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time scale. Seasonal prediction covers the next month 
to a year into the future and presents the information 
in terms of monthly or seasonal means. Decadal pre-
dictions, which are currently experimental, are being 
run 10 years into the future, and the information is 
being viewed mostly as annual to decadal averages. 
Second, the climate processes and/or phenomena 
that drive the variability on different time scales are 
different. For seasonal climate, the dominant driver 
is the El Niño–Southern Oscillation (ENSO) phenom-
enon. Variability in the tropical oceans outside the 
Pacific is important for regional climate variability, 
although ENSO can inf luence the Indian Ocean 
and tropical Atlantic Ocean variability also. For 
decadal-scale climate variability, the main oceanic 
drivers appear to sit in the midlatitude oceans; Pacific 
decadal variability (PDV) and Atlantic multidecadal 
variability (AMV) have their largest sea surface tem-
perature (SST) expression outside the tropics, and 
this SST variability may be linked to much deeper 
oceanic processes compared to ENSO. However, the 
decadal patterns of decadal variability do extend into 
the tropical oceans, and it may be that much of their 
impact is communicated to the atmosphere through 
these tropical SST changes. In addition, the secular 
response to man-made changes in atmospheric 
composition (i.e., greenhouse gases and aerosols) is 
an important source of predictability on the decadal 
time scale, but less so on the seasonal time scale.1
Finally, the decisions affected are different. Seasonal 
predictions are more relevant to management deci-
sions, whereas decadal predictions could be useful to 
planning decisions.

So, how is it that two vastly different time scales 
could work so well together in a climate services and 
research perspective? Despite the obvious differ-
ences, there are also common, even complementary, 
elements. Where the synergy is greatest between 
seasonal predictions and the burgeoning research 
on decadal predictions is through their dependence 
on forecast systems. Both prediction efforts use the 
same type of general circulation models, and they 
make use of the same global observing systems. 
Beyond these common priority elements, however, a 
number of other aspects exist for which past, present, 
and future investments aimed at one time scale could 
benefit the other.

COMMON PRIORITIES. The need for adequate 
observational networks and improved dynamical 
models appears in almost every recommendation 

list related to predictive information that one is 
likely to encounter. Prediction systems are based on 
observations, models, and their connection through 
assimilation systems. The three together is the three-
legged chair of prediction systems (NRC 2010). Any 
weak leg compromises the system, and improvements 
in one leg often lead to improvements in the other 
legs. Recent advances in ENSO prediction skill at 
the European Centre for Medium-Range Weather 
Forecasts (ECMWF) were accomplished by both 
improvements to their model and improvements to 
the ocean data assimilation system (Balmaseda et al. 
2010). Additionally, hindcasts from the ECMWF 
forecast system have demonstrated the value of the 
Tropical Atmosphere Ocean (TAO) array of data 
buoys in the tropical Pacific Ocean; a dramatic drop 
in ENSO forecast error coincides with the completion 
of the array in the early 1990s (Stockdale et al. 2011). 
This error reduction is largest for forecasts initiated 
in February, when model biases in their model are 
minimum. This reveals the connections between 
these three elements of forecast systems: observa-
tions and their assimilation into models are crucial 
for prediction, but better models better elucidate the 
value of the observing network.

The quality of predictive climate information de-
pends on the quality of models. Models are far from 
perfect in their discretized, parameterized representa-
tion of the climate system. Long-term commitment of 
resources to model and assimilation system develop-
ment will pay off with improved climate information 
on all time scales. In order to address longstanding 
systematic model errors, the community needs to 
improve the diagnosis of key physical processes 
contributing to these errors (Jakob 2010). Many of 
the mean biases and variability biases that hamper 
predictions appear within the first few hours or days 
of the forecast; for example, characteristics like the 
diurnal cycle, important in warm-season precipita-
tion, are often not well represented. Indeed, it is criti-
cal that our climate prediction systems simulate the 
statistics of regional weather with fidelity given that 
the upscaling of that weather becomes the seasonal-
to-decadal mean and also that the weather char-
acteristics (e.g., changing precipitation intensity or 
frequency) determine many of the impacts. To better 
represent the temporal characteristics of the climate, 
forecast systems must be developed and tested across 
a range of time scales, which also brings the potential 
for stronger collaboration between the weather and 
climate prediction communities (Hurrell et al. 2009). 

1 When they occur, the impacts of explosive volcanic eruptions are important on both seasonal and multiannual time scales.
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Furthermore, the development of climate models 
with better horizontal and vertical resolution should 
be a priority in order to improve the representation 
of coupled ocean–atmosphere variability (Guilyardi 
et al. 2004) and stratospheric effects on surface and 
tropospheric climate anomalies (Baldwin and 
Dunkerton 2001; Ineson and Scaife 2009). A priority 
is to implement the recommendations from the World 
Modeling Summit for Climate Prediction (Shukla 
et al. 2009), which calls for dedicated computational 
facilities 1,000–10,000 times more powerful than 
available today in order to address these issues.

Improvements of models and assimilation systems 
cannot proceed without an adequate observational 
network. The Global Climate Observing System 
(GCOS), including its many ocean and land compo-
nents, is essential for improving seasonal prediction 
and developing decadal prediction. Real-time, com-
plete observations provide the initial conditions to 
the predictions, and long, stable histories of ocean, 
atmosphere, and terrestrial climate that are neces-
sary to verify the models’ ability to make predictions. 
The observational network, originally designed for 
weather prediction, is only recently coming to grips 
with the additional requirements to collect, integrate, 
and sustain quality observations for climate time 
scales, but such a climate observing system is still far 
from being realized (GCOS 2010).

Individual observations—localized snapshots 
of the climate—have limited value until those data 
are integrated into the big picture that can be used 
for monitoring, initialization and/or verification of 
predictions, and diagnostic validation of models. 
Improved methods of analyzing the observations 
and assimilating them into climate models, including 
treatment of nonstationary observing systems,2 would 
benefit research and prediction and provide a more 
stable monitoring platform for climate variability and 
change. Whether we consider salinity measurements 
in the open ocean or rain gauge data in most of the 
developing world, many climate data records are short 
relative to the long periods over which we need to test 
models. Ways of procuring and protecting climate 
observing systems are urgently needed. Additionally 
needed are increased international coordination on 
data handling standards and mutually applied meth-
odologies to assemble, quality-check, reprocess, and 
reanalyze datasets, and to estimate their uncertainties. 
Such integration should be considered as an essential 
component of the climate observing system.

Ocean observations are particularly crucial as 
initial conditions for both seasonal and decadal 
prediction to obtain the predictability arising from 
slow changes in ocean circulation or heat content 
anomalies. Recent improvements to the coverage of 
the ocean with Argo floats provide unprecedented 
measurements of subsurface ocean temperature and 
salinity that are particularly relevant to the initializa-
tion of decadal predictions. As mentioned before, the 
TAO array of buoys is essential to the initialization of 
ENSO predictions and also to real-time monitoring 
of tropical Pacific variability. This is also important 
because the improved representation of the evolution 
of ENSO in models may improve simulation and pre-
diction of Pacific decadal variability (Vimont et al. 
2003). Additionally, we must quantify the benefit of 
satellite data to the initialization of the ocean, sea ice, 
snow cover, and soil moisture, which leads to infor-
mation not only on how these elements contribute 
to seasonal prediction but also on their role in, and 
response to, decadal-scale variability.

LESSONS FROM SEASONAL PREDICTION 
RELEVANT TO DECADAL PREDICTION 
RESEARCH. Dynamical seasonal prediction sys-
tems are operational or quasi operational at a number 
of forecasting centers around the world (e.g., Saha 
et al. 2006; Stockdale et al. 2010) and have been since 
the early 1990s in some cases. Much of the experience 
gained by the seasonal prediction community over the 
last couple decades can be applied to decadal predic-
tion. Some of these lessons inform our expectations of 
what can skillfully be predicted. For example, the pre-
diction time horizon of a phenomenon is shorter than 
the time scale of the phenomenon. ENSO has a time 
scale of 3–7 years but is only predictable about 6–12 
months in advance, perhaps as much as 18 months for 
very strong events (Chen et al. 2004). A similar result 
is emerging for AMV from “perfect model” studies 
(i.e., prediction experiments in which the model tries 
to predict itself), where ocean initial conditions may 
supply 10–15 years of predictability in upper-ocean 
heat content for certain regions, while the time scale 
of the variability is 20 years or longer (Branstator 
and Teng 2010; Msadek et al. 2010). This important 
aspect of the forecasts must be communicated to 
people considering the use of decadal predictions. 
However, while natural climate variability might be 
the dominant driver of time-varying anomalies out to 
a decade ahead for some regions, that natural climate 

2 Here, “nonstationary observing systems” refers to the geographic relocation of meteorological stations, or the change of 
instrumentation or technology used to monitor the weather and climate over time.
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variability may not be predictable via initialization; 
in contrast, the slowly developing response to forced 
climate change, although of smaller magnitude at 
this time scale, may be predictable, at least in sign 
(e.g., Lee et al. 2006; Hurrell et al. 2010). Beyond a 
decade ahead, uncertainty in the response to external 
forcing becomes increasingly important as a source 
of prediction error, while decadal variability remains 
as a significant additional uncertainty, especially at 
regional scales (Hawkins and Sutton 2009).

Another insight of the seasonal prediction com-
munity is that the spatial scales of predictable signals 
for climate are much larger than the predictable 
spatial scales for weather. Spatially heterogeneous 
variability within a regional climate signal represents 
mainly unpredictable noise of more random, local-
ized processes typically related to weather transients. 
The spatial scales of predictable climate signals typi-
cally increase for longer time scales, suggesting that 
the predictable spatial scales will be even larger for 
decadal variability than for seasonal variability. Thus, 
regional-scale climate information must serve as the 
basis for interpretation of the local scales at which 
many decision systems operate. If the regional-scale 
information is not represented correctly, the local-
scale information and the associated uncertainty will 
be meaningless.

The quantitative assessment of predictable time 
horizons and spatial scales of any given prediction 
system requires hindcast studies, which are predic-
tions of past variability. Large sets of hindcasts are 
necessary to estimate skill for both seasonal and 
decadal predictions, to sample different phases of 
variability (e.g., active vs quiet periods or positive 
vs negative anomalies), and to quantify and under-
stand different sources of predictability. For seasonal 
climate, hindcasts, in combination with forecasts, 
allow climate scientists to calibrate and correct biases 
in their forecasts. Hindcasts also allow scientists 
from other fields and decision makers to assess the 
potential value of the forecast information. This will 
be more challenging for decadal prediction where 
few realizations of decadal variability exist in the 
instrumental record to test our ability to predict 
it. This again calls for improved data assimilation 
methodologies that can make the most of the limited 
historical data we have (Balmaseda et al. 2010).

All relevant data, including observations, hind-
casts, and forecasts, must be publically accessible 
for researchers and decision makers to benefit from 
it. Ideally the data would be accompanied by infor-
mation on how to interpret and use the data, and 
perhaps what might constitute its misuse. It has been 

demonstrated in a number of cases that greater access 
to data leads to wider use of the information, such 
as the availability of long model hindcasts from the 
Development of a European Multimodel Ensemble 
System for Seasonal-to-Interannual Prediction 
(DEMETER; see www.ecmwf.int/research/demeter/) 
(e.g., Palmer et al. 2004), and long simulation and 
hindcast runs from the Coupled Model Intercom-
parison Project phase 3 (CMIP3; Meehl et al. 2007) 
of the World Climate Research Programme (WCRP). 
Coordinated sets of decadal prediction hindcasts, 
such as those from ENSEMBLE-based predictions 
of climate changes and their impacts (ENSEMBLES; 
http://ensembles-eu.metoffice.com), are beginning 
to become available (van der Linden and Mitchell 
2009) and will be part of the Fifth Assessment Report 
of the Intergovernmental Panel on Climate Change 
(IPCC AR5), but in order to interpret those data, 
one will also need access to relevant observations for 
bias correction and verification. Insufficient data 
access does remain an obstacle to wider use of the 
predictions. The World Meteorological Organization 
has designated a lead center of global producing 
centers (www.wmo.int /pages /prog/wcp/wcasp
/clips/producers_forecasts.html), but those data 
are not openly available, and hindcast data are not 
available from several of the prediction systems that 
participate. On the other hand, the Working Group 
on Seasonal to Interannual Prediction (WGSIP) of 
the WCRP is currently coordinating the Climate-
System Historical Forecast Project (CHFP), which 
will provide access to a wide range of hindcasts to 
evaluate subseasonal-to-decadal predictions of the 
climate system (Kirtman and Pirani 2009).

Additional important lessons that have been 
realized in the seasonal prediction community 
include the following: 1) forecasts must be issued 
probabilistically and require ensemble sizes that 
are commensurate with signal-to-noise levels of 
the temporal and spatial scales being predicted; 2) 
forecast quality must be assessed through a suite of 
metrics, as no single metric can cover all aspects of a 
forecast relevant to users (e.g., Jolliffe and Stephenson 
2003; Hurrell et al. 2010); and 3) the climate system 
exhibits conditional skill (e.g., Goddard and Dilley 
2005; Collins et al. 2006) and identification of the 
times when forecasts are likely to be more accurate 
leads to better decision systems (Goddard et al. 2010). 
These lessons are widely recognized in the seasonal 
prediction community, and they will apply to decadal 
predictions too.

The systematic use of seasonal prediction infor-
mation is much less developed than the predictions 
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themselves. In part this is because the predic-
tion information evolved independently from its 
application. We now know that the content and 
format of the information required can be quite 
varied from sector to sector or even between regions 
for a given sector. While those who apply the climate 
information cannot determine the science just based 
on demand, their concerns, needs, and understanding 
of the information can inform where investment and 
communication of the science will have the greatest 
impact. Since considerable research and development 
is required to better incorporate climate information 
into decision systems, we will return to that as a point 
of investment in the future. The main lesson here 
is that there appears to be value in the cooperation 
between scientists and decision makers in developing 
decision systems for climate risk management.

INVESTMENTS IN SEASONAL PREDIC-
TION THAT WILL BENEFIT DECADAL 
PREDICTION RESEARCH. Although seasonal 
prediction is a relatively mature practice, signifi-
cant room for improvement remains. Continued 
investments in prediction techniques, including 
improvement to variability diagnostics and to the 
representation of interactions between climate system 
components, are necessary. This research can also 
advance decadal prediction. Additionally, climate 
information often must be quantitatively practical 
and meaningful at the scales on which decisions 
will be made. Approaches such as statistical down-
scaling of information in space and/or time or the 
transformation of coarser-scale climate information 
into other climate-related variables (flood risk, dry 
spells, maize yield, etc.) that are more congruent with 
societal concerns must be tested first in the seasonal 
prediction arena.

As stated early on, improved dynamical models 
is a common priority of climate prediction at all 
time scales. While work to improve dynamical 
models, which benefits all climate prediction time 
scales, is in progress, care and resources should be 
given to the estimation of quality and uncertainty, 
including allowance for model error, of existing 
forecast systems. Reliable estimates of uncertainty 
allow decision makers to account properly for risk. 
Given inevitable uncertainties in model predictions, 
the development of ensemble techniques to realisti-
cally sample the consequences of initial state and 
model errors is important. Decadal predictions will 
additionally require estimates of the anthropogenic 
contributions to forecast uncertainty and skill. The 
techniques that will allow us to estimate uncertainty 

for the whole range of climate prediction time scales 
will likely be developed in the context of seasonal 
prediction.

As a complement to prediction research, empirical 
and diagnostic studies of interannual climate vari-
ability must continue. Some aspects of ENSO are still 
not well understood, such as the interevent variability 
and why models fail to capture it. This includes the 
apparent decadal variability in the magnitude and 
frequency of ENSO events. It is thought that ENSO 
events can drive PDV through the atmospheric bridge 
(Alexander et al. 2002). However, it is primarily the 
ENSO events that exhibit the strongest SST anomalies 
in the central Pacific appear to drive aspects of PDV 
(Di Lorenzo et al. 2008). Improved understanding and 
better predictability of the details of ENSO events and 
their role(s) in PDV requires more investigation.

Improved climate predictions are of limited 
value to society, however, if that information cannot 
be readily incorporated into decision systems. 
Investment in collaboration and pilot projects that 
bring together researchers and decision makers with 
the diverse expertise necessary to design and imple-
ment such systems can yield benefits beyond the 
specific project. First, such projects build closer ties 
between the climate prediction specialists and other 
scientists and decision makers. This builds trust and 
better understanding of climate information, as well 
as increases the climate scientists’ understanding 
of information needs and decision contexts. If this 
begins with seasonal prediction, there is opportu-
nity to demonstrate performance over the recent 
past, through a feasible time frame in the present, 
and over the next few years. Building these relation-
ships takes time, but the results can be realized in 
only a matter of years, rather than decades. As more 
information becomes available on decadal variabil-
ity, these relationships can pay dividends through 
better communication and understanding, creating 
networks to develop useable information. Second, 
well-documented pilot projects (e.g., Brown et al. 
2009; Ceccato et al. 2010) can inform other decision 
systems to allow climate risk to be managed more 
effectively by example, which increases the uptake of 
climate information, and can also guide the develop-
ment, format, and delivery of climate information. 
The outcomes of pilot projects can be particularly 
beneficial to both the research community and other 
decision makers if they document the pitfalls and 
difficulties, not just the benefits, of using climate 
information. Third, to the extent that the increased 
uptake of climate prediction improves climate risk 
management at seasonal time scales, it will indirectly 
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strengthen the capacity for using climate information 
on longer time scales.

In order to impact risk management, or to be real-
istically assessed by pilot projects, climate information 
must be supplied at appropriate spatial and temporal 
scales, address the appropriate variable(s), and con-
tain reliable estimates of uncertainty. In most cases 
that information derives from regional-scale changes 
in the climate, at which the predictable climate signals 
at seasonal-to-decadal time scales operate; examples 
include worldwide teleconnection patterns associ-
ated with El Niño and La Niña events or the robust 
features of global warming. Thus, although local-
scale information may be desired, it becomes more 
relevant within the large-scale context. The large 
scale carries both predictability and uncertainty, but 
downscaling to local scales, while potentially adding 
useful detail, contributes mainly to the uncertainty. 
This point is more easily demonstrated for seasonal 
prediction where, for example, forecasts for summer 
precipitation are made and can be verified each year 
at local to regional spatial scales (e.g., Gong et al. 
2003). Examination of the spatial variation of local 
climate variability within the regional-scale climate 
signal becomes both an educational opportunity and 
a point for cooperative information development. The 
importance of this perspective will be even greater for 
decadal variability, however, where the predictable 
scales are likely to be larger, but the strength of the 
signal is likely to be smaller.

INVESTMENTS TOWARD DECADAL PRE-
DICTION THAT WILL BENEFIT SEASONAL
PREDICTION. The knowledge that global surface 
temperatures will continue to rise over the next sev-
eral decades under any plausible emission scenario 
(Solomon et al. 2007) is now a factor in the planning 
of many organizations and governments. We know 
that climate changes will not be uniform around the 
globe, and natural regional and seasonal variations 
will have large impacts, especially over the next few 
decades or less. An important challenge, therefore, 
is to predict regional-scale climate variability and 
change. The decadal time scale is also widely recog-
nized as an important time scale for endeavors such 
as water, agricultural, and land use planning (e.g., 
Vera et al. 2010).

The promise of decadal climate prediction is sup-
ported by observational evidence of decadal climate 
variability with significant regional impacts, the 
effects of anthropogenic and naturally forced climate 
change, evidence of potential skill from idealized 
predictability studies (Collins et al. 2006; Boer 2011), 

and pioneering attempts at predictions obtained by 
initializing climate models with observations (Smith 
et al. 2007). A number of efforts are underway, 
including internationally coordinated experiments 
of initialized decadal predictions (WCRP/CMIP5; 
Taylor et al. 2009) that are contributing to the IPCC 
AR5, and several national initiatives to provide 
decadal-scale climate information. However, many 
formidable challenges need to be addressed to build 
practical prediction systems capable of credible, 
useful decadal-scale information at regional scales 
(e.g., Murphy et al. 2010). The investments neces-
sary to address many of these challenges can benefit 
seasonal prediction also.

Investments toward the prediction hindcast 
experiments will directly benefit seasonal as well 
as decadal prediction efforts. These are the first 
generation of decadal prediction hindcasts. Since, as 
discussed above, large sets of hindcasts are required to 
assess the quality of prediction systems, and since our 
ocean observations are limited going back into the 
twentieth century, production of decadal hindcasts 
will require innovative approaches to data assimila-
tion and ocean-state estimation (Balmaseda et al. 
2010). The assimilation methodology will be useful 
to extending seasonal prediction hindcasts further 
back in time, and also to improving initialization 
techniques going forward. Meanwhile, hindcasts 
generated by these efforts will be mutually beneficial. 
Decadal predictions already will predict the next 
season to a year on their way to prediction of the 
decade, thus increasing the suite of hindcasts for 
seasonal prediction. Seasonal predictions, and their 
hindcasts, could easily be extended further out into 
the future, which would increase the suite of experi-
mental hindcasts for decadal prediction.

As we research decadal variability and the poten-
tial for prediction, we gain a better understanding and 
quantification of the role of longer-term variability 
in year-to-year impacts. Such understanding can 
be valuable to resource management in the face of 
longer-term expectations and planning, particularly 
in instances where the decadal-scale variations of the 
background climate modify the risk of exceeding cer-
tain climate thresholds or the frequency of extremes. 
A better understanding of some of the processes 
important for forcing decadal variability, and their 
improved representation in forecast models, also 
helps increase the quality of our seasonal forecasts. 
As discussed previously, better understanding of 
PDV and AMV is needed, including interactions with 
ENSO, and impacts on remote regions via telecon-
nections. Additional phenomena hypothesized to be 
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sources of decadal predictability, such as the response 
to solar variability in the Pacific region or the ther-
modynamic influence of persistent upper-ocean heat 
content anomalies worldwide (Meehl et al. 2009), may 
also be important sources of regional predictability 
on seasonal time scales.

Decadal prediction has received much attention 
at least in part because of the high visibility and 
politicization of climate change projections. The 
fact that, over the span of a decade or two, variabil-
ity may dominate anthropogenic trends regionally 
leads the climate risk management community to 
seek out decadal-scale climate information. Often 
“variability” is less politically charged than “change” 
and thus may represent a more desirable invest-
ment to some. Allowance for both the physical and 
political realities opens the door to adaptation that 
includes wise planning for the coming decade(s) and 
also preparation for year-to-year variability, which 
is where the largest impacts are most often experi-
enced. Often resource management decisions are 
constrained by policy (Rayner et al. 2005), but since 
decadal variability and climate change are relatively 
new considerations for lawmakers, policy may be less 
restrictive for the longer-time-scale decisions. Thus, 
increased action and uptake of climate information 
on longer time scales may actually allow for policy 
reform that could make it less difficult for action on 
seasonal climate information. This of course assumes 
that the experience with longer-time-scale informa-
tion leads to the perception of beneficial outcomes 
that resulted from the use of that information, and 
the most effective path to that is again the coopera-
tive development of knowledge and decision systems 
(Lemos and Morehouse 2005).

CONCLUSIONS. The investments described will 
take considerable human and financial resources and 
a commitment to sustain them. Compared to the 
costs of adaptation, the costs of implementing these 
recommendations will be low, but substantial enough 
to highlight the need for international coordination to 
minimize duplication and share the lessons learned 
throughout the communities involved. These are 
actions that would be prudent even in the absence of 
climate change. However, given that climate change 
has focused global attention on the need for climate 
information, climate services could build adaptation 
incrementally through better awareness, prepared-
ness, and resiliency to climate variability at all time 
scales.

Seasonal and Decadal should not be treated 
as competitors for the attention of the scientific 

community. Rather, we should enable them to “play 
nicely” together, in order to maximize the efforts 
invested in each.
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