EXPLAINING EXTREME EVENTS OF 2014
From A Climate Perspective

Special Supplement to the
Bulletin of the American Meteorological Society
Vol. 96, No. 12, December 2015
EXPLAINING EXTREME EVENTS OF 2014 FROM A CLIMATE PERSPECTIVE

Editors
Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott

Special Supplement to the
Bulletin of the American Meteorological Society
Vol. 96, No. 12, December 2015

AMERICAN METEOROLOGICAL SOCIETY
TABLE OF CONTENTS

Abstract.. ii

1. Introduction to Explaining Extreme Events of 2014 from a Climate Perspective 1
2. Extreme Fire Season in California: A Glimpse Into the Future? ... 5
3. How Unusual was the Cold Winter of 2013/14 in the Upper Midwest? .. 10
4. Was the Cold Eastern US Winter of 2014 Due to Increased Variability? .. 15
5. The 2014 Extreme Flood on the Southeastern Canadian Prairies ... 20
6. Extreme North America Winter Storm Season of 2013/14: Roles of Radiative Forcing and the Global Warming Hiatus.. 25
7. Was the Extreme Storm Season in Winter 2013/14 Over the North Atlantic and the United Kingdom Triggered by Changes in the West Pacific Warm Pool? .. 29
8. Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast Brazil....... 35
10. Extreme Rainfall in the United Kingdom During Winter 2013/14: The Role of Atmospheric Circulation and Climate Change... 46
11. Hurricane Gonzalo and its Extratropical Transition to a Strong European Storm..................................... 51
12. Extreme Fall 2014 Precipitation in the Cévennes Mountains .. 56
13. Record Annual Mean Warmth Over Europe, the Northeast Pacific, and the Northwest Atlantic During 2014: Assessment of Anthropogenic Influence.. 61
14. The Contribution of Human-Induced Climate Change to the Drought of 2014 in the Southern Levant Region .. 66
15. Drought in the Middle East and Central–Southwest Asia During Winter 2013/14................................. 71
16. Assessing the Contributions of East African and West Pacific Warming to the 2014 Boreal Spring East African Drought .. 77
17. The 2014 Drought in the Horn of Africa: Attribution of Meteorological Drivers 83
18. The Deadly Himalayan Snowstorm of October 2014: Synoptic Conditions and Associated Trends 89
19. Anthropogenic Influence on the 2014 Record-Hot Spring in Korea ... 95
20. Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean .. 100
21. The 2014 Hot, Dry Summer in Northeast Asia .. 105
22. Role of Anthropogenic Forcing in 2014 Hot Spring in Northern China .. 111
23. Investigating the Influence of Anthropogenic Forcing and Natural Variability on the 2014 Hawaiian Hurricane Season .. 115
24. Anomalous Tropical Cyclone Activity in the Western North Pacific in August 2014 120
25. The 2014 Record Dry Spell at Singapore: An Intertropical Convergence Zone (ITCZ) Drought 126
27. Extreme Rainfall in Early July 2014 in Northland, New Zealand—Was There an Anthropogenic Influence? .. 136
28. Increased Likelihood of Brisbane, Australia, G20 Heat Event Due to Anthropogenic Climate Change ... 141
29. The Contribution of Anthropogenic Forcing to the Adelaide and Melbourne, Australia, Heat Waves of January 2014 .. 145
30. Contributors to the Record High Temperatures Across Australia in Late Spring 2014 149
31. Increased Risk of the 2014 Australian May Heatwave Due to Anthropogenic Activity 154
32. Attribution of Exceptional Mean Sea Level Pressure Anomalies South of Australia in August 2014 .. 158
33. The 2014 High Record of Antarctic Sea Ice Extent .. 163
34. Summary and Broader Context .. 168
ABSTRACT—Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott

Understanding how long-term global change affects the intensity and likelihood of extreme weather events is a frontier science challenge. This fourth edition of explaining extreme events of the previous year (2014) from a climate perspective is the most extensive yet with 33 different research groups exploring the causes of 29 different events that occurred in 2014. A number of this year’s studies indicate that human-caused climate change greatly increased the likelihood and intensity for extreme heat waves in 2014 over various regions. For other types of extreme events, such as droughts, heavy rains, and winter storms, a climate change influence was found in some instances and not in others. This year’s report also included many different types of extreme events. The tropical cyclones that impacted Hawaii were made more likely due to human-caused climate change. Climate change also decreased the Antarctic sea ice extent in 2014 and increased the strength and likelihood of high sea surface temperatures in both the Atlantic and Pacific Oceans. For western U.S. wildfires, no link to the individual events in 2014 could be detected, but the overall probability of western U.S. wildfires has increased due to human impacts on the climate.

Challenges that attribution assessments face include the often limited observational record and inability of models to reproduce some extreme events well. In general, when attribution assessments fail to find anthropogenic signals this alone does not prove anthropogenic climate change did not influence the event. The failure to find a human fingerprint could be due to insufficient data or poor models and not the absence of anthropogenic effects.

This year researchers also considered other human-caused drivers of extreme events beyond the usual radiative drivers. For example, flooding in the Canadian prairies was found to be more likely because of human land-use changes that affect drainage mechanisms. Similarly, the Jakarta floods may have been compounded by land-use change via urban development and associated land subsidence. These types of mechanical factors re-emphasize the various pathways beyond climate change by which human activity can increase regional risk of extreme events.
Introduction. During November 2013–April 2014, drought occurred over an area extending from the Mediterranean coastal Middle East, northward through Turkey and eastward through Kazakhstan, Uzbekistan, and Kyrgyzstan. An estimate of precipitation deficits during the drought is shown in Fig. 15.1a. Data issues mandate caution (e.g., Hoell et al. 2015; Barlow et al. 2015) but reports from throughout the region are consistent with the general area of drought, including for Syria (UNICEF 2014; WFP 2014), Turkey (Gokoluk 2014), Israel (Ackerman 2014), Kazakhstan (Kazinform 2014; Thomson Reuters 2014), and Kyrgyzstan (FAO 2014). Notably, the eastern (main) basin of the Aral Sea dried up for the first time in modern history (NASA 2014; Howard 2014). Although the long-term draining of the Aral Sea is due to agricultural withdrawals (Micklin 1988; Micklin and Aladin 2008), the current state of minimal storage may represent a new regime where yearly fluctuations are strongly affected by climate.

A time series of November–April precipitation anomalies averaged over the main drought region (black box in Fig. 15.1a) is shown in Fig. 15.1b. A statistically-significant downward trend is observed over the 1950–2014 period, with the post-1999 rainfall declines playing an important role and 2013/14 having the lowest value in the period, although data scarcity and continuity issues make confident trend analysis difficult in this region.

The goal of this analysis is to identify important factors in the drought, considered in the next section, and to examine those factors in the context of global warming, considered in the third section.

Proximate drought factors. Three factors were active during the season that have been previously identified as important for drought in the region, based on both observational and modeling analyses as noted below: the North Atlantic Oscillation (NAO), a cold central Pacific, and a warm western Pacific. Here we consider whether each factor had a magnitude consistent with an important influence on drought based on previous events.

The NAO has been shown to influence precipitation in the western part of the region by Cullen and Demenocal (2000), Aizen et al. (2001), Cullen et al. (2002), Mann (2002), Krichak et al. (2002), Syed et al. (2006), and Black (2011). Based on the SST-derived NAO index of Cullen et al., the NAO was at its sixth-largest value in the last 65 years during the 2013/14 drought, with its overall pattern evident in the large-scale circulation anomalies, including a ridge extending into the western part of the domain (Supplemental Fig. S15.1).

The cold central Pacific SSTs associated with La Niña have also been shown to influence precipitation in the region by Price et al. (1998), Barlow et al. (2002), Nazemosadat and Ghasemi (2004), Mariotti et al. (2002, 2005), Syed et al. (2006), Mariotti (2007), Hoell et al. (2014a, 2014b), Yin et al. (2014), and Krichak et al. (2014). The values during the 2013/14 drought were similar to previous droughts, although data scarcity and continuity issues make confident trend analysis difficult in this region.

The goal of this analysis is to identify important factors in the drought, considered in the next section, and to examine those factors in the context of global warming, considered in the third section.

Of three identified proximate drought factors, climate change does not appear important for two. The third factor, western Pacific SSTs, exhibits a strong warming trend but attribution is an open question.

AFFILIATIONS: Barlow—Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts; Hoell—NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

DOI:10.1175/BAMS-D-15-00127.1
A supplement to this article is available online (10.1175/BAMS-D-15-00127.2)
in the region (Fig. 15.1d; cf. Cravatte et al. 2009). To focus on the western Pacific–precipitation link, Fig. 15.1e shows the correlation between western Pacific SSTs and regional precipitation for 1950–2014. The largest correlation is −0.57 for this 65-year period. Examination of the role of global warming in drought factors. Of the three factors, neither the NAO index nor the central Pacific SSTs exhibit a clear trend over the past 65 years, which strongly suggests that global warming has not played a direct role in these factors over that period. The western Pacific SST, however, does exhibit a strong increase during this period. To further investigate this we have examined CAM4 model output for three sets of experiments: an ensemble of SST-forced runs of the 2013/14 season compared to climatology, a set of runs that isolate the influence of the western Pacific over the last 34 years, and a set of runs that isolate the influence of increased greenhouse gases (GHGs).

The SST-forced realization of the 2013/14 seasonal anomalies (Fig. 15.2a) shows considerable similarity to the observed anomalies, with dry over much of the observed drought region and some wet anomalies to the south. The modeled drought has a strong wet anomaly in the westernmost part of the domain, in distinction from observations, which may be related to the likely role of the NAO in the observed drought. Overall, the CAM4 provides further support for the influence of SST in the drought episode. To isolate the effect of the western Pacific Ocean warming on Southwest Asia climate, a set of experiments was considered where a warm western Pacific Ocean SST (Supplemental Fig. S15.3a) was added to the monthly time-varying 1979–2013 SST trend (Supplemental Fig. S15.3b). The SST pattern added to the monthly climatology was used to force the
CAM4 model for 50 years. This model simulation was compared with a similar 50-year run of CAM5 that was forced only by the monthly time-varying 1979–2013 SST trend added to the monthly climatology. The difference between the two runs shows the forcing of Southwest Asia climate by the western Pacific. The result, shown in Fig. 15.2b, shows that the western Pacific itself is a strong drought forcing for the region, consistent with previous modeling and observational work, as well as the analysis shown in Fig. 15.1e. Since the western Pacific precipitation anomalies (Fig. 15.2b) are considerably stronger than the all-SST precipitation anomalies (Fig. 15.2a), it appears that some aspects of the global SSTs played a counteracting role, which would be a useful topic for future research.

Finally, model runs were analyzed to compare the behavior of precipitation in the current climate to the behavior of precipitation in the climate of the 1880s. In this experiment, precipitation from an SST-forced simulation of the observed climate was compared with precipitation from an SST-forced experiment where the SSTs were detrended to the equivalent 1880s mean conditions while GHG and ozone were adjusted to their 1880s values. (Please see NOAA ESRL’s FACTS for further information: www.esrl.noaa.gov/psd/repository/alias/facts.) The net effect in the CAM4 model is shown in Fig. 15.2c. The effect of the current climate produces drying throughout Southwest Asia relative to the 1880s climate during November–April 1979–2012 (the years of the run), with a match in sign and magnitude.

Fig. 15.2. Modeling analysis: (a) CAM4 simulation of 2013–14 drought: Precipitation anomaly for Nov 2013–Apr 2014 simulated by the average of 30-ensemble simulations of the CAM4 model driven by observed SST; (b) Western Pacific forcing: Precipitation difference for Nov–Apr between a 50-yr SST simulation of western Pacific SST added to the 1999–2012 SST trend superimposed on the monthly climatology and a 50-yr SST simulation of the 1999–2012 SST trend superimposed on the monthly climatology simulated by the CAM4 model. Stippling denotes significant differences at p < 0.10; and (c) Climate change: Precipitation difference for Nov–Apr 1979–2012 between the average of 30-ensemble simulations of the CAM4 model driven by observed SST and 30-ensemble simulations of the CAM4 model driven by detrended SSTs meant to simulate the 1880s climate. All precipitation anomalies are contoured and shaded at 0.1 mm day$^{-1}$.
tude over Afghanistan for the 2013/14 drought. This can be taken as an indication that climate change may have an effect on Southwest Asia precipitation, though further research is needed.

Discussion. Three factors previously identified as important for drought in the region were active during the 2013/14 season: the NAO, a cold central Pacific, and a warm western Pacific. Based on historical relationships, all three factors were of a magnitude consistent with an important role in the drought. The NAO and the central Pacific did not exhibit clear trends over that period and so do not appear to have been directly affected by climate change. The western Pacific, however, did experience a notable warming trend from 1950–2013, in conjunction with a statistically significant downward trend in precipitation over the drought region. Model experiments also show an important influence of the western Pacific on regional drought.

Consensus climate model projections, however, do not indicate increased drying over most of the region or preferential warming over the western Pacific (Stocker et al. 2014). If the models are correctly reproducing the relevant dynamics, then the observed warming trend in the western Pacific and associated influence on drought in the region is likely due to multidecadal variability. Unfortunately, there are several reasons to withhold full confidence in the model projections: there are problems with the models’ regional seasonal cycle of precipitation (Stockert et al. 2014, chapter 9), the models’ ability to reproduce the basic variability for the region hasn’t been fully validated (Stockert et al. 2014, chapter 14), and the models’ limitations in reproducing observed SST trends (e.g., Jha et al. 2014) call into question their prediction for projecting uniform warming of SSTs. Thus, it is not clear how closely the observed regional trend in western Pacific SSTs and associated regional drought is related to global warming: this is a critical problem for the field.

In summary: Of the three identified proximate factors in the drought—the NAO, the central Pacific, and the western Pacific—climate change does not appear to have played a strong role in the first two. The third factor, western Pacific SSTs, exhibits a strong warming trend but whether this trend is an expression of multidecadal variability or a signature of climate change is an important open question. Additionally, in model experiments, the increased GHG forcing during the last 34 years dries the region.

ACKNOWLEDGMENTS. We gratefully acknowledge the Facility for Climate Assessments (FACTS) database provided online by the Physical Sciences Division of NOAA’s Earth System Research Laboratory.

REFERENCES

water-environment/.]

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Location(s)</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>Australia (Ch. 31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europe (Ch. 13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Korea (Ch. 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia, Adelaide & Melbourne (Ch. 29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia, Brisbane (Ch. 28)</td>
</tr>
<tr>
<td>Cold</td>
<td></td>
<td>Upper Midwest (Ch. 3)</td>
</tr>
<tr>
<td>Winter Storms and Snow</td>
<td></td>
<td>Eastern U.S. (Ch. 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. America (Ch. 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. Atlantic (Ch. 7)</td>
</tr>
<tr>
<td>Heavy Precipitation</td>
<td>Canada** (Ch. 5)</td>
<td>Jakarta**** (Ch. 26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>United Kingdom*** (Ch. 10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Zealand (Ch. 27)</td>
</tr>
<tr>
<td>Drought</td>
<td>E. Africa (Ch. 16)</td>
<td>Middle East and S.W. Asia (Ch. 15)</td>
</tr>
<tr>
<td></td>
<td>E. Africa* (Ch. 17)</td>
<td>N. E. Asia (Ch. 21)</td>
</tr>
<tr>
<td></td>
<td>S. Levant (Ch. 14)</td>
<td>Singapore (Ch. 25)</td>
</tr>
<tr>
<td>Tropical Cyclones</td>
<td></td>
<td>Gonzalo (Ch. 11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W. Pacific (Ch. 24)</td>
</tr>
<tr>
<td>Wildfires</td>
<td></td>
<td>California (Ch. 2)</td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>W. Tropical & N.E. Pacific (Ch. 20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N.W. Atlantic & N.E. Pacific (Ch. 13)</td>
<td></td>
</tr>
<tr>
<td>Sea Level Pressure</td>
<td>S. Australia (Ch. 32)</td>
<td></td>
</tr>
<tr>
<td>Sea Ice Extent</td>
<td></td>
<td>Antarctica (Ch. 33)</td>
</tr>
</tbody>
</table>

† Papers that did not investigate strength are not listed.
†† Papers that did not investigate likelihood are not listed.
* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the surface over the region most affected by the drought.
** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced rainfall.
*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days.
**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though the study did not establish a cause.
Table 34.1. Anthropogenic Influence on Event Strength †

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Location(s)</th>
<th>Number of Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>Argentina (Ch. 9), Australia (Ch. 30, Ch. 31), Australia, Adelaide (Ch. 29), Australia, Brisbane (Ch. 28), Europe (Ch. 13), S. Korea (Ch. 19), China (Ch. 22)</td>
<td>7</td>
</tr>
<tr>
<td>Cold</td>
<td>Upper Midwest (Ch. 3)</td>
<td>1</td>
</tr>
<tr>
<td>Winter Storms and Snow</td>
<td>Nepal (Ch. 18)</td>
<td>4</td>
</tr>
<tr>
<td>Heavy Precipitation</td>
<td>Canada** (Ch. 5), New Zealand (Ch. 27)</td>
<td>5</td>
</tr>
<tr>
<td>Drought</td>
<td>E. Africa (Ch. 16), S. Levant (Ch. 14)</td>
<td>7</td>
</tr>
<tr>
<td>Tropical Cyclones</td>
<td>Hawaii (Ch. 23)</td>
<td>3</td>
</tr>
<tr>
<td>Wildfires</td>
<td>California (Ch. 2)</td>
<td>1</td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>W. Tropical & N.E. Pacific (Ch. 20), N.W. Atlantic & N.E. Pacific (Ch. 13)</td>
<td>2</td>
</tr>
<tr>
<td>Sea Level Pressure</td>
<td>S. Australia (Ch. 32)</td>
<td>1</td>
</tr>
<tr>
<td>Sea Ice Extent</td>
<td>Antarctica (Ch. 33)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 32

† Papers that did not investigate strength are not listed.

†† Papers that did not investigate likelihood are not listed.

* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the surface over the region most affected by the drought.

** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced rainfall.

*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days.

**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though the study did not establish a cause.