Index

Figures are shown in italic, tables in bold.

3D geological models
Biferno River coastal plain, Italy 184–189, 184–191, 186
Glasgow 63, 64, 67, 69
3D medial axis (3DMA) method 208, 211, 212, 212, 214
Accessing Subsurface Knowledge Network (ASK Network) 70, 78
Acoustic Televiewer (ATV) scans 102, 104–105, 106, 107, 108, 109
Afulilo Dam, Samoa 169–177, 170
evaluation of proposed faults 172–174, 172–175
geological setting 169–172, 170, 171
geotechnical model 175
subsurface investigations 174–175, 175, 176
aggregate resources, Istanbul 55–61
current problems 58, 58, 59
history of quarrying 55–56, 56, 57
recommendations for sustainable management 59–61, 59, 60
AGS see Association of Geotechnical and Geoenvironmental Specialists (AGS); Australian Geomechanics Society (AGS)
alteration processes 94
American Society for Testing and Materials (ASTM) 218, 239
analytical models 164
andesite–dacite flow-dome complexes 93, 96
anthropogenic deposits, Glasgow 63, 69, 69, 73, 74
aquiﬁer protection 46
ASK Network (Accessing Subsurface Knowledge Network) 70, 78
AS Miner Geotechnical Ltd (ASMG) 121, 123, 124, 124, 125, 128, 130
Association of Geotechnical and Geoenvironmental Specialists (AGS) 63, 67, 68–69
ASTM see American Society for Testing and Materials (ASTM)
Atterberg Limits 116, 239–240, 240
Australia
landslides 119–132
costs 125–126, 127, 132
inventories 121–125, 122, 123, 124, 125, 126, 130, 132
risk management issues 119–121, 121
susceptibility zoning 120, 128–130, 129, 130, 131, 131, 132

see also Baralaba Coal Measures; coal seam gas water and clay liners;
Latrobe Valley brown coal;
Pilbara detrital valleys
Australian Geomechanics Society (AGS) 119–120, 121
autoclastic flow breccias 94
Axminster bypass, Devon, UK 164, 164
Baillieston Till Formation 66
Bandanna Formation 101
banded iron formation (BIF) sequences 82, 83
Baralaba Coal Measures 101–110
footwall slope stability
interpretation of Acoustic Televiewer scans 102, 104–105, 106–109
review of slope performance 102–104, 103, 104
regional and deposit geology 101–102
structural interpretation 101, 102, 102
Baynes, Fred 5, 7, 10–11, 12–13
Bellshill Clay Member 66, 69
Berea sandstone
permeability evolution 208, 209, 209
pore geometry and permeability anisotropy 211–214, 212, 213, 214, 214
tortuosity distribution 208, 209, 212, 212, 213, 212, 214
BGS see British Geological Survey (BGS)
BIF see banded iron formation (BIF) sequences
Biferno River coastal plain, Molise 179–193
3D engineering geology model 184–189, 184–191, 186
geological setting 181–184, 182, 183
technical engineering issues 189–191, 192, 193
structural engineering issues 191–193
borehole log data 45–46
Bowen Basin Permian sequence 101
Bowen Basin, Queensland see Baralaba Coal Measures
brecciation 94
Bridgeton Sand Member 66, 69, 73
British Geological Survey (BGS) 39, 63, 67, 68–69, 70, 173
Brockman Iron Formation 82, 83, 83, 84, 87, 88, 88, 89
Broomhill Clay Formation 66, 69
Broomhouse Sand and Gravel Formation 66, 69, 73
brown coals see Latrobe Valley brown coal
Brunauer–Emmett–Teller (BET) method 207
Cadder Sand and Gravel Formation 66, 69
calcite deposits 83, 85, 86
Campomarino Conglomerates Formation 184–185, 184, 185
Capricorn Orogeny 82
Carboniferous subcrop topography, Moscow territory 45–53
geology 46
history of study of 47
karst and karst-suffosion sinkholes 46, 47, 49, 52–53, 52
mapping 45–46, 47–53, 48, 50, 51, 52
stratigraphy 49, 49
subsurface use in Moscow 45, 46, 47, 49
caverns see Longyou Caverns
Channel Iron Deposit (CID) sequences 83, 85
Channel Tunnel, UK 163
China see Longyou Caverns
cities see urban planning; urban population and growth; urban subsurface management
classification systems 9
clays see coal seam gas water and clay liners; porewater salinity and residual shear strength of clays
climate change 119
Cloudy Hill, Hong Kong 163
Clyde Clay Formation 66, 69
Clyde Valley Formation 66, 69
coal mining see Baralaba Coal Measures
coals see Latrobe Valley brown coal
coil seam gas water and clay liners 227–236
behaviour and properties of kaolinite 227–229, 228
compaction testing 229–230, 231–234, 233, 232
consistency limit testing 229–230, 231–234, 231
hydraulic conductivity testing 230, 231, 233, 234–236
sedimentation testing 230–231, 234, 236
test materials 229, 229, 229, 230, 230
codes and standards 9, 10
communications
challenges 3–4, 3, 5–6, 7
urban geoscience research 38–39, 41, 42
INDEX

computed tomography (CT) see microfocus X-Ray CT
conceptual models 161–163, 163
consistency limit testing 229–230, 231–234, 231
Consortium for the Industrial Development of the Biferno River valley (COSIB) 182
copper mining see Tampakan copper porphyry deposit
critical infrastructures see seismic vulnerability assessment of critical infrastructures
CSG see coal seam gas water and clay liners
CT see microfocus X-Ray CT
Culshaw, Martin 6, 7–8
dams see Afulilo Dam, Samoa
data mining 126–127, 128
debris mobility modelling 138
decision support systems 39
de Freitas, Mike 4, 5, 6–7, 8, 9
Department of Infrastructure, Energy & Resources (DIER), Australia 121, 124–125
description systems 9
design event approach (DEA) to landslide assessments 135–136, 138–141, 142
desk study 63–64
diatreme breccias 94
DIER see Department of Infrastructure, Energy & Resources (DIER), Australia
digital data transfer format, AGS 63, 67, 68–69
Dingo fold belt 101
dolerite dykes 82, 90, 93
dune movement 165
dust emission, quarrying 58, 58, 59, 60
dykes, dolerite 82, 90, 93
Early Permian Sills Formation 74
earthquakes
Molise region, Italy 181
Samoa 171–172, 171
see also seismic hazards; seismic vulnerability assessment of critical infrastructures
East European platform 46
ecosystem services 22–23, 23
electronic distance measurement (EDM) 116, 116
engineering geology challenges 2–13
classification systems 9
codes and standards 9, 10
communications 3–4, 3, 5–6, 7
knowledge and responsibilities 12–13
models 10–11, 11
relationship with geology 3–4, 3, 8
research 6–7, 8
role in mining 11–12
technology 7–8, 8
defining 1, 2–3
history 1–2
Enhanced Natural Terrain Landslide Inventory (ENTLI), Hong Kong 136
environmental impacts of quarrying 58, 58, 59–61, 59, 60
ESRI Geodatabase 122, 128
Eurocode 7 160–161, 160
evolutionary conceptual models 163
extreme climatic events 119
factor of safety approach to landslide assessments 135
fault breccias 94
faulting 180, 180
and Afulilo Dam, Samoa 172–174, 172–175
Fookes, Peter 2–3, 4, 8, 9, 10–11, 13
footwall slope stability see Baralaba Coal Measures
funding, urban geoscience research 39–40
future scenarios assessment 26–29, 27, 28
GA see Geoscience Australia (GA)
Gas adsorption method 207
generalized conceptual models 161, 163, 163
geodomes 24
Geographical Information System (GIS) 164
see also Glasgow Geotechnical GIS
geohazards
cities 35, 40–41
urban subsurface 25–26
see also Afulilo Dam, Samoa; hazard maps; landslides; site classification map of Italy
geomorphology and ground models 159, 160, 164, 165–166
Pilbara detrital valleys 83–84, 84
Geoscience Australia (GA) 121–122, 132
geoscientific research for urban planning 37–42
consultation 40–41
dissemination of results 41, 42
funding 39–40
presentation of results 38–39, 42
Geotechnical and Hydrogeological Engineering Research Group, Monash University 220
gold mining see Tampakan copper porphyry deposit
Gourock Formation 66, 69, 73
Griffiths, Jim 6, 7–8, 9, 10
ground failure mechanisms 180, 180
ground models 159–167
analytical models 164
conceptual models 161–163, 163
ground investigation data 67–68
geology of Glasgow 65–67, 65, 66
Hampshire Group 82, 83
hazard maps
landslide hazard, Hong Kong 140–141, 140–144
urban geoscience research 38–39
urban subsurface 26
see also site classification map of Italy
lake hazard zoning 40
landslide susceptibility
Hong Kong 136–138, 139, 140
SE Australia 120, 126–130, 129, 130, 131, 131, 132
high-sulphidation mineralization 94
Hong Kong
ground models 161, 162, 163
landslides 135–145, 138
design event approach (DEA) 135–136, 138–141, 142
hazard assessments 140–141, 140–144
inventory 136, 137, 139
magnitude 138–140
susceptibility mapping 136–138, 139, 140
geotechnical GIS see Glasgow Geotechnical GIS
geotechnical logging system for highly disturbed rocks 94–99, 96, 96, 97
Glasgow City Council 64, 67, 70
Glasgow Geotechnical GIS 63–78
3D geological model of Glasgow 63, 64, 67, 69
data
geological information 69, 69
ground investigation data 67–68, 67, 67, 68
mining information 69–70
database creation 68–69, 68
data confidentiality 70
data presentation 70–78
cross-sections 74, 75
descriptive information summaries 71–74, 73
percentiles used 70–71, 70
summary data plots 70–71, 71, 72
user-created plots 74–78, 76, 76, 77, 78
desk study 63–64
Glasgow Geotechnical GIS 63–78
descriptive information summaries 71–74, 73
percentiles used 70–71, 70
summary data plots 70–71, 71, 72
user-created plots 74–78, 76, 76, 77, 78
desk study 63–64
gold mining see Tampakan copper porphyry deposit
Gourock Formation 66, 69, 73
Griffiths, Jim 6, 7–8, 9, 10
ground failure mechanisms 180, 180
ground models 159–167
analytical models 164
conceptual models 161–163, 163
ground investigation data 67–68
gold mining see Tampakan copper porphyry deposit
Gourock Formation 66, 69, 73
Griffiths, Jim 6, 7–8, 9, 10
ground failure mechanisms 180, 180
INDEX

Hutchinson, John 10–11
hydraulic conductivity testing 230, 231, 233, 234–236
hydrothermal alteration 94
hydrothermal alteration breccias 94, 100
IAEG see International Association for Engineering Geology and the Environment (IAEG)
ICCP see International Commission of Coal Petrology (ICCP)
ICOLD see International Commission on Large Dams (ICOLD)
IGM see Intermediate Geotechnical Material (IGM)
industrial plants see seismic vulnerability assessment of critical infrastructures
INGV (Istituto Nazionale di Geofisica e Vulcanologia) 148, 149, 149
interlayered illite/smectite see porewater salinity and residual shear strength of clays
Intermediate Geotechnical Material (IGM) 219, 219
International Association for Engineering Geology and the Environment (IAEG) 1, 2
International Commission of Coal Petrology (ICCP) 218
International Commission on Large Dams (ICOLD) 172, 174, 175
International Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land-Use Planning (JTC-1) 120, 121
intrusion carapace breccias 94
iron ore mining see Pilbara detrital valleys
Istanbul see aggregate resources, Istanbul
Italian seismic code (NTC 2008) 147–148, 148, 149, 151, 156, 181
Italian Strong Motion Network 218
Italian subcrop 218
Italy see Biferno River coastal plain, Molise; site classification map of Italy
Joffre Member 83, 88, 88
kaolinite 116
behaviour and properties of 227–229, 228
see also coal seam gas water and clay liners; porewater salinity and residual shear strength of clays
karst and karst-suffusion sinkholes 46, 47, 49, 52–53, 52
Killearn Sand and Gravel Member 66, 69, 73
kinematic wedge stability analysis 116, 117
Knill, Sir John 3, 4–5, 6, 9, 11
landslides
design event approach (DEA) 135–136, 138–141, 142
factor of safety approach 135
ground models 164
Hong Kong 135–145, 138
design event approach (DEA) 135–136, 138–141, 142
hazard assessments 140–141, 140–144
inventory 136, 137, 139
magnitude 138–140
susceptibility mapping 136–138, 139, 140
quantitative risk assessment (QRA) 135, 141
SE Australia 119–132
costs 125–126, 127, 132
inventories 121–125, 122, 123, 124, 125, 126, 130, 132
risk management issues 119–121, 121
susceptibility zoning 120, 126–130, 129, 130, 131, 131, 132
Latrobe Valley brown coal 217–226
consolidation tests 221–222, 222, 223, 223, 224
overconsolidation ratio (OCR) 223, 223, 224, 225
pre-consolidation pressure 223, 224–225, 224
stress and deformation 225–226, 225
geology and classification 217–218, 218
physical properties 218–219, 219, 220–221, 220, 222, 221, 222
records 219, 220
Law Sand and Gravel Member 66, 69, 73
linelines see seismic vulnerability assessment of critical infrastructures
light detection and ranging (LiDAR) 138
Limestone Coal Formation 65, 71
liquefaction 180, 180
Logdeck Andesite 93, 96, 100
logging systems 8, 8, 9
Longyou Caverns 1–2, 2, 197–205, 198
clay interlayers 200–204, 200–204, 201, 203
features and dimensions 199, 199, 200
geological setting 199–200
siting methods used during excavation 204–205, 204
time of construction 197–199, 199
Lower Coal Measures Scotland Formation 65, 71, 73, 74
Loy Yang open cut, Victoria 219, 220
see also Latrobe Valley brown coal
mapping landslide hazard, Hong Kong 140–141, 140–144
landslide inventories Hong Kong 136, 137, 139
SE Australia 121–125, 122, 123, 124, 125, 126, 130, 132
landslide susceptibility Hong Kong 136–138, 139, 140
SE Australia 120–126–130, 129, 130, 131, 131, 132
and technology 7–8, 8
urban geoscience research 38–39
urban subsurface 26
see also Carboniferous subcrop
topography, Moscow territory; site classification map of Italy
Marra Mamba Iron Formation 82, 83, 84, 87, 88, 88, 89
mediastral axis method 208, 211, 211, 212, 212, 214
megacities 20, 21, 22, 35
mercury-injection porosimetry 207, 208, 208
microfocus X-Ray CT 208–209, 209, 210
Middle Coal Measures Scotland Formation 65, 71, 73, 74, 76, 77, 78
Millennium Ecosystem Assessment 22
mineralization 93–94
Mineral Resources Tasmania (MRT) 121, 124–125
mining see aggregate resources, Istanbul; Baralaba Coal Measures; Pilbara detrital valleys; Tampakan copper porphyry deposit
Molise region, Italy see Biferno River coastal plain, Molise
Monash University 220
Montesecos Clays Formation 184–185, 184, 186, 186, 188, 189
montmorillonite 116
Morgenstern, Norbert 11
Morwell Formation 217–218, 218
Moscow see Carboniferous subcrop
topography, Moscow territory
MRT see Mineral Resources Tasmania (MRT)
National Geotechnical Properties Database (NGPD), UK 67, 68–69, 68, 71
National Landslide Hazards Mitigation Strategy, US 120, 132
natural capital 19, 22–23, 24
natural hazards cities 35, 40–41
urban subsurface 25–26
see also Afulilo Dam, Samoa; hazard maps; landslides; site classification map of Italy
Newman Member 83, 83, 88, 90

Downloaded from https://pubs.geoscienceworld.org/books/chapter-pdf/3926238/backmatter.pdf
New South Wales, Australia
landslide costs 125–126, 132
landslide inventories 121, 122–123, 122, 123
landslide susceptibility modelling 126–128, 129
New Zealand see Northern Wedge Failure (NWF)
NGPD see National Geotechnical Properties Database (NGPD), UK
noise pollution, quarrying 58, 59–60, 60
Northern Wedge Failure (NWF) 111–118
engineering geology model 112–116, 113, 114, 115
failure geometry and initiation 111
kinematic stability analysis 116, 117
monitoring 112, 112, 116, 117, 118
recommendations 118
sensitivity analysis 117, 117

Oakover Formation 83
observational models 163, 164
Ophthalmian Orogeny 82
Paisley Clay Member 66, 69, 71, 72, 73
Pantano Clays 186, 186, 189
Paraburdoo Member 83, 83, 84, 88
Passage Formation 65, 71, 71, 73, 74
peak ground acceleration (PGA) 180, 183
periglacial environment, conceptual model of 161, 163
Philippines see Tampakan copper porphyry deposit
Pilbara detrital valleys 81–92, 82
detrital engineering geological models 85–87, 85, 86–87, 90
geochemical and geophysical properties 88–90, 89
geology 81–84
Archean bedrock 82, 83
Cenozoic detrital deposits 82–83, 85–87, 85, 86–87, 88, 88, 90
valley geomorphology 83–84, 84
methodology for using geochemical and geophysical data 84–85
mine slope stability and design 90, 90, 91
pipeline systems see seismic vulnerability assessment of critical infrastructures
planning 35–42
geoscientific research for 37–42
consultation 40–41
dissemination of results 41, 42
funding 39–40
presentation of results 38–39, 42
landslide susceptibility zoning
Hong Kong 136–138, 139, 140
SE Australia 120, 126–130, 129, 130, 131, 131, 132
planning system 36–37
see also Glasgow Geotechnical GIS
pollution, quarrying 58, 58, 59–61, 59, 60
population see urban population and growth
porewater salinity and residual shear strength of clays 239–248
discussion 246, 247, 247
materials 239–240, 240
sample preparation and test method 240–242, 240
test results 241–245, 242–247, 243
porous rocks 207–214
3D medial axis method 208, 211, 212, 212, 214
Berea sandstone
permeability evolution 208, 208, 209, 209
pore geometry and permeability anisotropy 211–214, 212, 213, 214, 214
tortuosity distribution 208, 209, 212, 213, 214
microfocus X-Ray CT 208–209, 209, 210
porphyry alteration processes 94
porphyry deposits see Tampakan copper porphyry deposit
quantitative risk assessment (QRA)
industrial plants 179
landslides 135, 141
quarrying see aggregate resources, Istanbul; Northern Wedge Failure (NWF)
Quaternary deposits
Serracapriola Sands Formation 184–185, 184–185
Quaternary deposits
Serracapriola Sands Formation 184–185, 184–185
Queensland, Australia
coal seam gas water and clay liners
Rangal Coal Measures 101
research grants 39–40
residual shear strength of clays see porewater salinity and residual shear strength of clays
Rewan Group 101–102
risk versus innovation 9, 10
river channel scour 165
rockfalls 164
rock mass classification systems 9
Ross Sand Member 66, 69, 71, 72, 73
salinity see coal seam gas water and clay liners; porewater salinity and residual shear strength of clays
Samoa see Afulilo Dam, Samoa
Scottish Coal Measures Group 65, 71, 71, 73, 74, 76, 77, 78
SECV see State Electricity Commission of Victoria (SECV)
sedimentation testing 230–231, 234, 236
see 5 data mining software 126, 127, 128
seismic amplification factors 147, 156, 157, 158
seismic hazards
Molise region, Italy 183–184, 183
see also Afulilo Dam, Samoa; site classification map of Italy
seismicity, Samoa 169–172, 171
seismic vulnerability assessment of critical infrastructures 179–193
Biferno River coastal plain, Italy
3D engineering geology model 184–189, 184–191, 186
geological setting 181–184, 182, 183
groove engineering issues 189–191, 192, 193
structural engineering issues 191–193
integrated approach 181
seismic soil–structure interaction mechanisms 180, 180
sensitivity analysis 117, 117
Serracapriola Sands Formation 184–185, 184, 185
SGS see strong ground shaking (SGS)
sinkholes see karst and karst-suffosion sinkholes
site classification map of Italy 147–158, 148
applications 154–156, 155, 156, 157
critical aspects 156–158
future developments 158
lithoseismic classes map 151, 152, 152, 153, 158
method 150–151, 151–153, 152, 152, 153, 154
reference studies 147–151, 148, 149, 149
seismic amplification factors 147, 156, 157, 158
site investigations 5, 6
see also ground models
site-specific conceptual models 161–163
site-specific observational models 164, 164
siting methods, Longyou Caverns 204–205, 204
slope stability 161, 180, 180
see also Baralaba Coal Measures; Pilbara detrital valleys
smectite see porewater salinity and residual shear strength of clays
Stapledon, David 3–4, 5, 6, 8, 8, 9
State Electricity Commission of Victoria (SECV) 217, 218, 220
<table>
<thead>
<tr>
<th>Stockworking</th>
<th>University of Wollongong (UoW)</th>
<th>Urban Sustainable Subsurface Use Methodology (USSUM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strathkelvin Clay and Silt Member</td>
<td>121, 122–123, 122, 123, 126–128, 129</td>
<td>29–30, 29</td>
</tr>
<tr>
<td>Stratovolcanic complex</td>
<td>Upolu, Samoa see Afulilo Dam, Samoa</td>
<td>Victoria, Australia</td>
</tr>
<tr>
<td>Strong ground shaking (SGS)</td>
<td>Upper Coal Measures Scotland</td>
<td>landslide inventories 121, 123–124, 124, 125</td>
</tr>
<tr>
<td>Sustainable development</td>
<td>Upper Limestone Formation</td>
<td>landslide susceptibility modelling 128–130, 130, 131</td>
</tr>
<tr>
<td>SWedge</td>
<td>65, 71, 73</td>
<td>see also Latrobe Valley brown coal volcanoes, Samoa 171, 171, 172–173</td>
</tr>
<tr>
<td>Tampakan Andesite Sequence (TAS)</td>
<td>Urban Futures methodology 26–29, 27, 28</td>
<td>wastes, quarrying 58, 59</td>
</tr>
<tr>
<td>Tampakan copper porphyry deposit</td>
<td>Urbanization 19, 20–22, 20, 22, 35–36</td>
<td>wedge failures see Northern Wedge Failure (NWF)</td>
</tr>
<tr>
<td>Engineering geology model 99–100</td>
<td>Urban planning 35–42</td>
<td>West Angola Member 83, 83, 84, 88</td>
</tr>
<tr>
<td>Geological setting 93, 94, 95, 96</td>
<td>Geoscience research for 37–42</td>
<td>Western Australia see Pilbara detrital valleys</td>
</tr>
<tr>
<td>Geotechnical logging system 94–99, 96, 97</td>
<td>Consultation 40–41</td>
<td>Western Midland Valley Westphalian to Permian Sills 65, 71, 73, 74</td>
</tr>
<tr>
<td>Mineralization, alteration and brecciation 93–94</td>
<td>Dissemination of results 38–39, 42</td>
<td>Whaleback Shale Member 83, 88, 88</td>
</tr>
<tr>
<td>Tasmania, landslide inventories 121, 124–125, 126</td>
<td>Funding 39–40</td>
<td>Whitehall Quarry, New Zealand see Northern Wedge Failure (NWF)</td>
</tr>
<tr>
<td>Technology 7–8, 8</td>
<td>Presentation of results 38–39, 42</td>
<td>Wilderness Till Formation 66, 69, 73</td>
</tr>
<tr>
<td>Tongan Trench 169–172, 171</td>
<td>Planning system 36–37</td>
<td>Wireline monitoring 112, 112</td>
</tr>
<tr>
<td>Tortuosity distribution, Berea sandstone 208, 209, 212, 213, 214</td>
<td>See also Glasgow Geotechnical GIS</td>
<td>Wittenoom Formation 83, 83</td>
</tr>
<tr>
<td>Transient pulse test 208</td>
<td>Urban subsurface management 19–31</td>
<td>X-ray computed tomography (CT) 208–209, 209, 210</td>
</tr>
<tr>
<td>Transportation issues, aggregates 58, 59, 60–61</td>
<td>Ecosystem services 22–23, 23</td>
<td>X-ray diffraction (XRD) 239</td>
</tr>
<tr>
<td>Trial adits, Longyou Caverns 204, 205</td>
<td>Future scenarios assessment 26–29, 27, 28</td>
<td>INDEX 253</td>
</tr>
<tr>
<td>Tsunami, Samoa</td>
<td>Urban Sustainable Subsurface Use Methodology (USSUM)</td>
<td>29–30, 29</td>
</tr>
</tbody>
</table>

Tasmania, Australia
- Landslide inventories 121, 123–124, 124, 125
- Landslide susceptibility modelling 128–130, 130, 131

Urbanization
- 19, 20–22, 20, 22, 35–36
- 19, 20–22, 20, 22, 35–36
- 19, 20–22, 20, 22, 35–36
- 19, 20–22, 20, 22, 35–36
- 19, 20–22, 20, 22, 35–36

Urban Planning
- 36–37
- 35–36
- 35–36
- 35–36
- 35–36

Urban Sustainable Subsurface Use Methodology (USSUM)
- 29–30, 29

Victoria, Australia
- Landslide inventories 121, 123–124, 124, 125
- Landslide susceptibility modelling 128–130, 130, 131
- *See also* Latrobe Valley brown coal volcanoes, Samoa 171, 171, 172–173

Wastes, quarrying
- 58, 59

Wedge Failures
- *See Northern Wedge Failure (NWF)*

West Angola Member
- 83, 83, 84, 88

Western Australia
- *See Pilbara detrital valleys*

Western Midland Valley Westphalian to Permian Sills
- 65, 71, 73, 74

Whaleback Shale Member
- 83, 88, 88

Whitehall Quarry, New Zealand
- *See Northern Wedge Failure (NWF)*

Wilderness Till Formation
- 66, 69, 73

Wireline monitoring
- 112, 112

Wittenoom Formation
- 83, 83

X-ray computed tomography (CT)
- 208–209, 209, 210

X-ray diffraction (XRD)
- 239

Yallourn Formation
- 217–218, 218

United Kingdom National Ecosystem Assessment
- 22–23