Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers

Julio J.Ochoa1,6, Andrew J.Farquharson2, Ian Grant1,2,3, L.E.Moffat4, Steven D.Heys5 and Klaus W.J.Wahle2,3

1Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, C/Ramón y Cajal 4, 18071, Granada, Spain, 2Rowett Research Institute, Garthdee Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK, 3School of Life Sciences, Robert Gordon University, St Andrew Street, Aberdeen AB 25 1HG, Scotland, UK, 4Department of Urology, Grampian Universities NHS Trust, Forres, Scotland, UK and 5Department of Surgical and Nutritional Oncology, Aberdeen University Medical School, Forres, Aberdeen, AB25 2ZD, Scotland, UK

To whom correspondence should be addressed
Email: jjoh@ugr.es

The aims of this study were to examine the anti-proliferative effects of different concentrations of a commercial preparation of conjugated linoleic acids (CLA) mixture of isomers [cis-9, trans-11 CLA (c9,t11 CLA); trans-10, cis-12 CLA (50:50)] and their constituent isomers on PC-3, a human prostatic carcinoma cell line, and to study their effects on gene expression (mRNA and protein levels) of different enzymes and oncogenes involved in oncogenesis and progression of prostate cancer. This includes pathways for arachidonic acid metabolism [cyclooxygenase 1 (COX-1), 2 (COX-2) and 5-lipoxygenase (5-LOX)], apoptosis (bcl-2) and cell cycle control (p21 WAF1/CIP1). Our results indicate a significant decrease in PC-3 proliferation elicited by CLA, although with high variability between isomers. The trans-10, cis-12 CLA was the most effective isomer (55% inhibition). This isomer was also able to decrease bcl-2 gene expression and to increase p21WAF1/CIP1 mRNA levels (60% increase at highest concentration). In contrast, cis-9, trans-11 had no effect on these proteins but had a clear effect on 5-LOX expression and to a lesser degree on COX-2 protein level isomers. In conclusion, the anti-proliferative effects on PC-3 of CLA mixture and their constituent isomers are not equivalent, due to the different pathways involved for individual isomers. Trans-10, cis-12 seems to work preferentially through modulation of apoptosis and cell cycle control, while c9,t11 CLA isomer affects arachidonic acid metabolism.

Introduction

Prostate cancer is the most commonly diagnosed and second leading cause of cancer mortality in men living in the western world (1) and it is increasing rapidly, in part, to the increase in the number of older people (2,3). Despite the high incidence of this cancer, little is known about its aetiology. Multiple genetic and epigenetic factors have been implicated in the oncogenesis and progression of prostate cancer, much as for other cancers, and include alterations in arachidonic acid metabolism (4–6), decreased apoptosis and increased cell cycle progression (7–9). Surgery, chemo- and radiation therapy save many lives, but many men still develop metastatic prostate cancer, which progresses, in many cases, to hormone-refractory disease, which displays resistance to hormone and chemotherapy.

Diet is an identifiable risk factor associated with prostate cancer occurrence (10–13). Some dietary constituents, particularly fatty acids, are implicated in cancer promotion and in contrast, others can suppress tumour development. So, identifying these last factors could be an effective non-invasive strategy for decreasing the incidence and severity of this disease or for an effective adjuvant treatment, especially in the hormone-refractory disease.

Conjugated linoleic acid (CLA) is a dietary fatty acid predominant in ruminant food products that has received considerable attention because of its anti-mutagenic and anticarcinogenic properties (14–17). CLA is the generic term of a group of positional and geometric isomers of the omega-6 essential fatty acid linoleic acid (LA). Experimental studies in animal models and cells have shown that unlike the parent LA, which stimulates tumour growth, CLA is an effective inhibitor of many human cancers, including prostate cancer (17,18). However, the cellular mechanisms by which CLAs elicit these anticancer effects are not clear at present. Proposed mechanisms include modulation of eicosanoids synthesis and signal transduction, up-regulation of genes dependent on the transcription factors peroxisome proliferator-activated receptor (PPAR), inhibition of DNA adduct formation induced by exposure to carcinogens and induction of apoptosis (14–17). In addition, recent findings suggest that not only does CLA affect many different pathways, but that individual isomers of CLA act differently and that some effects are induced and/or enhanced by these isomers apparently acting synergistically (15).

As a result of its inhibitory effects on tumorigenesis, CLA could be a novel dietary supplement for individuals with increased risk of prostate cancer or patients undergoing prostate cancer treatment. However, compared with other major cancers, such as breast or colon, the literature on CLA and prostate cancer is not extensive (18–20). A better understanding of the anticarcinogenic properties of CLA preparations and their constituent isomers in prostate cancer could prove to be a novel nutritional management and an adjunct therapy in this disease.

Our aims are: (i) to evaluate the effects of a commercial preparation of a CLA mixture of isomers (cis-9, trans-11 and trans-10, cis-12 isomers in approximately a 50:50 ratio) and the individual isomers on the proliferation of prostate cancer cells in culture. (ii) To assess the effect of these fatty acids on gene expression (mRNA and protein levels) of different enzymes and oncogenes involved in prostate cancer cell proliferation/progression. This includes enzymes of arachidonic acid metabolism.
acid metabolism/icosanoid synthesis like cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX), and the oncoproteins involved in apoptosis (bcl-2) and cell cycle control (p21\(^{WAF1/Cip1}\)), using the androgen-independent human prostate cancer cell line, PC-3. (iii) To determine whether individual isomers have the same regulatory effects on these enzymes and proteins as the mixture.

Materials and methods

Cell culture and treatment

Androgen-independent human prostate cancer cell line, PC-3, was obtained from the American Type Culture Collection (Manville, NJ). The cells were grown in RPMI 1640 medium supplemented with 100 \(\mu\)g streptomycin/ml, 100 IU penicillin/ml, 10% (v/v) fetal calf serum and 100 \(\mu\)g filter-sterile sodium pyruvate/ml, and incubated at 37°C in a humidified tissue culture incubator with 5% CO\(_2\) and 95% room air. Cells were fed with fresh medium every third day and passed routinely at a confluence of ~80%.

CLAs were obtained from Natural ASA (Hovebygd, Norway). Purified CLAs [50:50 mixed isomers and individual cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA isomers] in oil form were dissolved in 100% ethanol to give a 10 mM stock solution, which was further diluted in ethanol to produce the range of test concentrations. All fatty acids were stored under nitrogen at −80°C until use.

Cell proliferation/viability assessment

The modified colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to quantify cell viability/proliferation. It is a widely used ‘in vitro’ assay for the measurement of cell proliferation that determines a reduction in cell viability (which equates with a reduction in cell numbers and therefore proliferation), based on the reduction of the tetrazolium salt by actively growing cells to produce a blue formazan product.

The MTT assay was purchased from Sigma (Sigma-Aldrich, Pool, Dorset) and standard manufacturer’s protocol was followed for cell incubations and spectrophotometric determination of purple formazan dye. Briefly, cells were incubated in 96 well microplates in the appropriate complete medium with standardized densities/well for 24 h as a pre-incubation process. The medium was then removed and replaced by medium containing different CLA concentrations. After 24 h of treatment the medium was removed and cells were allowed to grow for an additional 48 h in new, fresh medium without CLA.

After this period of time, MTT was added to each well (20 \(\mu\)l of 5 mg/ml in PBS solution) and plates were incubated for 4 h at 37°C. Absorbance was measured at 570 nm. Data were analysed by plotting cell numbers versus absorbance, allowing quantification of changes in cell viability/proliferation. For all groups, data are presented as the mean of the different experiments ± standard error of the mean (SEM).

Northern blot analysis (mRNA)

Total RNA was extracted from the cultured cells by the acid guanidinium thiocyanate–phenol–chloroform procedure of Chomczynski and Sacchi (21). RNA (10 \(\mu\)g) from each sample was subjected to electrophoretic fractionation on a 10% polyacrylamide gel under reducing conditions. Separated fractions were transferred onto a nylon membrane (Boehringer-Mannheim, Manheim, Germany) by using a semi-dry transfer method (Transblot SD, Bio-Rad). Membranes were blocked with TBS-T (Tris-buffered saline–0.1% Tween 20) containing 5% non-fat milk and incubated for 1 h with the human-specific antibodies (COX-2 and 5-LOX from Transduction Laboratories, Becton Dickinson, Oxford, UK) and COX-1, c9-c12 and p21\(^{WAF1/Cip1}\) from Santa Cruz Biotechnology (Santa Cruz, CA); they were then diluted according to the manufacturer’s instructions. Following incubation with the antibodies, the membranes were washed three times for 5 min in TBS-T and incubated with the specific Horseradish peroxidase conjugated secondary antibodies (Santa Cruz Biotechnology) following the manufacturer’s instructions. After washing two times for 5 min with TBS-T one time with TBS, specific proteins were detected using an enhanced chemiluminescence system (Super Signal, Pierce Chemical, Rockford, IL).

Ponceau S and Coomassie brilliant blue (Sigma-Aldrich, Pool, Dorset, UK) staining were used for markers of the protein loading and protein transfer control, respectively.

Statistical analysis

For all groups, data are presented as the mean of the different experiments ± standard error of the mean (SEM). Comparison of mean values was assessed by one-way ANOVA followed by a post hoc Duncan’s test. \(P\) values <0.05 were considered significant. Data were analysed using SPSS statistical software package (SPSS for Windows, 11.0.1, 2001; SPSS, Chicago, IL).

Results

Effect of CLA on COX-1, COX-2 and 5-LOX expression

Figure 1 shows the effects of different concentrations (25, 50, 100 and 150 \(\mu\)M) of a commercial preparation of CLA mixture of isomers (cis-9, trans-11 and trans-10, cis-12 isomers in approximately a 50:50 ratio) (CLA-mix) on gene expression (Figure 1A and B, mRNA and protein levels, respectively) of the different enzymes involved in arachidonic acid metabolism (COX-1, COX-2 and 5-LOX) in PC-3 cells. The CLA-mix did not elicit any effects on gene expression (neither mRNA nor protein levels) of the COX-1 and COX-2 enzymes at any concentrations. Only at the relatively high concentration of 150 \(\mu\)M was the CLA-mix able to decrease the levels of both mRNA (83.5 ± 2.1% of control) and protein (78.3 ± 7.6% of control) of 5-LOX significantly (\(P<0.05\)) with respect to the control values.

The effect of each individual isomer c9,t11 CLA and trans-10, cis-12 CLA (t10,c12 CLA) on the mRNA levels of these enzymes are shown in Table I. Individual isomers, the same as the CLA-mix, did not show any significant effect on the levels of COX-1 and COX-2 mRNA at any of the concentrations.
used. Only c9,11 CLA at high concentrations (100 and 150 μM) showed a significant ($P < 0.05$) decrease of 5-LOX mRNA levels, about a 20 and 28% inhibition, respectively, with respect to the control values.

The effects of individual CLA isomers on COX-2 protein levels are given in Figure 2, only c9,11 CLA at the highest concentration showed a decrease of COX-2 protein of ~20% of the control. The t10,c12 isomer elicited...
an increase although it was not significant with respect to the control.

Effect of CLA on \(bcl-2 \) and \(p21^{WAF1/CIP1} \) expression

The CLA-mix did not elicit any effect on the levels of \(bcl-2 \) mRNA (Figure 3A) in PC-3. However, this fatty acid decreased the levels of \(bcl-2 \) protein (Figure 3B), although this decrease was only statistically significant \((P < 0.05)\) at the highest concentration \((81.1 \pm 4.4\% \text{ of control})\).

c9,11 CLA isomer, was the same as the CLA-mix and did not have any effect on \(bcl-2 \) mRNA levels at any of the concentrations used (Table II). In contrast to the CLA-mix, this isomer did not show any effect on \(bcl-2 \) protein level (Figure 4). The effect of the t10,c12 isomer was opposite to that of the CLA-mix and the c9,11 isomer and did elicit a significant decrease of \(bcl-2 \) mRNA levels (Table II) \((18\% \text{ inhibition})\) with respect to the control at 150 \(\mu M \). This isomer also produced a decrease in the \(bcl-2 \) protein levels at 100 and 150 \(\mu M \) \((77.6 \pm 4.9\% \text{ of control} \text{ and } 69.2 \pm 8.8\% \text{ of control}, \text{ respectively})\), which were significantly different to the control values \((P < 0.05)\).

\(p21^{WAF1/CIP1} \) mRNA levels were increased after 24 h of treatment with CLA-mix (Figure 3A), although only significant \((P < 0.05)\) with respect to the control values at 100 and 150 \(\mu M \) \((121.4 \pm 6.1\% \text{ of control} \text{ and } 130.7 \pm 5.4\% \text{ of control}, \text{ respectively})\). The protein levels (Figure 3B) followed the same trend as the mRNA levels, with significant differences with respect to control values at 100 and 150 \(\mu M \) \((132.6 \pm 10.6\% \text{ of control} \text{ and } 152.1 \pm 14.7\% \text{ of control}, \text{ respectively})\).

In contrast to the CLA-mix, c9,11 CLA did not produce any effect on mRNA levels of \(p21^{WAF1/CIP1} \) at any concentration (Table II).
Prostate cancer remains an enormous healthcare problem (1). As with other cancers, diet, particularly dietary fat, has been shown to be a major risk factor for prostate cancer (10–13). Identification of micro- and macro-nutrients, which could suppress the initiation and development of this cancer would provide important information for the development of preventive nutritional strategies or adjuvant treatments. In this sense, CLA has received a great deal of attention due to its reported anti-mutagenic and anticarcinogenic properties in animal models and cells in culture (14–17). The underlying molecular and cellular mechanisms by which CLA can elicit these anticancer effects are not clearly understood at present (14–17). In addition, CLA is the common term for a group of positional and geometric isomers of LA, which are thought to act independently or synergistically with one another (15).

The literature relating to CLA and its effects on prostate cancer is not extensive (18–20) and although it has been shown that CLA has anti-proliferative effects in vitro in human prostate cancer cells and in vivo in animal models of human prostate cancer (18–20), the underlying cell mechanisms are not well understood. Therefore, a better understanding of the molecular anticarcinogenic cell mechanisms affected by CLA mixtures and their constituent isomers in this type of cancer is important if we want to develop suitable dietary supplements for cancer prevention or for patients undergoing cancer treatment.

The colorimetric MTT assay was used to quantify cell viability and reduced proliferation, using a long-term incubation (1 day plus 2 days), which allows the determination of cells that remain viable and are capable of proliferating and those that remain viable but can not proliferate and/or the detection of delayed programmed cell death (21). Our results show a decrease in PC-3 proliferation at 100 and 150 μM (66.0 ± 3.6% of control and 45.8 ± 4.3% of control, respectively) (P < 0.05).

Discussion

Effect of CLA on PC-3 proliferation (MTT assay)

Figure 5 summarizes the dose–response effects of the CLA-mix and the individual isomers (c9,t11 CLA and t10,c12 CLA isomers) on the proliferation of PC-3 cancer cells in vitro. At 25 μM there were no effects on PC-3 proliferation with the three treatments. Mixed isomers of CLA (CLA-mix) were able to decrease prostate cancer cell proliferation at 100 and 150 μM (79.9 ± 3.3% of control and 59.3 ± 2.0% of control, respectively). Similar to the CLA-mix, the c9,t11 CLA isomer was only able to decrease PC-3 proliferation at 100 and 150 μM, although to a lesser degree than the mixture of isomers (~12 and 20% inhibition, respectively). The only fatty acid that could decrease prostate cancer cell proliferation at 50 μM was the t10,c12 CLA isomer (about a 17% inhibition). This isomer was also the one that elicited the highest, significant decrease in PC-3 proliferation at 100 and 150 μM (66.0 ± 3.6% of control and 45.8 ± 4.3% of control, respectively) (P < 0.05).

Table II. Effect of c9,t11 CLA and t10,c12 CLA isomers on mRNA levels of bcl-2 and p21WAF1/Cip1 in prostate cancer cell line PC-3

<table>
<thead>
<tr>
<th>Treatment</th>
<th>25 μM</th>
<th>50 μM</th>
<th>100 μM</th>
<th>150 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcl-2 mRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100.0 ± 2.2</td>
<td>102.3 ± 3.5</td>
<td>99.6 ± 2.9</td>
<td>101.2 ± 4.1</td>
</tr>
<tr>
<td>CLA-mix</td>
<td>100.0 ± 5.4</td>
<td>103.0 ± 7.1</td>
<td>104.2 ± 8.4</td>
<td>93.9 ± 9.5</td>
</tr>
<tr>
<td>CLA-t10,c12</td>
<td>100.0 ± 2.2</td>
<td>104.0 ± 6.4</td>
<td>123.7 ± 6.3</td>
<td>145.2 ± 16.3</td>
</tr>
<tr>
<td>p21WAF1/Cip1 mRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100.0 ± 6.6</td>
<td>112.5 ± 8.7</td>
<td>108.1 ± 6.5</td>
<td>102.9 ± 5.7</td>
</tr>
<tr>
<td>CLA-mix</td>
<td>100.0 ± 2.2</td>
<td>104.0 ± 6.4</td>
<td>123.7 ± 6.3</td>
<td>145.2 ± 16.3</td>
</tr>
<tr>
<td>CLA-t10,c12</td>
<td>100.0 ± 2.2</td>
<td>104.0 ± 6.4</td>
<td>123.7 ± 6.3</td>
<td>145.2 ± 16.3</td>
</tr>
</tbody>
</table>

Values are expressed as mean (n = 8) ± SEM (% of control). Asterisk indicates significant difference versus the appropriate control (P < 0.05).

Fig. 4. Effect of cis-9, trans-11 (c9,t11 CLA) and t10,c12 CLA isomers protein levels of bcl-2 in prostate cancer cell line PC-3. Values are expressed as mean (n = 4) ± SEM (% of control). Asterisk indicates significant difference versus the appropriate control (P < 0.05).

Treatment with trans-10, cis-12 CLA elicited a significant increase in mRNA levels of p21WAF1/Cip1 (Table II) (P < 0.05), with respect to the control values at 50, 100 and 150 μM (about a 23, 45 and 60% increase, respectively).
as important pathways involved in the oncogenesis and progression of prostate cancer (4–9).

Increased eicosanoid biosynthesis in relation to enhanced prostate cancer development has been documented (4,6) making the enzymes involved in this metabolic pathway an attractive new target area for prostate cancer therapy. The pathways for eicosanoid synthesis have received a great deal of attention as possible targets for cancer inhibition, especially COX-2 (5,23,24), and lipoxigenase products, especially 5-LOX metabolites (6,25,26). Previous reports showed that inhibition or attenuation of COX-2 or 5-LOX expression or activities by various agents decreases prostate cancer proliferation by different pathways, such as apoptosis and cell cycle control (4–6,23–26). Modulation of eicosanoids synthesis has been proposed as one of the major mechanisms by which CLA can elicit its anticancer effects (14–17). However, information about CLA effects on gene expression of major enzymes involved in arachidonic acid metabolism to eicosanoids in cancer cells/tissues is extremely sparse.

In the experimental conditions reported here the mixture of CLA isomers used was only able to decrease the gene expression of 5-LOX at the highest concentration used and did not show any effect on cyclooxygenase gene expression (COX-1 and COX-2) at this concentration. This effect appeared to be largely due to the cis-9, trans-12 CLA isomer in the mix which, when used alone, decreased 5-LOX mRNA at 100 and 150 μM and COX-2 protein levels but was without effect on COX-2 mRNA at the highest concentration. This could be due to instability of the COX-2 mRNA (27). In contrast, trans-10, cis-12 did not have any inhibitory effect on gene expression of these enzymes. Even at the highest concentrations used there was actually a non-significant increase in COX-2 protein. These results, in part, agree with those obtained by other authors who showed differences between these isomers in their effects on eicosanoid synthesis. They indicate that the main reason for reduced product formation is likely to be reduced gene expression of the important COX and LOX enzymes (28,29).

Another proposed mechanism by which CLA exerts its anticancer effects is through the induction of apoptosis (14–17,30). Increased expression of Bcl-2, an important anti-apoptotic oncogene product, has been associated with the development of androgen-independent prostate cancer, and its down-regulation was associated with a decrease in prostate cancer proliferation (31). In our study, CLA was able to significantly decrease bcl-2 expression, which was regarded as an anticancer effect. This was apparently due largely to the trans-10, cis-12 isomer, which, when used individually, decreased bcl-2 mRNA and protein levels at 100 and 150 μM. Palombo et al. (19) showed recently that the trans-10, cis-12 isomer increased caspase 3 activity and induced apoptosis in PC-3 cells. However, our findings show an effect at a different level, specific oncogene expression, in the apoptotic cascade.

Finally, cell cycle checkpoints play a crucial role in maintaining tissue homeostasis. Loss of this control mechanism may contribute to the development of the malignant phenotype. Induction of p21WAF1/Cip1, a cyclin-dependent kinase inhibitor, which is capable of contributing to regulation of cell division (32), in prostate cancer cells, has been shown to reduce cell proliferation (33,34) and to induce apoptosis (33). This protein was shown by our group to be induced by CLA in breast cancer cells (30); however, there is no similar information for prostate cancer cells. In the present study we clearly show that CLA can also induce p21WAF1/Cip1 in prostate cancer cells and that the trans-10, cis-12 CLA isomer is apparently responsible for this effect, even at 50 μM.

In conclusion, our results show an anti-proliferative, anti-angiogenic effect of CLA on the androgen-independent human prostate cancer cell line PC-3. However, the anti-proliferative/anticancer effects of CLA mixtures and their constituent isomers on this cell line are not equivalent. These differences are apparently due to the different pathways modulated by the individual isomers. The trans-10, cis-12 CLA isomer appears to elicit the greatest effect and apparently works preferentially through modulation of genes involved in apoptosis and cell cycle control. The c9,t11 CLA isomer, in contrast, elicits its effects through regulation of genes involved in arachidonic acid metabolism and the subsequent attenuation of eicosanoid synthesis. These results are important because they highlight the fact that cancer is not a disease with a single aetiology for which there will be a single cure (7). CLA has clearly been implicated as a possible dietary factor for reducing both breast and prostate cancer through studies with animal models of the human disease and human cell studies in vitro (see above). If CLA is to be regarded as a suitable dietary adjuvant cancer therapy, it is important to understand the type of cancer cells.

Fig. 5. Effect of CLA mixture (CLA-mix) and individual isomers (c9,t11 CLA and t10,c12 CLA) on PC-3 proliferation. Values are expressed as mean (n = 9) ± SEM (% of control). Asterisk indicates significant difference versus the appropriate control (P < 0.05).
targeted, the specific cell mechanisms affected and the type and concentration of CLA isomer to be used. In the case of androgen-independent prostate cancer cell it seems that the best CLA isomer for a possible adjuvant cancer therapy is the trans-10, cis-12 isomer, at least in our conditions.

Acknowledgements

J.J.O. was supported by a grant from the Ministry of Science and Technology of Spain and by the Scottish Executive Environmental Rural and Agriculture Department (SEERAD).

References