic pressure, 51
low-velocity layer (LVL), 81, 182
low-frequency vibroseis, 89
low-velocity layer (LVL), 81, 182
LR, see lateral resolution (LR)
LVL, see low-velocity layer (LVL)

M
map migration, see ray depth migration
marine 3D, 123
data processing, 151
marine acquisition methods, 131
and environment, 138–140
fixed-receiver systems, 136–138
node acquisition, 139
receiver cable, 131–136
towed receiver systems, 113
marine seismic, 32–33
surveys, 131
Marmousi model, 12
mass density, 4
matching pursuit decomposition (MPD), 280–281
maximum near offset, 119
MC. see multicomponent (MC)
mechanical waves, 3, 4
megapascal (MPa), 185
midpoint coverage, 189
midpoint interval, 106
Mie scattering, 78
migration, 148, 185, 199, 229
algorithms, 202–203
constant-velocity migration and modeling pairs, 185–187, 188
dip from seismic slope, 187–188
distance, 188–189, 190
fringe, 115
Gazdag, 202, 210
inverse, 185
kinds, 199–201
Kirchhoff depth migration methodology, 203–206
lateral resolution of 2D and 3D data, 192–193
progress in seismic processing, 208–210
Stolt migration theory, 201–202, 203
survey design for linear v(c) media, 193–197
3D migration, 189–192
variable-velocity migration and modeling pairs, 189, 190
velocities, 104
velocity analysis, 199, 207–208
million instructions per second (MIPS), 161
MIPS, see million instructions per second (MIPS)
Mississippian-Pennsylvanian boundary, 247, 267–268
mode conversion, 66
modern marine shooting, 285
modulus, see amplitude
Monte Carlo simulation, 29
motion equation, 18–20, 21
moveout, 29; see also dip moveout (DMO); normal moveout (NMO)
MPD, see matching pursuit decomposition (MPD)
multiattribute analysis, 275
multicomponent (MC), 87
multiples, 46–48
N
National Oceanic and Atmospheric Administration, 100
natural gas, 51, 95
Elements of 3D Seismology

reservoir fluid properties (Continued)
pressure and temperature range, 51
ranges and dependencies, 59
reservoir properties prediction, 273
case history, 274–275
multiattribute analysis, 275
procedure, 273–274
residual statics, 183
resolution
horizontal, 243 (see lateral)
lateral, 36, 39, 153–154, 185, 192–195, 199, 201, 223, 226, 317
vertical, 103, 216–217, 223–226, 228, 264–265, 281, 293, 323
resonant frequency, 89
reverse time migration (RTM), 203
RGB color, see red-green-blue color (RGB color)
Ricker wavelet, 37
rigidity, 63
rock, 73
density, 75
properties, 32
range of P-wave velocity, S-wave velocity, 80
velocity ranges, 81
roll, 90–92
root-mean-square average, 23
RTM, see reverse time migration (RTM) running at half-Nyquist, 104

S
S-wave, 64
speed, 76
salinity, 55–56
sand-silt-shale, 272
sandstone-clay, 290–291
sandstone-limestone, 290
savings, 97
SC, see supercomputer (SC)
scalar migration, 200
scalar wave speed, 4
SD, see spectral decomposition (SD)
sea level, 101
eustatic, 261
section migration, see ray depth migration sedimentation, 261
SEGY, see Society of Exploration Geophysicists format Y (SEGY)
seismic
acquisition, 90
amplitude, 222
geomorphology mapping, 272
imaging, 106
interpretation, 243
inversion, 124
ray amplitude history, 285
receiver, 6
sequence stratigraphy, 263, 264
slope, 189
source, 213
survey design, 103
trace, 217
velocity, 230
wavefield, 103
waves, 3, 78, 163
seismic attributes, 271
classification schemes, 271–273
general attributes, 275–284
1D attributes, 272
reservoir properties prediction, 273–275
selected 3D attributes, 273
seismic data, 92, 96
acquisition, 21
display, 238–240
lateral resolution, 192
processing, 147
seismic events, 27, 47–49
diffraction events, 41–43
ghost reflection, 43–45
half-spacing, 27–28
point source, 41
uncertainty analysis, 28–41
velocity layering, 45–47
seismic processing
anisotropy, 209
depth migration, 210
migration, 209
progress in, 208
3D processes, 209–210
Seismic Unix open-source system, 147
seismology, 35
seven-layer model, 218
SH, see shear wave with horizontal polarization (SH)
shock wave, 3
splitting, 70
shear wave with horizontal polarization (SH), 4
shear wave with vertical polarization (SV), 4
“shooting between the flags” technique, 113
short-period multiples, 47
short-time Fourier transform (STFT), 279, 280
shot record, 91
shot static of Fourier transform, 147
sifting property, 301
signal-to-noise improvement, 110
signal-to-noise ratio (SNR), 109
single-processor computer system, 160
single-trace windowing, 273
slalom line, 120
slices, 238
slowness, 28
slow wave, see type II wave
Snell’s law, 3, 13–14, 33, 66–67, 200
of reflection, 14, 36
SNR, see signal-to-noise ratio (SNR)
SNR\text{r}_k, see raw signal-to-noise ratio (SNR\text{r}_k)
Society of Exploration Geophysicists format Y (SEGY), 92
extension to 3D, 120–121
headers, 92–93
sorting, 92–93
trace header, 121
soft clastic basins, 22
sonic
log with check shots, 213
logging, 213
velocities, 24
without check shots, 214
sorting, 168–169
sound, 3, 17
waves, 17, 18, 85
source
array, 133–134
directivity, 10–11
Southeast Kansas, 255
Mississippian-Pennsylvanian unconformity, 256
prospect-scale depth conversion example, 257
seismic datum, 258
spatial aliasing, 105, 195, 307
CMP interval, 107
diffraction limbs, 106
growth, 196
synthetic migration, 108–109
spatial sampling, 105
CMP interval, 107
diffraction limbs, 106
synthetic migration, 108–109
spectral blueing, 273
spectral decomposition (SD), 279–282, 283
spherical wavefront, 15
spike input, 301–302
spiking deconvolution, 165
stack(ed)
amplitude, 285–286
channel systems, 265–266
trace, 91
static(s), 180–184
corrections, 180
shifts, 81
steep dips, 105
STFT, see short-time Fourier transform (STFT)
stiffness parameters, 63
stock price, 95–96
Stolt migration, 201, 202
theory, 201–202, 203
strain, 61–62
energy function, 63
strategic planning, 96
stratigraphy, 230, 261, 280
bed truncations, 263
carbonates, 267–269
case history, 267–268

T targeted prestack depth migration, 202 TD, see total depth (TD) tectonic processes, 101 temperature in Glenn Sand, 290 temperature range, 51 template aspect ratio, 119, 126 template shooting, 117–120 temporal aliasing, see aliasing T–F methods, see time-frequency methods (T–F methods) thin-bed analysis, 223, 224 Thomsen parameter, 71 three-dimensional (3D) data before interpretation, 232 dipping reflector, 31 fold, 125–126 geometrical spreading, 16 migration, 161–162, 189–192, 199 prestack depth migration, 161 processes, 209–210 spherical waves, 15 traveltime equation, 41 3D seismic data, 261 acquisition techniques, 85 stratigraphy and, 264–265 3D seismic, financial aspects of economics, 96 exploration process, 96 fossil fuels, cost, and climate, 100–102 industry trends, 99–100 savings/gain model, 96–99 stock price, 95–96 3D seismic survey, 96, 115, 271 cost, 96–99 data storage for, 160 loading sheet for, 236 predesign exercise, 317–318 Tigris-Euphrates valley, 101 tilted transverse isotropy (TTI), 70 time domain, 305 migration, 170, 200 sample rate, 103–104 series, 304 slice, 238, 241, 243 time-slice montage, 265 time-frequency methods (T–F methods), 281 plots, 86 time-lapse 3D seismic (TL3D), 142, 292; see also Glenn Sand calibrated rock model fact sheet, 294 reservoir scorecard, 295 scoring system, 293 soft sandstone reservoir, 292–293 technical risk scores, 295 theoretical time-lapse behavior of R0, 293 time structure, 246 horizon flattening applications, 248–249 horizon tracking in faulted terrain, 247–248 Mississippian-Pennsylvanian boundary, 247 3D seismic horizon, 246 time-to-depth conversion methods, 249–251 time-weighted average, 23 TL3D, see time-lapse 3D seismic (TL3D) total depth (TD), 230 total signal-to-noise improvement, 109–110 total traveltime, 186 towed receiver systems, 131 trace header, 93 transmission angle, 14 geometry, 14 loss, 220–223 traveltime, 12, 214–215, 292 corrections, 147 curves, 29–31 TTI, see tilted transverse isotropy (TTI) tuning, 223–225 turning rays, 197 turning waves, 105 two-dimensional (2D) acoustic waves, 9, 10 acquisition, 113 constant-velocity wave equation, 201 data storage for 2D survey, 160 fold, 125–126 migration, 194, 199 seismic data, 111 stacked section, 185 velocity model, 5 wave, 16 wave-equation finite-difference modeling, 41 2D Fourier transform (2D FT), 148, 306–307 2D land acquisition field procedure, 90–92 hardware, 85–90 historical summary, 85 SEGY headers and sorting, 92–93 2D seismic data, 85 acquisition techniques, 85 large-scale stratigraphic features, 261 stratigraphy and, 261–264 two spikes, 304 two-way transmission coefficient, 221 type II P-wave, 3, 75

U uncertainty, 28–29, 74, 76, 86, 96, 258, 274–275, 291, 297 U.S. National Center for Atmospheric Research (NCAR), 159

V variable-velocity migration and modeling pairs, 189, 190 vector migration, 200 vector seismology, 66 velocity, 15 dispersion, 79 gradient, 22 models, 218–219 variation, 22–23
velocity analysis
 algorithms, 202–203
E&P company, 199
kinds of migration, 199–201
 Kirchhoff depth migration methodology, 203–206
migration, 207–208
progress in seismic processing, 208–210
Stolt migration theory, 201–202
velocity layering, 45, 67
events, 45–46
multiples, 46–47, 48
vertical ray case histories, 251
 Irian Jaya, Indonesia, 251–255
 southeast Kansas, 255–258
vertical resolution, 223, 228
vertical seismic display (VSD), 236
vertical seismic profiles (VSPs), 213, 230
vertical stack, 90, 109
vertical transverse isotropy (VTI), 70, 176
vertical velocity gradient, 22
vibroseis, 85
correlation, 86, 109
volume attributes, 273
volumetric data visualization, 240
volumetric depth conversion, 251
VSD, see vertical seismic display (VSD)
VSPs, see vertical seismic profiles (VSPs)
VTI, see vertical transverse isotropy (VTI)
$v(z)$ velocity model, 213

W
water saturation, 57–58
wave-speed
 factors, 4–6
 ratios, 64
wave(s)
 acoustic model of earth, 61
 anisotropy, 70–71
 attenuation, 77–81
 big picture, 20–21
density, 23
dispersion, 77–81
elastic parameters, 4
elastic reflection coefficient, 67–70
empirical relationships, 73–74
equations of motion, 63–64, 75
 Fermat's principle, 12–13
 fine layering, 23–25
 Huygens' principle, 12, 13
 impedance, 62–63
 Hooke's law and elastic parameters, 62–63
 Huygens' principle, 12, 13
 impulse response, 9
 mechanical waves, 3, 4
 mode conversion, 66
 motion equation, 18–20, 21
 parameters, 17–18, 74–75
 particle motion, 3–4
 phenomena, 204–205
 polarization, 4, 5
 properties, 3
 reciprocity, 9–10
 reflection coefficient approximations, 70
 rock density, 75
 rock velocity ranges, 81
 seismic point of view, 73
 Snell's law, 13–14, 66–67
 source and receiver directivity, 10–11
 speeds, 17, 64–66, 76–77
 strain, 61–62
 stress, 62
types, 27, 64–66, 75
 velocity layering, 67
 velocity variation, 22–23
 wavefield factors, 4–6
 waveform, 6–9
 wavefront and rays, 11–12
 wave equation migration, see wavefield extrapolation migration (WEM)
 waveform, 9
display of wavefield data, 6
 sampling, 109
 wavefield extrapolation migration (WEM), 202
waveform, 6, 292
 line graph of sound wave, 8
 peak-to-peak interval, 7
 sinc wavelet, 9
time trace measurement, 8
 wavefront and rays, 11–12
 wavelet, 8, 215–217, 220
 adjustments, 147
 wavelet packet decomposition (WPD), 280
 wavelet transform (WT), 279, 280
 wavenumber, 185
 WD, see work days (WD)
 weathering layer, 81
 well-log information, 274
 WEM, see wavefield extrapolation migration (WEM)
 whale, 9, 139–140
 wireless technology, 89
 WK, see workstation (WK)
 work days (WD), 233
 workstation (WK), 159
 WPD, see wavelet packet decomposition (WPD)
 WT, see wavelet transform (WT)
 Wyllie time-average equation, 74

Z
Zoeppritz equations, 68
Zoeppritz reflection coefficient, 70